Departamento de Biología Vegetal y Ecología
Fisiología Vegetal
Facultad de Biología, Universidad de Sevilla

Tesis doctoral

Alteraciones de la vía de transducción de señales que conducen a la fosforilación de la PEPC y sus implicaciones en la tolerancia a la salinidad

José Antonio Monreal Hermoso
Sevilla, 2007
Doy mi autorización a la Biblioteca de esta Facultad para que mi Tesis Doctoral

Almacenar la vía de transducción de señales que conducen a la formación de L-PEP y sus implicaciones en la tolerancia a la estasis.

Sea consultada, según la modalidad/es indicadas:

- Consulta en depósito.
- Préstamo interbibliotecario.
- Reproducción parcial.
- Reproducción total.
- Tipo de usuarios.
- Otros términos.

Firmado: José Antonio Mendoza

Sevilla, a 30 de Abril de 2007
ALTERACIONES DE LA VÍA DE TRANSDUCCIÓN DE SEÑALES QUE CONDUCEN A LA FOSFORILACIÓN DE LA PEPC Y SUS IMPLICACIONES EN LA TOLERANCIA A LA SALINIDAD

Trabajo de investigación presentado por el licenciado José Antonio Monreal Hermoso para optar al grado de Doctor en Ciencias Biológicas

Sevilla, 2007

Directoras de la tesis

Dra. Sofía García-Mauriño

Dra. Cristina Echevarría
A mis padres

A Bego
Este trabajo se ha realizado en el Departamento de Biología Vegetal y Ecología, Sección Fisiología Vegetal, de la Facultad de Biología de la Universidad de Sevilla.

La financiación se realizó con cargo a los proyectos de investigación:

Durante la realización de esta Tesis Doctoral, se han desarrollado trabajos que han dado lugar a varias publicaciones, y se han presentado a diferentes congresos nacionales e internacionales.

PUBLICACIONES

CAPÍTULOS DE LIBRO

COMUNICACIONES A CONGRESOS

AGRADECIMIENTOS
A lo largo de estos años de tesis, muchas personas han contribuido en distinto grado y en distintos aspectos a la realización de este trabajo. No sólo se trata de apoyo y consejo en el ámbito científico, también en el humano, muchas veces igual o más necesario para la consecución de esta meta, aunque pueda ser menos reconocido. Es por ello que quiero expresar mi enorme gratitud a todas esas personas que han hecho posible, de alguna u otra manera, la realización de este hermoso proyecto que ha marcado una época en mi vida y que la cambiará para siempre.

En primer lugar, y de forma destacada, quiero agradecer a mi directora de tesis, la Dra. Sofía García-Mauriño, la paciencia que ha tenido conmigo y su dedicación hacia mí. Gracias por brindarme la oportunidad de conocer lo apasionante que puede ser la ciencia. Contigo he aprendido mucho más que técnicas de laboratorio. Me has enseñado que, con dedicación y trabajo duro, se pueden conseguir muchas cosas, aún a falta de medios. Sin ti, nada de esto hubiera sido posible. Gracias Sofía.

A mi directora, la Dra. Cristina Echevarría, quiero agradecerle la gran oportunidad que me ofreció al dejar que me incorpora a su grupo, que luego se convirtió en mi segunda familia, estaré eternamente agradecido por ello. Siempre recordaré nuestras reuniones de dos horas por transparencia de las que hemos sacado tanto partido.

Al Dr. Jean Vidal, no tengo palabras para agradecerle lo que has hecho por mí y lo que me ha enseñado. Gracias por dejarme trabajar en tu laboratorio del IBP. Contigo he aprendido tanto, que no me imagino este trabajo sin tu colaboración. Siempre me fascinó tu pasión por la ciencia, cuando me preguntan qué quiero ser de mayor, digo que quiero ser como Jean Vidal. Como dice Cristina, si quieres animarte, pon un Jean en tu vida. Merci beaucoup pour tout, Jean. En outre, je voudrais remercier tout le monde à l'IBP pour m'accueillir et pour son aide dans mes stages là. Jean Noël pour le travail avec les protoplasts, Aurelie pour les RT-PCR, Bénédicte, Vincent (á Sevilla et à Paris), Michael, Patrice, Emmanuelle,... merci beaucoup.

A mis compañeros y amigos del laboratorio de PEPC quiero agradecerles su apoyo incondicional. A Rosario, gracias por tu ayuda en el laboratorio y por tus pasteles, dios como los echaré de menos cuando esté de postdoc!!. A Edu, siempre con el móvil en la mano y con mil proyectos en la cabeza, no cambies nunca, este mundo necesita más gente como tú. A mi retamita, cómo te echamos de menos, gracias por alegrarme los cafés de la mañana, aunque fueran con sacarina y leche desnatada. A Arancha, gracias por escucharme en los malos momentos y por tus consejos. A Efrén, hemos perdido una joya que han ganado en Córdoba, espero que te valoren como lo
Agradecimientos

hacíamos nosotros, ahora a ver quien continúa las 1000 líneas de investigación que he dejado pendientes.... A Pilar, técnico y secretaria a la vez, la eficacia en persona. A Jacinto, el último fichaje del grupo, gracias por contagiarnos con tu entusiasmo, aprovecha la oportunidad, llegas a un gran grupo humano.

A José María quiero agradecerle muchísimas cosas. A nivel científico, gracias por resolver mis dudas de principiante y por ayudarme en todo lo que te he pedido (y te pediré). A nivel humano, gracias por las conversaciones palanganares en torno a un café y por decir que te gustó mi paella.

A Alfonso y Ángel, gracias por enseñarme a manejar el IRGA, con vosotros he aprendido que nunca hay que perder de vista ciertos aspectos de la fisiología que son ineludibles. En el ámbito de lo personal, agradeceros las comidas que preparabais en las celebraciones del departamento, esos huevos rotos con salmón son un manjar.

A Paco, el decano, gracias por tu ayuda en mis comienzos en el laboratorio, siempre me quedo boquiabierto cuando hablas, aún no se cómo se puede saber tanto sobre tantas cosas. Mi diccionario.

Quiero agradecer profundamente al departamento de Microbiología el haber dejado colarme entre sus rizobios para pecerrear con mis plantas sin pedir nada a cambio. Una dedicatoria especial para Ollero y Jose Mari, gracias por ayudarme en el diseño de los primers y por dejarme trabajar junto a vosotros, y a Nani, por dejarme usar su termociclador y por instruirmme en PCR. He aprendido muchísimo con vosotros y espero aprender aún más. A Javi, que en este apartado aparecerá por partida doble, como compañero de fatigas en la carrera y como colaborador inestimable en mis experimentos de molecular. Gracias Javi por tener tiempo siempre para mí y por introducirme en tu laboratorio, gran parte de esta tesis se ha conseguido gracias a ti. A Ramón y Charo, la pareja perfecta, gracias por abrirme las puertas del laboratorio (en sentido literal y figurado). Y cómo no, a las nuevas incorporaciones del departamento de micro, Paco y Joe, dos joyas en bruto que, por poco que se pulan, brillarán muchísimo. Nos veremos a mi vuelta para colaboraciones dentro y fuera de la facultad. A Isla, la alegría del L4, gracias por amenizarme los ratos en el termociclador con tu “particular” gusto musical. Igualmente, agradecer al resto del laboratorio Ángeles, Bea, Macarena, Buendi, y todos los demás por dejar trabajar a un extraño junto a vosotros.

I would like to thank everybody in the Plant Physiology’s lab at the SILS, and especially to Christa Testerink, for their help and hospitality during my stage in
Amsterdam. I have learnt a lot about lipids and I hope that this will be the beginning of a great and productive collaboration.

Agradecer igualmente al Dr. Juan Sánchez, del Instituto de la Grasa, por su ayuda con las TLC y poner todos sus medios a nuestro servicio.

Un lugar muy destacado en estos agradecimientos ocupan mis padres. Gracias a ellos o por culpa de los cuales soy la persona que soy. Gracias a mi padre, por el que me siento orgulloso de llevar el apellido Monreal, me diste tanto que nunca podré compensarte. Gracias mamá por enseñarme a dar sin esperar nada a cambio. Es muy difícil poder expresar mi agradecimiento en unas líneas, pero se puede resumir en dos palabras: Os quiero. También agradecer a mi hermana su apoyo en los malos momentos, muy frecuentes en los últimos tiempos, y por contagiar con su alegría a todos los que la rodean.

A Bego, mi novia, mi mujer, mi compañera, mi amiga. Gracias por ser como eres, por aguantarme, escucharme, guiarne, y por apoyarme en los momentos difíciles que hemos vivido sobre todo en los últimos tiempos. Eres el bastón que me mantiene de pie.

A mi tita Eva y mi ahijado Carlos, que me han enseñado lo que es superar la adversidad, os merecéis tener suerte en la vida. Aunque esté lejos, me tenéis cerca. Un lugar especial para vosotros en mi corazón.

A mis compañeros de promoción y allegados quiero agradecerles su amistad y apoyo, tanto antes como después del comienzo de la tesis. Javi, Marina, Laura, Raúl, ese viaje fin de carrera fue una prueba de fuego. Toni, ya sabes que la serpiente une mucho, Susana, Salva, Cari, Virgilio, Coco, África, Mercedes, Marta, Anita, David, Eva. Si nuestra amistad sobrevivió a un viaje a Túnez y a varios días en casas rurales, nadie podrá romperla. Son tantas anécdotas que podríamos escribir un libro.

A mis amigos del motoclub Pedro, Isa, Fernando, Javi, Azahara, López, Clara, Daviline, Curri, gracias por compartir esta pasión conmigo. A Pedro en especial, que empezó conmigo esta historia de las motos, y a pesar de ello, seguimos siendo los mejores amigos. Gracias Heidi. A David, quién me metió el gusanillo cuando apenas era un niño, espero que donde estés tengas más suerte de la que tuviste aquí, te echamos de menos.

A mi familia, mi primos y mis tíos, que me han enseñado lo bonito que es tener familia. A Jose Luis, Mari, Sergio, Deme, Charo, Isra, Raquel, Jose Luis, Francisco Javier, Nene, Lourdes, Asun, sois los mejores primos que se pueden desear, y a mis tíos, Pepe y Chari, Asun y Antonio, que siempre me habéis querido como a un hijo.
Agradecimientos

Por supuesto, no puedo olvidarme de mi familia política sito en Villa Usagre, que considero como propia. Tito Paco y Tita Cándida, Josemi y Maribel, Pablo y Nuria, Paquito, mi suegro Concha, Kris. Con vosotros me siento en familia, con mayúsculas. Un lugar especial ocupan mi tito Paco y mi suegro. A Paco, agradecerle las conversaciones tan profundas que tenemos alrededor de una buena candela y que tanto nos gustan, he aprendido mucho contigo; y a mi suegro, que aunque nos piquemos mucho sabes que eres muy importante para mí.

No quisiera terminar sin mencionar a las personas que he conocido durante mis estancias en el extranjero. Con vosotros he aprendido muchísimo sobre aspectos tan desconocidos para mí como la física, las matemáticas, el arte, la música, e incluso otros campos de la biología, además de haberme ayudado y apoyado en esos momentos en los que uno está lejos de casa y echa muchas cosas en falta. Gracias Tito, David artista, Manu, Japo, Jadra, Bea, Sara, Maya, Mariola, Laura, Elena, Nacho, Tomás, Raúl, David Valencia, y tantos otros. Siempre nos quedará la cocina grande de la 2.

A los que no haya citado de manera explícita en este apartado, perdón, hay tantas personas que han ayudado en uno u otro sentido, que necesitaría otro volumen para agradecerlo todo y a todos, ya sabéis que estas cosas no se me dan bien.

GRACIAS A TOD@S
ARTÍCULOS PRESENTADOS EN LA TESIS

\(\Psi_w \) Potencial hídrico
\(\Psi_s \) Potencial de solutos
\(\Psi_p \) Potencial de presión
G6P Glucosa 6-fosfato
GA Giberelina
GMPc Guanosina monofosfato cíclico
g Gramo
GTP Guanosina trifosfato
h Hora
Hepes Ácido N-(2-hidroxietil)piperacina-N’-(2-etanosulfónico)
HIP Solución de Hexano:Isopropanol
IC\(_{50}\) Concentración del inhibidor requerida para reducir al 50% la actividad de la enzima
IgG Inmunoglobulinas G
IMP Inositol monofosfatasas
IP\(_3\) Inositol 1,4,5-trifosfato
IP\(_6\) Inositol 1,2,3,4,5,6-hexaquisfosfato
IRGA Analizador de gases por espectroscopía de infrarrojos
Ka Constante del activador
Kb Kilobase
kDa Kilodalton
KF Fluoruro potásico
Ki Constante del inhibidor
Km Constante de Michaelis-Menten
LEA Abundante en la embriogénesis tardía
mA Miliamperio
MAPK Proteína quinasa activada por mitógeno
MDH Malato deshidrogenasa
Me\(^{2+}\) Catión divalente
\(\mu g \) Microgramo
mg Miligramo
min minuto
mU miliuinidades de actividad enzimática
MV Metilviógeno
NAD(P)H Nicotina adenina dinucleótido (fosfato) reducido
NAD-ME Subtipo fisiológico de plantas C\(_4\), cuya enzima descarboxiladora es la NAD-enzima málico
NADP-ME Subtipo fisiológico de plantas C\(_4\), cuya enzima descarboxiladora es la NADP-enzima málico
ng Nanogramo
O/N Toda la noche
OAA Oxalacetato
\(^{32}\)P Isótopo fósforo 32
3-PGA Ácido 3-fosfoglicérico
p/p Relación peso/peso
p/v Relación peso/volumen
PA Ácido fosfatídico
PAGE Electroforesis en gel de poliacrilamida
PAK PA-quinasa. Sintetiza DGPP a partir de PA
pb Pares de bases
PC
Fosfatidilcolina

PCK
Subtipo fisiológico de plantas C₄ cuya enzima descarboxiladora es la fosfoenolpiruvato carboxiquinasa

PCR
Reacción en cadena de la polimerasa

PE
Fosfatidiletanolamina

PEG
Polietilenglicol

PEP
Fosfoenolpiruvato

PEPC
Fosfoenolpiruvato carboxilasa

PEPCK
Fosfoenolpiruvato carboxilasa quinasa

PF
Peso fresco

PG
Fosfatidilglicerol

Pi
Fosfato inorgánico

PI
Fosfatidilinositol

PI3K
Fosfatidilinositol 3-quinasa

PI4K
Fosfatidilinositol 4-quinasa

PI3P
Fosfatidilinositol 3-fosfato

PI4P
Fosfatidilinositol 4-fosfato

PI5P
Fosfatidilinositol 5-fosfato

PI(3,5)P₂
Fosfatidilinositol 3,5-bisfosfato

PI3P5K
Fosfatidilinositol 3-fosfato 5-quinasa

PI(4,5)P₂
Fosfatidilinositol 4,5-bisfosfato

PI4P5K
Fosfatidilinositol 4-fosfato 5-quinasa

PIP
Fosfatidilinositol fosfato

PI-PLC
Fosfolipasa C dependiente de PI

PKA
Subunidad catalítica de la quinasa dependiente de AMPc de mamíferos

PKC
Proteína quinasa de tipo C

PLA₁
Fosfolipasa A 1

PLA₂
Fosfolipasa A 2

PLD
Fosfolipasa D

PMSF
Fenilmetilsulfonil fluoruro

PPDK
Piruvato ortofosfato diquinasa

PPI
Pirofosfato

PPI
Polifosfoinositoles

PVP
Polivinilpirrolidona

qRT-PCR
Retrotranscripción de ARN a ADNc y posterior reacción en cadena de la polimerasa cuantitativa

ROS
Especies Reactivas de Oxígeno

rpm
Revoluciones por minuto

RT-PCR
Retrotranscripción de ARN a ADNc y posterior reacción en cadena de la polimerasa

Rubisco
Ribulosa 1,5-bisfosfato carboxilasa/oxigenasa

s
Segundo

S8D
Forma mutada de la PEPC en una serina por un aspartato

SDS
Dodecil sulfato sódico

SDS-PAGE
Electroforesis en geles de poliacrilamida en presencia de SDS

Ser
Serina

T
Temperatura

TBE
Tris-borato 90 mM, EDTA 2 mM, pH 8

TBS
Tris-HCl 0.02 M, NaCl 0.15 M, pH 7.5
<table>
<thead>
<tr>
<th>Acrónimo</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMED</td>
<td>N,N,N',N'-tetrametil-etilen-diamina</td>
</tr>
<tr>
<td>TGM</td>
<td>Tris-HCl 48 mM, glicina 39 mM, SDS 0.037% (p/v), metanol 5% (v/v)</td>
</tr>
<tr>
<td>Thr</td>
<td>Treonina</td>
</tr>
<tr>
<td>TLC</td>
<td>Cromatografía en capa fina</td>
</tr>
<tr>
<td>Tm</td>
<td>Temperatura de fusión de un oligonucleótido, PCR</td>
</tr>
<tr>
<td>TMB-8</td>
<td>8-(Dietilamino)octil 3,4,5-trimetoxibenzoato hidrocloruro</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hidroximetil)aminometano</td>
</tr>
<tr>
<td>U</td>
<td>Unidad de actividad enzimática</td>
</tr>
<tr>
<td>V</td>
<td>Voltio</td>
</tr>
<tr>
<td>v/v</td>
<td>Relación volumen/volumen</td>
</tr>
<tr>
<td>var.</td>
<td>Variedad</td>
</tr>
<tr>
<td>V<sub>max</sub></td>
<td>Velocidad máxima</td>
</tr>
<tr>
<td>W</td>
<td>Watios</td>
</tr>
<tr>
<td>WUE</td>
<td>Eficiencia en el uso del agua</td>
</tr>
<tr>
<td>W7</td>
<td>N-(6-Aminohexil)-5-cloro-1-naphthalenosulfonamida hidrocloruro</td>
</tr>
</tbody>
</table>
INTRODUCCIÓN.

1. FOSFOENOLPIRUVATO CARBOXILASA (PEPC).
 1.1. Estructura.
 1.2. Funciones.
 1.3. La PEPC en la fotosíntesis de tipo C₄ y CAM.
 1.4. La familia génica PEPC.
 1.5. Regulación de la actividad PEPC.
 1.5.1. Regulación transcripcional.
 1.5.2. Regulación postraduccional.
 Regulación por metabolitos, pH, estado oligomérico y estado réd ox.
 Regulación covalente por fosforilación reversible.
 1.6 Plantas transgénicas.

2. FOSFOENOLPIRUVATO CARBOXILASA QUINASA (PEPC-QUINASA).
 2.1. La familia génica PEPC-quinasa.
 2.2. Regulación de la PEPC-quinasa.
 Regulación de la síntesis de la PEPC-quinasa.
 Regulación postraduccional de la PEPC-quinasa.
 Regulación de la degradación de la PEPC-quinasa.
 2.3 La PEPC-quinasa en condiciones de estrés salino.

3. ESTRÉS SALINO.
 3.1. Plantas glicófitas y plantas halófitas .
 3.2. Determinantes de la tolerancia al estrés salino.
 3.2.1. Moléculas efectoras.
 Moléculas y mecanismos que median la homeostasis iónica.
 Gradiente electroquímico de H⁺.
 Transporte de Na⁺ y Cl⁻ a través de la membrana plasmática.
 Acumulación vacuolar de Na⁺ y Cl⁻.
 Homeostasis del Ca²⁺.
 La ruta SOS.

Biosíntesis de osmolitos.

Absorción y transporte de agua.

Coordinación de la respuesta a larga distancia.

3.2.2. Moléculas reguladoras.

3.3 ABA y la señalización en estrés osmótico.

3.3.1. Papel del ABA en la tolerancia al estrés hídrico.

3.3.2. Señalización dependiente e independiente de ABA.

4. SEÑALIZACIÓN FOSFOLIPÍDICA.

4.1. Síntesis de polifosfoinositoles (PPI).

4.2. Fosfolipasas.

4.2.1. Fosfolipasa C específica de fosfatidilinositol (PI-PLC).

 Reacción catalizada por la PLC.

 Funciones de la PLC.

 Familia génica PLC.

4.2.2. Fosfolipasa D (PLD).

 Funciones de la PLD.

 Familia génica PLD.

 Medida de la actividad PLD.

4.3. Ácido fosfatídico (PA).

4.3.1. Origen del PA.

4.3.2. Funciones del PA.

4.4. Atenuación de la señal fosfolipídica.

5. PROTEÍNAS QUINASA DEPENDIENTES DE CALCIO (CDPK).

5.1. Estructura de las CDPK.

5.2. Mecanismo de activación.

5.3. Localización subcelular.

5.4. Regulación.

5.4.1. Por fosforilación y desfosforilación.

5.4.2. Por fosfolipidos.

5.4.3. Por proteínas 14-3-3.
OBJETIVOS.

MATERIALES Y MÉTODOS.

I. Material vegetal y condiciones de cultivo.
 1. Material vegetal.
 2. Condiciones de cultivo.
 3. Infiltración al vacío de discos foliares.

II. Obtención de extractos crudos.

III. Purificación de la PEPC C₄ de hojas de sorgo.

IV. Ensayos enzimáticos.
 1. Determinación de la actividad PEPC en condiciones óptimas de ensayo.
 2. Determinación del grado de fosforilación in vivo de la PEPC. Test Malato.
 5. Actividad proteasa (zimograma).
 6. Medida de actividad CDPK tipo PKC.

V. Técnicas analíticas.
 1. Electroforesis en geles de poliacrilamida en condiciones desnaturalizantes (SDS-PAGE).
 2. Detección de fosfolípidos de membrana.
 2.1 Extracción de fosfolípidos.
 2.1.1 Extracción de fosfolípidos con Hexano:Isopropanol.
 2.1.2 Extracción de fosfolípidos con Cloroformo:Metanol:HCl.
 2.2 Cromatografía en capa fina (TLC).
 3. Cuantificación de L-Malato.
 4. Cuantificación de prolina.
 5. Medida de IP₃.
 6. Cuantificación de clorofila.
 7. Medida de proteínas solubles.

VI. Métodos inmunológicos.
 1. Transferencia de proteínas a membranas de nitrocelulosa y revelado con anticuerpos específicos (Western blot).
2. Inmunoprecipitación y detección de la PEPC-quinasa mediante anticuerpos específicos.

VII. Medidas de intercambio de gases (IRGA).

VIII. Análisis de expresión génica.

1. Extracción de ARN.
2. Retrotranscripción de ARN a ADNc.
3. Reacción en cadena de la polimerasa.
 3.1 RT-PCR.
 3.2 qRT-PCR.

RESULTADOS.

Artículo 1: Characterization of salt stress-enhanced phosphoenolpyruvate carboxylase kinase activity in leaves of *Sorghum vulgare*: independence from osmotic stress, involvement of ion toxicity and significance of dark phosphorylation.

Artículo 2: Effect of LiCl on phosphoenolpyruvate carboxylase kinase and the phosphorylation of phosphoenolpyruvate carboxylase in leaf disks and leaves of *Sorghum vulgare*.

Artículo 3: Effect of Abscisic Acid on phosphoenolpyruvate carboxylase-kinase activity from sorghum leaves.

Artículo 4: Involvement of PI-Phospholipase C, Phospholipase D and extracellular calcium in the light up-regulation of sorghum PEPC-kinase in control and salt stress conditions.

DISCUSIÓN GENERAL.

CONCLUSIONES.

BIBLIOGRAFÍA.
INTRODUCCIÓN
1. **FOSFOENOLPİRUVATO CARBOXILASA (PEPC)**

La fosfoenolpiruvato carboxilasa (PEPC; EC 4.1.1.31) cataliza la β-carboxilación irreversible del fosfoenolpiruvato (PEP) en presencia de HCO₃⁻ y de un catión divalente, generalmente Mg²⁺, para producir oxalacetato (OAA) y Pi (O’Leary, 1982). Es una enzima citósólica ampliamente distribuida en plantas, algas, bacterias y protozoos, pero ausente en hongos, levaduras y animales (Chollet et al., 1996; Izui et al., 2004). La reacción que cataliza la PEPC es altamente exergónica y, en general, irreversible. El verdadero sustrato es el bicarbonato, y no el CO₂ (Izui et al., 2004).

La PEPC fue caracterizada por primera vez en hojas de espinaca en 1953, considerándose durante mucho tiempo como una carboxilasa de plantas con función secundaria con respecto a la Rubisco (Bandurski y Greiner, 1953). Sin embargo, el descubrimiento de la fotosíntesis C₄ y la implicación de una isoforma específica de PEPC en esta ruta, aumentaron considerablemente el interés por esta enzima (Kluge, 1983).

1.1 Estructura

La enzima se compone de 4 subunidades idénticas. El tamaño de los polipéptidos de PEPC varía significativamente según el tipo de organismo: 870 aminoácidos (100kDa) en bacterias, 970 aminoácidos (110 kDa) en plantas vasculares, 1010 aminoácidos (116 kDa) en cianobacterias, y 1150 aminoácidos (134 kDa) en protozoos. No existen secuencias disponibles de PEPC de arqueobacterias, aunque se sabe que el tamaño de sus subunidades es muy pequeño (unos 60 kDa) y no se les conoce ningún regulador alostérico común (Izui et al., 2004). En el genoma de *Arabidopsis thaliana*, se ha descubierto recientemente una nueva isoforma de PEPC (Sánchez y Cejudo, 2003) similar a la de bacterias en tamaño y en la falta del sitio de fosforilación del extremo N-terminal, común en las PEPCs de plantas. *In vitro*, la enzima se presenta en forma de tetramero, trímero, dímero y monómero (Stiborova y Leblova, 1986). La forma tetramérica es la más abundante y también la más activa catalíticamente, mientras el monómero no tiene actividad (Walker et al., 1986; McNaughton et al., 1989; Jawali, 1990; Willeford et al., 1990).

La primera estructura de la PEPC se dedujo en 1984 a partir del gen PPC clonado de *E.coli* (Fujita et al., 1984). En general, la estructura tridimensional de la PEPC de *E.coli* y la PEPC-C₄ de maíz es parecida. La enzima se organiza en un dímero...
Introducción

de dímeros y todos los determinantes estructurales importantes son semejantes entre las dos enzimas (Kai et al., 1999; Matsumura et al., 2002), con la notable diferencia de la ausencia del dominio de fosforilación en la PEPC bacteriana (Vidal y Chollet, 1997). Esta diferencia es muy importante debido a que las PEPCs de plantas están fuertemente reguladas por fosforilación reversible en un residuo conservado de serina, localizado en la región N-terminal (Echevarría y Vidal, 2003).

Recientemente, se ha mostrado que una de las causas de las diferencias cinéticas de las isoenzimas C4 y C3 es una Ser situada en la posición 774 en la región C-terminal de la PEPC C4, que en la PEPC C3 es una Ala (Bläsing et al., 2000). Este residuo de Ser, al igual que el segmento 296-437 (301-442 en maíz), son determinantes críticos, muy importantes para las características de las PEPCs C4 (Izui et al., 2004).

1.2 Funciones

En plantas superiores, la PEPC se localiza en hojas, raíces, nódulos y semillas, existiendo diferentes isoenzimas de la proteína (O’Leary, 1982). La naturaleza ubicua de esta enzima se justifica, probablemente, por la naturaleza de su producto final estable, el L-Malato, el cual puede ser transportado y usado como fuente de carbono y poder reductor en numerosas vías metabólicas.

Debido a la baja Kₘ por el sustrato bicarbonato (en el rango de µmolar), esta enzima interviene, como función general, en la economía del carbono de la célula. Su participación en diferentes contextos fisiológicos incluye el movimiento estomático (Outlaw, 1990), la homeostasis del pH celular, o la absorción y transporte de cationes por las raíces (Ben-Zioni et al., 1970). También interviene en la fijación de nitrógeno en leguminosas y en la interacción del tubo polínico y el estilo, así como en la maduración y germinación de la semilla y en la maduración del fruto (Chollet et al., 1996; Echevarría y Vidal, 2003; Izui et al., 2004). Además, la PEPC tiene una función anaplerótica consistente en la reposición de intermediarios del ciclo de los ácidos tricarboxílicos o ciclo de Krebs, cuando la demanda de esqueletos carbonados para la biosíntesis de aminoácidos es elevada (Huppe y Turpin, 1994). Esta función es especialmente importante en tejidos no fotosintéticos (Latzko y Kelly, 1983). En este proceso, los ácidos orgánicos son redirigidos de la mitocondria al estroma del cloroplasto para la asimilación de NH₄⁺ por la glutamina sintetasa y glutamato sintasa en el ciclo GS/GOGAT, disminuyendo de este modo la tasa de regeneración de OAA y/o malato en la mitocondria (Champigny y Foyer, 1992). A este respecto, la PEPC puede
ser considerada como una rama de la ruta glucolítica. Durante la reducción de NO₃⁻, que consume protones, la actividad PEPC C₃ produce un incremento en el contenido de ácidos orgánicos que reduce la alcalinización y contribuye a la homeostasis del pH citósólico. Además, la lanzadera OAA/malato cloroplastídea/mitocondrial puede utilizar el OAA derivado de la actividad PEPC para proporcionar al citosol el poder reductor requerido por la nitrato reductasa (NR) (Oaks, 1994). Finalmente, la expresión de PEPC está coordinada con la nitrato reductasa (Müller et al., 2001). Estudios recientes han mostrado que hojas de plantas C₃ tratadas con NO₃⁻ mejoran el estado de fosforilación y actividad de la PEPC mediante la síntesis de PEPC-quinasa (Rajagopalan et al., 2004).

Esta ruta anaplerótica no es exclusiva de plantas C₃, también puede ocurrir en plantas C₄, como es el caso descrito en el alga verde Dunaliella salina, que en presencia de NH₄⁺ aumenta la actividad PEPC y la fijación de C (Giordano, 2001).

1.3 La PEPC en la fotosíntesis de tipo C₄ y CAM

Además de las funciones descritas, la PEPC tiene una importante función en la fotosíntesis C₄ y CAM.

Todos los eucariotas fotosintéticos reducen el CO₂ atmosférico a carbohidratos mediante el ciclo de Calvin o ciclo C₃, iniciado por la enzima Ribulosa bisfosfato carboxilasa/oxygenasa (Rubisco). Las plantas C₄ y CAM poseen un ciclo adicional llamado C₄, a través del cual pueden conseguir un mayor rendimiento fotosintético y mayores eficiencias en el uso del agua (WUE) y de los nutrientes (Edwards et al., 2001). Las plantas C₄ y CAM han desarrollado un mecanismo concentrador de CO₂, que disminuye la fotorrespiración y el gasto energético asociado (Fig. 1). La adquisición de esta nueva estrategia fotosintética por una amplia variedad de especies, indica que se ha originado independientemente y en muchas ocasiones diferentes durante la evolución de las plantas con flor (Lepiniec et al., 1994). Una de las enzimas clave en el ciclo C₄ y CAM es la PEPC, isoenzima fotosintética que se encuentra en muy altas concentraciones, y en exclusiva, en el citosol de la célula del mesófilo de estas plantas, donde realiza la fijación primaria del CO₂ que precede a la fijación de éste por la Rubisco. Los productos originados por la PEPC serán luego descarboxilados produciendo un compuesto de tres átomos de carbono y CO₂ libre, que servirá de sustrato para la fijación secundaria de la Rubisco (Gil, 1995). En las plantas CAM se produce una separación temporal entre ambas carboxilaciones, mientras que en las
Introducción

plantas C₄ esta separación es espacial al verificarse en células diferentes: las células de la vaina, en las que se localiza la Rubisco, y las células del mesófilo, que se disponen en una corona concéntrica a su alrededor, y donde se ubica la PEPC. Esto da lugar a una anatomía foliar característica denominada anatomía Kranz o en corona (Haberlandt, 1884).

![Diagrama de fotosíntesis C₄]

Figura 1. Aspectos generales de la ruta C₄. El CO₂ entra en la célula del mesófilo y es convertido a HCO₃⁻ en el ambiente acuoso del citosol. El ión bicarbonato reacciona con el PEP para formar un ácido de 4 carbonos (OAA), que se convierte en un segundo ácido C₄ (malato o aspartato) y se transporta a la célula vecina de la vaina. Allí, se descarboxila el ácido C₄, y el CO₂ liberado es fijado por la Rubisco y convertido en carbohidrato en el ciclo de Calvin. El ácido C₃ producido en la descarboxilación se transporta de vuelta a la célula de la vaina para regenerar el PEP (Modificado de Fig. 12.46. Buchanan, Grissem y Jones, Biochemistry and Molecular Biology of Plants, 2001).

En las plantas de tipo C₄, el OAA puede ser reducido rápidamente a malato en los cloroplastos del mesófilo por la enzima NADP⁺-malato deshidrogenasa, o transaminado a aspartato en el citosol por la aspartato-transaminasa. Estos ácidos C₄ son transportados a las células de la vaina y descarboxilados a piruvato o alanina. Dependiendo de la enzima descarboxiladora, se pueden identificar tres subtipos
Introducción

fisiológicos: NADP⁺-enzima málico, NAD⁺-enzima málico o PEP-carboxiquinasa. En el sorgo, la descarboxilación del malato la realiza la NADP⁺-enzima málico. El CO₂ liberado en la reacción es fijado por la Rubisco, y el piruvato regresa a los cloroplastos del mesófilo para regenerar el acceptor primario, el PEP, por la acción de la piruvato ortofosfato diquinasa (PDK).

Gracias a estas propiedades, los vegetales C₄ poseen bajas tasas mesurables de fotorrespiración, un punto de compensación de CO₂ mínimo, insensibilidad de las tasas de fotosíntesis a variaciones de O₂ y de CO₂, e insaturación de las tasas fotosintéticas por la intensidad luminosa. Además, sus enzimas poseen elevados óptimos térmicos y son plantas con una mayor eficiencia en el uso del nitrógeno y del agua en comparación con las plantas C₃ (Gil, 1995). Este conjunto de características determina que entre estos vegetales se encuentren las especies más productoras (Bjorkhan, 1976; Caballero et al., 1977; Gil et al., 1978; Caballero, 1981; Ehleringer y Pearcy, 1983).

En relación al metabolismo CAM, Cockburn (1985) ha descrito dos variantes del metabolismo estándar que se pueden desarrollar en respuesta a distintos tipos de estrés (revisado en Lüttge, 2004). En la primera variante, los estomas permanecen cerrados tanto de día como de noche, y la fluctuación del ciclo de ácidos orgánicos se sustenta del reciclaje del CO₂ respiratorio. Este fenómeno se ha descrito en respuesta a estreses severos por limitaciones en la disponibilidad de agua (Griffiths, 1988; Griffiths et al., 1989). En una segunda variante, también llamada CAM cíclica, los estomas permanecen cerrados durante el periodo de oscuridad, produciéndose alguna síntesis nocturna de ácidos orgánicos a partir del CO₂ respiratorio. Durante el posterior periodo de luz, los estomas se abren capturando CO₂ atmosférico y reduciéndolo directamente mediante el Ciclo de Calvin. Además de esta fijación de CO₂, también se asimila el CO₂ proveniente de la movilización de los ácidos orgánicos almacenados de noche. Este CAM cíclico podría ser el punto de partida para la evolución del metabolismo CAM típico (Guralnick y Jackson, 2001).

1.4 La familia génica PEPC

Se han caracterizado isoformas de PEPC, tanto fotosintéticas como no fotosintéticas, en varias plantas (Lepiniec et al., 1994; Toh et al., 1994). En ellas se ha detectado la existencia de pequeñas familias multigénicas, como cabe esperar de la diversidad funcional de la PEPC. En sorgo, se han detectado y caracterizado tres genes, llamados SvC3, SvC3RI y SvC4, que codifican las isoformas C₃, C₃ específica de raíz
Introducción

cuya expresión se activa en raíz mediante suministro de nitrógeno), y C₄, respectivamente (Lepiniec et al., 1993). Las diferentes isoformas de PEPC de sorgo tienen estructuras primarias y propiedades funcionales y regulatorias similares, por lo que la diferencia entre ellas se establece a nivel de expresión en los distintos órganos de la planta y en respuesta a distintos estímulos, más que a nivel de secuencia (Lepiniec et al., 1993).

La familia génica de la PEPC se ha descrito en especies como maíz (Grula y Hudspeth, 1987), especies C₃ y C₄ del género Flaveria (Poetsch et al., 1991; Hermans y Westhoff, 1992), en la planta CAM Mesembryanthemum crystallinum (Cushman et al., 1993; 1999), en Brassica napus (Yanai et al., 1994), en Amaranthus, tabaco, alfalfa, arroz (Lepiniec et al., 1994) y en Arabidopsis (Newman et al., 1994).

La familia génica de la PEPC en Arabidopsis está compuesta por 4 genes (Atppc1-4). Según el análisis de la secuencia, los genes Atppc1, Atppc2 y Atppc3 codifican una proteína PEPC típica de plantas, mientras que Atppc4 codifica una PEPC de tipo bacteriana, es decir, sin el motivo de fosforilación (Sánchez et al., 2006). Los genes de PEPC en Arabidopsis, muestran una expresión diferencial según los órganos de la planta y también en respuesta a estreses ambientales. Así, el transcrito de Atppc2 se encuentra en todos los órganos y en mayor cantidad, por lo que parece ser la proteína que participa en la economía del carbono (Sánchez et al., 2006). Sin embargo, Atppc3 sólo se expresa en raíces, mientras que Atppc1 lo hace en raíces y flores, al igual que Atppc4. La mayor actividad PEPC aparece en raíces, que es donde se expresan los 4 genes. El estrés salino y el estrés hídrico inducen una expresión diferencial de los genes de PEPC en raíces, siendo Atppc4 el que más se induce en respuesta a los dos estreses (Sánchez et al., 2006).

En cuanto a los productos de estos genes, las isoformas AtPPC1, AtPPC2 y AtPPC3 tienen masas moleculares similares (110,27, 107,4 y 110,1 kDa respectivamente) y contienen las Ser regulatorias (Ser11) en el dominio N-terminal de la proteína. La AtPPC4 (116,57 kDa) carece del dominio de fosforilación N-terminal (Gousset-Dupont et al., 2005). La actividad de la enzima de hojas en oscuridad aumenta fuertemente entre valores de pH de 6,9 y 7,8, y es muy sensible al malato, con una IC₅₀ cercana a 0,08 mM a pH fisiológico de 7,3. El glutamato y el aspartato son potentes inhibidores de la enzima, con una IC₅₀ de 1 y 0,4 mM respectivamente. La glucosa 6-P (G6P) no activa significativamente la enzima C₃, aunque sí es capaz de disminuir la inhibición por metabolitos. Esto concuerda con el papel propuesto para la PEPC en el
flujo anaplerótico. La PEPC de hojas iluminadas, sin embargo, responde de forma
distinta al pH, siendo significativamente más activa en el rango de pH entre 7 y 7.5. La
IC₅₀ para malato, glutamato y aspartato es 2.5, 4 y 2.5 veces mayor, respectivamente,
que la de oscuridad. Sin embargo, las condiciones de luz solo modifican ligeramente el
valor de S₀.₅ por el PEP (0.54 mM en oscuridad y 0.64 mM en luz). Tales cambios son
los esperados en una PEPC de hoja que comienza a fosforilarse en la luz (Gousset-
Dupont et al., 2005).

1.5 Regulación de la actividad PEPC

En la regulación de la PEPC se establecen distintos niveles de control:
transcripcional y postraduccional.

1.5.1 Regulación transcripcional

La PEPC está regulada a nivel transcripcional por varios factores entre los que
destaca la luz. Esta respuesta está mediada por el fitocromo y se produce en la
transición de planta etiolada a planta verde tanto en plantas C₄ (Thomas et al., 1990,
revisado en Lepiniec et al., 2003) como en plantas C₃ (Matsuoka y Yamamoto, 1989).
El fitocromo también participa en la expresión de la PEPC de la planta CAM facultativa
Mesembryanthemum crystallinum (Cushman y Bohnert, 1999). Otros factores
ambientales como alta temperatura, salinidad, estrés hídrico o la aplicación exógena de
ABA aumentan la expresión de la PEPC en esta planta CAM (Cushman et al., 1989;
Herppich et al., 1992). En Hordeum vulgare (cebada), el estrés salino y el ABA
disminuyen la velocidad de asimilación de CO₂, el contenido en clorofila y proteínas, y
la actividad de la Rubisco. Sin embargo, la actividad PEPC aumenta (Popova et al.,
1995). En plántulas de Triticum aestivum (trigo), se ha descrito que el tratamiento con
NaCl y LiCl, además de otros estreses como hipoxia o frío, provocan un aumento de la
expresión de la PEPC de raíz, aunque se desconoce si el ABA interviene en este
fenómeno (González et al., 2003).

Finalmente, otras hormonas como citoquininas, en conjunción o no con la
nutrición nitrogenada, pueden modificar la expresión de la PEPC (Peters et al., 1997).
Introducción

1.5.2 Regulación postraduccional

Regulación por metabolitos, pH, estado oligomérico y estado redox:

La mayoría de las PEPCs están sujetas a regulación alostérica. En plantas dicotiledóneas, la PEPC se activa por G6P y se inhibe por L-Malato o Asp. En plantas monocotiledóneas, además de éstos, la Gly o la Ala son activadores (Tovar-Méndez et al., 2000; Izui et al., 2004). Por el contrario, la PEPC de E.coli se regula de una forma más compleja, siendo activada por acetil-coenzimaA, fructosa 1,6-bisfosfato, ácidos grasos de cadena larga, y guanosina 3'-difosfato 5'-difosfato, e inhibida por Asp o L-Malato (Izui et al., 1981; 2004). Además, la fosforilación reguladora ausente en bacterias es inherente en plantas.

El L-Malato, OAA y Asp son efectores negativos de la actividad, especialmente a valores de pH subóptimos (del orden de 7.1 a 7.3), que se aproximan al valor del pH citosólico (Andreo et al., 1987; Echevarría et al., 1994). La G6P incrementa la V_{max} de la PEPC, produciendo una bajada de la K_m para el PEP, y disminuye el efecto inhibitorio del malato. El L-Malato interacciona con la enzima en diferentes puntos, produciendo una inhibición competitiva, no competitiva o mixta (Andreo et al., 1987) dependiendo del pH, de la concentración y del estado de fosforilación de la PEPC (Echevarría et al., 1994; Duff y Chollet, 1995).

La afinidad de la enzima por PEP y Mg$^{2+}$ aumenta fuertemente entre pH 7 y 8. Los efectos de glucosa y malato son más pronunciados a pH 7, disminuyendo al aumentar el pH. Por lo tanto, in vivo, la actividad PEPC depende del balance entre los efectores positivos y negativos relacionados con la fotosíntesis, modulándose la magnitud de sus efectos por el pH citosólico (Gadal et al., 1996). La mayoría de factores que interaccionan y actúan en la regulación de la PEPC (pH, glucosa, fosforilación) son opuestos al efecto negativo ejercido por el malato (Jeanneau et al., 2002b).

La PEPC C₄ evolucionó a partir de isoformas ancestrales C₃ durante la evolución de las angiospermas, adquiriendo propiedades cinéticas y de regulación distintas a las de las isoformas C₃. En maíz, existen dos isoformas de PEPC C₃, una de las cuales es abundante en la raíz. La similitud entre los residuos de aminoácidos de las formas C₄ y la de raíz es del 77%. Sin embargo, los valores de K_m de la forma C₄ para PEP, Mg$^{2+}$, y HCO$_3^-$ a pH 7.3 es 30, 10 y 2 veces superior a los de la forma de raíz, respectivamente (Dong et al., 1998).
La PEPC podría estar sometida a una regulación rédox (Stiborova y Leblova, 1986; Chardot y Wedding, 1992) debido a la existencia de 7 Cys altamente conservadas en todas las PEPCs. La Cys número 4 está conservada en todas las PEPCs, incluidas las procariotas, sugiriendo una función especial para este residuo. Otras 3 Cys, (número 357, 384 y 474) están conservadas en las PEPCs de plantas. Además, hay otras 3 Cys situadas en la mitad N-terminal de la enzima que podrían estar implicadas en la asociación de las subunidades (Walker et al., 1986; revisado en Jiao y Chollet, 1991; Weigend e Hincha, 1992). Sin embargo, hasta la fecha no se ha descrito ninguna cascada de óxido/reducción tipo ferredoxina/tiorredoxina implicada en la regulación de la PEPC (Jiao y Chollet, 1989), a pesar de la conocida existencia de una tiorredoxina citosólica (tiorredoxina h) (Serrato et al., 2002).

En otro sentido, recientemente se ha descrito que productos como DTT, mercaptopetanol, o glutatión reducido, cambian débilmente la sensibilidad de la PEPC C₄ al malato in situ (Pierre et al., 2004). Sin embargo, ninguno de ellos tiene efecto in vitro. Esto no se debe a ningún proceso mediado por tiorredoxina o dependiente de fosforilación. Debido a que el glutatión es un compuesto fisiológico que se encuentra, principalmente, en estado reducido en el citosol, éste podría contribuir a la protección de la enzima frente al málico (Pierre et al., 2004).

Regulación covalente por fosforilación reversible

Tanto las isoformas fotosintéticas como las no fotosintéticas de PEPC de plantas (con excepción de la tipo bacteriana) están sometidas a regulación por fosforilación reversible en un residuo de Ser, localizado en el extremo N-terminal de la proteína. Este proceso de fosforilación lo realiza una proteína quinasa llamada PEPC-quinasa. La Ser fosforilable reside en el motivo E/DR/KxxS*IDAQL/MR, común a todas las enzimas de plantas secuenciadas hasta la fecha, pero ausente en las PEPCs de cianobacterias y en la tipo bacteriana de plantas (Lepiniec et al., 1994; Toh et al., 1994; Chollet et al., 1996; Sánchez y Cejudo, 2003). Este hecho sugiere que la regulación de la enzima por fosforilación ocurre en los múltiples y diversos contextos fisiológicos donde la PEPC está involucrada.

El fenómeno de fosforilación reversible fue puesto en evidencia por primera vez en la PEPC de la planta CAM Bryophyllum (Nimmo et al., 1984), y posteriormente en la PEPC de maíz (Budde y Chollet, 1986) y en la de sorgo (Guidici-Orticioni et al., 1988). La fosforilación de la PEPC C₄ de sorgo causa un efecto débil sobre la Kₘ de la PEPC,
pero duplica la V_{max}, aumenta 7 veces la K_i para el L-Malato y 4,5 veces la K_a para la G6P, en condiciones de pH y concentración de PEPC subóptimos (Echevarría et al., 1994; Duff y Chollet, 1995). La PEPC es desfosforilada por una proteína fosfatasa de tipo 2A (PP2A) (Carter et al., 1990) (Fig. 2). Las variaciones en el estado de fosforilación de la PEPC parecen ser consecuencia de fluctuaciones en la actividad PEPC-quinasa, ya que los niveles de actividad fosfatasa in vitro se mantienen relativamente constantes en las transiciones luz-oscuridad (Echevarría et al., 1990). Un factor más que podría intervenir en la relación entre la actividad PEPC-quinasa y el estado de fosforilación de la PEPC, es el control de la desfosforilación de la PEPC (Carter et al., 1990; McNaughton et al., 1991; Chollet et al., 1996). Todos los metabolitos aniónicos conocidos por afectar la actividad PEPC (G6P, L-Malato, PEP) inhiben por interacción directa a una fosfatasa PP2A purificada de hojas de maíz (Dong et al., 2001).

Figura 2. Regulación covalente por fosforilación de la PEPC en plantas C₄. La luz induce un aumento de actividad PEPC-quinasa, la cual fosforila a la PEPC en una Ser del dominio fisiológico de fosforilación cambiando algunas de sus propiedades cinéticas. La PEPC es desfosforilada por una proteína fosfatasa de tipo 2A (PP2A) (Modificado de Fig. 12.49. Buchanan, Gruissem y Jones, Biochemistry and Molecular Biology of Plants, 2001).
Introducción

Los estudios de mutagénesis dirigida sobre una PEPC C₄ recombinante de sorgo, han puesto de manifiesto que el efecto de la fosforilación puede ser simulado por la introducción de una carga negativa, sustituyendo el residuo de serina por aspartato (S8D) en el extremo N-terminal de la proteína. La incorporación de una carga negativa en dicho dominio se traduce en un aumento de la velocidad catalítica y una disminución de la sensibilidad al L-Malato (Wang et al., 1992; Duff et al., 1995). La modificación de las propiedades funcionales de la PEPC también se consigue por la unión a la PEPC de anticuerpos específicos dirigidos contra un péptido sintético de 20 aminoácidos del extremo N-terminal, que contiene la secuencia del sitio de fosforilación de la enzima C₄ de hojas de sorgo, denominado APS-IgG (Pacquit et al., 1995). Otros tratamientos, como la sustitución de un residuo básico situado 3 aminoácidos antes de la Ser por Asn, o la eliminación del péptido N-terminal de la PEPC-C₄ de maíz con enteroquinasa en el residuo 33, mimetizan parcialmente el efecto de la fosforilación (Izui et al., 2004).

Datos recientes sugieren que las isoenzimas no fotosintéticas de la PEPC también están sometidas a una regulación por fosforilación, similar a las de las isoenzimas C₄ y CAM (Chollet et al., 1996; Vidal y Chollet, 1997). Estudios in vivo con ³²P han demostrado la existencia de fosforilación reversible de la PEPC de nódulos de raíces de soja (Zhang et al., 1995), hojas de trigo de plántulas deficientes en nitrógeno (Van Quy et al., 1991; Duff y Chollet, 1995), semillas de trigo y cebada (Osuna et al., 1996; 1999), estomas (Du et al., 1997), frutos (Law y Plaxton, 1997), e incluso en plantas acuáticas, como Egeria densa (Casati et al., 2000; Lara et al., 2001). Además, estudios in vitro han detectado la existencia de actividad PEPC-quinasa en nódulos de raíces de soja y alfalfa (Schuller y Werner, 1993; Vance et al., 1994), hojas de trigo y tabaco (Wang y Chollet, 1993a; Duff y Chollet, 1995), y raíces de sorgo (Pacquit et al., 1993), demostrándose, además, la similitud de dicha quinasa con las de plantas C₃ y CAM respecto a su independencia del Ca²⁺, propiedades cromatográficas y subunidad catalítica (Pacquit et al., 1993; Wang y Chollet, 1993b; Duff y Chollet, 1995). En hojas C₃, esta actividad PEPC-quinasa está modulada de forma reversible in vivo por una interacción compleja entre fotosíntesis y metabolismo del N₂, o por el suministro de fotosintatos a los nódulos de raíces fijadores de N₂ (Duff y Chollet, 1995). Además, la inducción de la actividad PEPC-quinasa en hojas iluminadas de plantas C₃ tiene características comunes a las de la enzima C₄ (Duff y Chollet, 1995; Chollet et al., 1996; Li et al., 1996), lo que sugiere la existencia de cadenas de transducción similares...
Introducción

en ambos tipos de plantas. En este sentido, resultados recientes han puesto de manifiesto que la PEPC de hojas de Arabidopsis se regula mediante un mecanismo de fosforilación dependiente de luz, en una ruta similar a la que ocurre en plantas C₄ (Gousset-Dupont et al., 2005). Mediante experimentos de marcaje radiactivo con ³²P, se detecta PEPC marcada en extractos de luz y no en los de oscuridad. Estos resultados apoyan la hipótesis de que los cambios dependientes de luz en las propiedades regulatorias de la PEPC se deben a la fosforilación in vivo de la enzima (presumiblemente AtPPC2) (Gousset-Dupont et al., 2005).

Como se ha propuesto para el caso de la PEPC C₄, la fosforilación podría ejercer un efecto protector que contrarrestaría la inhibición metabólica de la PEPC de Arabidopsis. Por lo tanto, el control por metabolitos de la enzima y su modulación por la regulación covalente en la luz, podrían actuar en un bucle de retroalimentación que aseguraría el control preciso del flujo de carbono a través del ciclo anaplerótico (malato y glutamato) y en la ruta de síntesis de aminoácidos de la familia del aspartato (Gousset-Dupont et al., 2005).

En la fotosíntesis C₄ y CAM, la regulación por fosforilación de la PEPC es esencial para el funcionamiento completo de la ruta. En el caso de las plantas C₃, la PEPC juega un papel crucial en la coordinación de los metabolismos del carbono y del nitrógeno. Intuitivamente, la idea de que la PEPC debe estar protegida contra el malato, como se propone en la fotosíntesis C₄ y CAM, podría aplicarse a cualquier sistema en el cual la concentración de este metabolito incrementa, tal como ocurre en el flujo anaplerótico del C (Vidal et al., 2002).

La PEPC C₄ se fosforila durante el día, mientras que en la PEPC CAM este fenómeno ocurre de noche. Por lo tanto, en ambos casos, la fosforilación de la PEPC ocurre durante la etapa activa de fijación de CO₂ ambiental para la fotosíntesis. La fosforilación está controlada, principalmente, por la luz en las plantas C₄, y por un oscilador circadiano aún desconocido en las plantas CAM (Nimmo, 2003). Recientemente, se ha sugerido que la fosforilación de la PEPC en plantas C₄ no sólo se regula por la luz, sino que puede aumentar además por algún mecanismo de retroalimentación o por estrés oxidativo (Izui et al., 2004). El aumento de la fosforilación de la PEPC C₄ en condiciones de estrés salino (Echevarria et al., 2001), y de la PEPC CAM en aire libre de CO₂, apoyan la existencia de múltiples factores que controlan la fosforilación regulatoria de la PEPC (Izui et al., 2004).
Desde un punto de vista fisiológico, el bloqueo de la síntesis de la PEPC-quinasa en hojas C₄ iluminadas conduce a una inhibición marcada de la asimilación de CO₂ (Bakrim et al., 1993). Por lo tanto, la fosforilación de la PEPC C₄ parece ser un evento crítico que gobierna la asimilación de carbono en la ruta fotosintética C₄. Este complejo mecanismo lleva al ajuste del flujo de carbono intercelular según la demanda del ciclo de Calvin, y así se asegura un funcionamiento eficiente y una homeostasis de la fotosíntesis C₄ (Jeanneau et al., 2002b).

1.6 Plantas transgénicas

En los últimos años, se han hecho varios intentos para transferir elementos de la fotosíntesis C₄, en especial la PEPC, a plantas C₃ para mejorar la velocidad de asimilación de CO₂. En los tejidos fotosintéticos de hojas C₄ iluminadas, el ciclo C₄ aumenta los niveles de CO₂ en las proximidades de la Rubisco. Como consecuencia de la elevada proporción CO₂/O₂, la actividad oxigenasa de esta enzima y, por lo tanto, la fotorrespiración, se reducen drásticamente con respecto a las plantas C₃. En los primeros intentos, se consiguió expresar la PEPC ectópica en plantas C₃, aunque la sobreexpresión fue generalmente baja (Gehlen et al., 1996; Häusler et al., 1999).

Al transformar plantas de arroz (C₃) con un gen de PEPC C₄ completo de maíz, los transformantes tenían una menor inhibición de la fotosíntesis por el O₂, pero la velocidad fotosintética fue comparable a la de plantas sin transformar. Más aún, la PEPC C₄ de maíz en las hojas transgénicas permaneció desfosforilada en las hojas iluminadas (Ku et al., 1999; Matsuoka et al., 2001). Puede ser que la enzima exógena no sea una buena diana para la PEPC-quinasa de hojas C₃ o que, alternativamente, exista un mecanismo de compensación que se induzca para evitar el impacto de una modificación genética (Jeanneau et al., 2002b). Otro problema potencial es la disponibilidad de PEP en las células del mesófilo de plantas C₃. Si hay mucha PEPC, el contenido de su sustrato puede disminuir a niveles que pueden perturbar el metabolismo de la planta.

De forma ideal, los genes de la ruta C₄ deberían expresarse en los niveles correctos y en los compartimentos celulares adecuados en hojas que carecen de anatomía Kranz (Jeanneau et al., 2002b).

Respecto a las plantas C₄ se podría esperar que, al inducir mayores niveles de PEPC mediante modificación genética, no se obtuviera una mayor eficiencia fotosintética. Sin embargo, esto es distinto cuando las plantas de maíz se someten a
Introducción

estrés hídrico, situación en la que la fotosíntesis disminuye (Rodríguez-Penagos y Muñoz-Clares, 1999). El impacto que produce el estrés hídrico sobre una planta es complejo y, en esencia, pleiotrópico (Cornic, 2000). En el rango de contenido hídrico relativo que se da en la naturaleza, normalmente el cierre estomático juega el papel más importante en la disminución de la fotosíntesis de la hoja, mientras que la maquinaria fotosintética permanece intacta (Cornic, 2000). Como consecuencia del cierre estomático, lo lógico es que la concentración cloroplástica de CO₂ disminuya, con lo que el CO₂ es progresivamente reemplazado por O₂, favoreciéndose la actividad oxigenasa de la Rubisco. Por lo tanto, es en este caso cuando se hace más interesante modificar las cantidades de PEPC. Se puede hipotetizar que el aumento del contenido de PEPC C₄ mediante ingeniería genética podría impactar positivamente en: 1) ajuste osmótico, proporcionando precursores para la biosíntesis de prolina y 2) la capacidad para fijar CO₂ a bajas conductancias del gas. Al aumentar el rendimiento del sistema para atrapar CO₂, se pueden asegurar mayores niveles de esta molécula en las proximidades de la Rubisco y una menor tasa de fotorrespiración, y se puede contribuir así a una mejor tolerancia de las plantas C₄ al déficit hídrico (Jeanneau et al., 2002b).

En este sentido, plantas de maíz que sobreexpresan la PEPC C₄ muestran una mejor capacidad para fijar CO₂ en condiciones suficientes de agua. Bajo sequía moderada, mejoran la mayoría de las características estudiadas: tasa de fijación de CO₂, punto de compensación de CO₂, superficial de la hoja, y densidad estomática; y empeoran en las que subexpresan la enzima. Además, las que sobreexpresan muestran una mejora significativa (+30%) en la eficiencia en el uso del agua (WUE) (Jeanneau et al., 2002a).

2. FOSFOENOLPIRUVATO CARBOXILASA QUINASA (PEPC-QUINASA)

La PEPC-quinasa es una proteína quinasa de Ser/Thr que utiliza ATP como donador de fosfato. Fosforila a la PEPC en un resto de serina (Ser 15 en maíz y Ser 8 en sorgo) en el extremo N-terminal de la proteína (Jiao et al., 1991b).

La PEPC-quinasa es una proteína altamente específica, perteneciente a la familia de las quinasas Ca²⁺/calmodulina dependientes (CDPKs). Sin embargo, a diferencia de éstas, no posee ninguna extensión N-terminal ni C-terminal que contenga motivos de regulación, como sitios de unión a Ca²⁺ o secuencia autoinhibidora, así como motivos de fosforilación. Su actividad es independiente de Ca²⁺ y se encuentra constitutivamente activa. Es la proteína quinasa dependiente de ATP más pequeña conocida hasta la fecha.
(Hartwell et al., 1999; revisado en Hrabak et al., 2003), con una masa molecular teórica de 31 kDa (274, 279 y 284 aminoácidos en K. fedtschenkoi, M. crystallinum y Arabidopsis, respectivamente). También es la primera quinasa descrita cuya regulación se produce por cambios rápidos en su velocidad de síntesis, con una tasa de renovación de unas 2h (Jiao et al., 1991a; Hartwell et al., 1996; 1999). Las PEPC-quinásas de Flaveria y de M. crystallinum contienen una secuencia específica (GAA, ATAGAT y elementos GTA) en la región 3'$ no codificante determinante para los ARNm de vida corta, por lo que se les supone una tasa de recambio rápida para el ARNm (Tsuchida et al., 2001).

Una PEPC-quinasa recombinante de F. trinervia fosforila de forma eficiente la PEPC C₄ de maíz en la Ser fisiológica (Tsuchida et al., 2001). Aunque posee un dominio quinasa similar al de las CDPKs, la PEPC-quinasa no es capaz de fosforilar sustratos convencionales de quinasas como la caseína o la histona-IIIS, mientras que una forma recombinante de CDPK de arroz sí lo hace. Sin embargo, esa CDPK no fosforila la PEPC silvestre. Por lo tanto, la PEPC-quinasa clonada de F. trinervia tiene alta especificidad por la PEPC, como ya se ha demostrado para otras plantas, y los mecanismos de reconocimiento del sustrato para la PEPC-quinasa y la CDPK parecen ser diferentes los unos de los otros (Tsuchida et al., 2001). Las propiedades cinéticas de PEPC-quinásas de M. crystallinum y de F. trinervia son esencialmente las mismas que las de la PEPC-quinasa nativa purificada de hojas de maíz (Saiz et al., 2001). Por ejemplo, la estricta especificidad por el sustrato, la independencia de Ca²⁺, el perfil de pH, y los valores de K_m por los ligandos, son los mismos (Tsuchida et al., 2001; Ermolova et al., 2003).

Si bien la especificidad de la PEPC-quinasa es alta, la PEPC purificada de hojas de maíz puede ser fosforilada por subunidad catalítica de la quinasa de mamíferos dependiente de AMPc (PKA). La fosforilación se produce exclusivamente en la Ser 15 del extremo N-terminal y promueve el cambio fisiológico de las propiedades cinéticas de la enzima (Terada et al., 1990).

2.1 La familia génica PEPC-quinasa

Las primeras PEPC-quinásas se clonaron a partir de Kalanchoe fedtschenkoi y Arabidopsis en 1999 (Hartwell et al., 1999). En la actualidad se conocen representantes de Mesembryanthemum crystallinum (Taybi et al., 2000; Ermolova et al., 2003), de nódulos de soja (Xu et al., 2003), de la leguminosa Lotus japonicus (Nakagawa et al.,
Introducción

2003) y de otras especies referidas a continuación. Los productos de la traducción de los ADNc de los genes de PEPC-quinasa constan de 274-307 residuos de aminoácidos, y poseen una masa molecular de 31-33 kDa. Al alinear secuencias de PEPC-quinasa, se observa que los subdominios IV, V y VIA son muy variables, mientras que los X y XI están muy conservados y son característicos de la PEPC-quinasa (Izui et al., 2004).

La PEPC-quinasa está formada por una familia multigénica con patrones de expresión específicos que delatan la especificidad de su función (Nimmo, 2003). El genoma de Arabidopsis posee dos genes de PEPC-quinasa, PPCK1 y PPCK2. PPCK1 es el que se expresa de forma más abundante en las hojas de la roseta (Fontaine et al., 2002; Nimmo, 2003). En tomate, la expresión de PPCK2 aumenta considerablemente durante la maduración del fruto (Marsh et al., 2003). También se han encontrado representantes de estas dos isoenzimas en berenjena y tabaco (Marsh et al., 2003) y en F. trinervia (Nimmo et al., 2003; Echevarría y Vidal, 2003; Izui et al., 2004). En soja se han identificado 4 representantes de PEPC-quinasa (Sullivan et al., 2004). Dos de las isoformas se expresan preferentemente en el nódulo y dependen del aporte de fotosintatos a la raíz (GmPPCK2, GmPPCK3); mientras que una tercera forma (GmPPCK4) está sometida a control circadiano en hojas pero no en raíces (Sullivan et al., 2004).

En especies C₄, se ha identificado un gen en F. trinervia (Tsuchida et al., 2001) que se expresa fuertemente en hojas en respuesta a la luz, mientras su expresión en otros tejidos es muy escasa, por lo que se cree que este gen codifica la PEPC-quinasa C₄ que fosforila a la PEPC fotosintética (Shenton et al., 2006). En maíz se han identificado 4 miembros, denominados ZmPPCK1-4 (Shenton et al., 2006). ZmPPCK1 se expresa preferentemente en respuesta a luz en las células del mesófilo de hojas, mientras que ZmPPCK2 se expresa en células de la vaina tanto en luz como en oscuridad. Los otros dos genes de PEPC-quinasa de maíz se expresan en menor nivel y en otros tejidos de la planta (Shenton et al., 2006). Por lo tanto, parece que PPCK1 de maíz es la proteína quinasa que fosforila a la PEPC fotosintética en las células del mesófilo, mientras que PPCK2 podría fosforilar a la PEPC de células de la vaina en oscuridad para reducir o eliminar el ciclo fútil que se podría producir durante las reacciones de fijación y descarboxilación durante el día (Shenton et al., 2006).

En sorgo, se han descrito dos genes que codifican PEPC-quinasa, llamados SbPPCK1 y SbPPCK2. Las proteínas SbPPCK1 y 2 poseen un 92 % y un 90% de identidad de aminoácidos con ZmPPCK1 y 2 respectivamente. La expresión de
Introducción

SbPPCK1 aumenta de forma drástica en respuesta a luz, mientras que la respuesta de *SbPPCK2* a los cambios luz/oscuridad es menor. Por lo tanto, se cree que pueden desarrollar el mismo papel que en el caso de maíz, aunque se desconoce por el momento su localización celular dentro de la hoja (Shenton et al., 2006).

Las proteínas ZmPPCK2 y 3 de maíz y SbPPCK2 de sorgo son muy parecidas entre sí, y se diferencian del resto de miembros de la familia PEPC-quinasa en que contienen una inserción ácida de longitud variable entre el dominio VIb y VII del dominio catalítico quinasa (Shenton et al., 2006).

Según análisis filogenéticos, se observa que los cereales poseen dos subclases de genes PEPC-quinasa. En maíz, arroz, trigo y sorgo, existen miembros de las dos subclases. Una de las familias está tipificada por ZmPPCK1, y la otra por las otras tres proteínas de maíz. De esta forma, las proteínas ZmPPCK1 y SbPPCK1 se parecen más a las de arroz y trigo (OsPPCK1 y TaPPCK1) que a las otras isoformas de maíz o de sorgo (Shenton et al., 2006).

2.2 Regulación de la PEPC-quinasa

En la regulación de la PEPC-quinasa se pueden establecer tres niveles: regulación de la síntesis, postaduccional y de la degradación.

Regulación de la síntesis de la PEPC-quinasa

La PEPC-quinasa está regulada, principalmente, a nivel transcripcional (Hartwell et al., 1999). En plantas C₄, la PEPC-quinasa se regula por la intensidad luminosa, a través de una cadena de transducción de señales de la que se conocen numerosos componentes (Giglioli-Guivarc'h et al., 1996; Coursol et al., 2000; Echevarría y Vidal, 2003). En plantas CAM, la síntesis de la PEPC-quinasa depende de un oscilador circadiano que actúa en conjunción con el malato (Taybi et al., 2004). En el caso de las plantas CAM, el L-Malato se libera de la vacuola al citosol durante el día, disminuyendo la expresión del gen de PEPC-quinasa, la actividad PEPC-quinasa y el estado de fosforilación de la PEPC, proceso que se revierte en oscuridad (Bakrim et al., 2001) siguiendo un ritmo circadiano (Lüttge, 2001; McClung, 2001).

La cinética de aparición de la actividad PEPC-quinasa en la hoja de maíz (planta C₄) es relativamente lenta, apareciendo su máxima actividad después de 90 min de iluminación (Echevarría et al., 1990). La inhibición de este proceso por CHX sugiere la implicación de una neosíntesis de la enzima como elemento de la cadena de
transducción que conduce a la fosforilación de la PEPC in vivo (Jiao et al., 1991a; Bakrim et al., 1992; Hartwell et al., 1999) o in situ, en los protoplastos de células del mesófilo de sorgo (Pierre et al., 1992).

La fotoactivación de la PEPC-quinasa C₄ está mediada por la fotosíntesis, ya que se inhibe en presencia de inhibidores del flujo fotosintético de electrones (DCMU), de desacoplantes, y también de inhibidores del ciclo de Calvin (Chollet et al., 1996; Vidal y Chollet 1997; Echevarría y Vidal, 2003). Los trabajos realizados por Pierre et al. (1992) en protoplastos de células del mesófilo, ponen de manifiesto que la basificación del pH y la presencia de Ca²⁺ son elementos indispensables para la fotoinducción de la actividad PEPC-quinasa, así como para la fosforilación in situ de la PEPC. El ácido 3-fosfoglicérico (3-PGA) parece ser la señal que produce la regulación positiva de la quinasa en plantas C₄ (Giglioli-Guivarc'h et al., 1996). En las hojas C₄ iluminadas, este metabolito se produce por el ciclo de Calvin en los cloroplastos de las células de la vaina y difunde a las células vecinas del mesófilo, donde se transporta al cloroplasto en su forma parcialmente protonada. Existen evidencias que apoyan el hecho de que este proceso de bombeo de protones, y la consecuente alcalinización del citosol es, de hecho, lo que dispara la transducción de señales para la síntesis de la quinasa en las células del mesófilo C₄ (Giglioli-Guivarc'h et al., 1996). La secuencia de acontecimientos de esta cadena de transducción en hojas C₄ implicaría los siguientes elementos: I) la luz, a una intensidad luminosa superior a 200 μE m⁻² s⁻¹; II) el 3-PGA, producido en el ciclo de Calvin y que difundiría al mesófilo actuando como mensajero intercelular; III) la basificación del pH citósólico, IV) estimulación de una fosfolipasa C dependiente de inositol (PI-PLC) (Coursol et al., 2000) y producción de inositol trifosfato (IP₃); V) apertura de canales de Ca²⁺ del tonoplasto (sensibles a TMB8) y activación de una quinasa Ca²⁺-dependiente CDPK (inhibida por W7), con características de proteína quinasa C (PKC) (Giglioli-Guivarc'h et al., 1996; Coursol et al., 2000; Echevarría y Vidal, 2003; Osuna et al., 2004); VI) síntesis de la PEPC-quinasa; VII) fosforilación de la PEPC, hecho a su vez modulado por una regulación metabólica (L-Malato y G6P) y por el pH (Giglioli-Guivarc'h et al., 1996) (Fig. 3).
Figura 3. Ruta de transducción de señales que induce la fosforilación de la PEPC en protoplastos C₄. La luz dispara la síntesis de la PEPC-quinasa y la fosforilación de la PEPC mediante una transducción de señales que implica, entre otros elementos, activación de una PI-PLC, salida de Ca²⁺ de depósitos intracelulares, activación de una proteína CDPK tipo PKC y síntesis de la PEPC-quinasa, la cual fosforila a la PEPC. (Modificado de Vidal y Chollet, 1997).

Además, resultados recientes de nuestro grupo han mostrado que, en la cadena de transducción de señales, hay otra fosfatasa implicada, de tipo 2B o 2C. Esta fosfatasa no es sensible al ácido okadaico ni a la microcistina-LR (inhibidores específicos de PP2A).

Según estudios de Bakrim et al. (2001) con protoplastos y hojas de M. crystallinum, existe una cascada de transducción similar a la de plantas C₄ en plantas CAM. En ellas, el incremento de pH desencadenante de la señalización, que permitiría la expresión del gen de PEPC-quinasa, sería el resultado del transporte de ácido mático a la vacuola durante la noche. Cuando el malato se libera de la vacuola al citosol durante el día, la expresión y actividad de la PEPC-quinasa, y el estado de fosforilación de la PEPC, disminuyen. Todo lo contrario ocurre durante el periodo de oscuridad (Giglioli-Guivarc’h et al., 1996; Vidal y Chollet, 1997; Coursol et al., 2000). En las plantas CAM, el malato producido por la PEPC citósólica durante la noche se transporta activamente a la vacuola. Este transporte se realiza acoplado a ATP-asas de H⁺ del tonoplasto que establecen un gradiente electroquímico de H⁺ a través de la membrana cuando los protones son bombeados a la vacuola (Cushman y Bohnert, 1999). Puede ser
Introducción

que este proceso produzca la alcalinización del citosol en las células del mesófilo de hojas CAM. Apoyando esto, se ha visto que el pH citósólico del mesófilo en la planta CAM Kalanchoe daigremontiana aumenta aproximadamente en 0.3 unidades durante la última fase día/principio de oscuridad. En las hojas C₄, sin embargo, tanto la acumulación del malato citósólico (alrededor de 20 mM según cálculos teóricos), como el aumento de expresión del gen de la PEPC-quinasa, ocurren en el mesófilo durante el periodo de luz. Claramente, en este caso, el malato no está involucrado en el control de la expresión del gen de la PEPC-quinasa C₄ (Bakrim et al., 2001).

La expresión de la PEPC-quinasa en plantas CAM está sometida a un control circadiano (Taybi et al., 2004). El reloj circadiano de Arabidopsis contiene 3 lazos de retroalimentación interconectados (McClung, 2006). CCA1 y LHY son dos factores de transcripción que funcionan en los 3 lazos. TOC1 cierra un lazo, mientras que sus parálogos PRR5, PRR7 y PRR9 cierran un segundo lazo. El tercero incluye el factor de transcripción LUX. CCA1 y LHY se unen al promotor de TOC1 e impiden su transcripción al final del periodo de oscuridad y principio del de luz. Los niveles de CCA1 y LHY disminuyen al final del periodo de luz, y TOC1 aumenta y activa de forma indirecta la transcripción de los genes CCA1 y LHY. En la planta CAM M. crystallinum se han obtenido los ADNc completos que codifican ortólogos de todos los componentes del reloj circadiano de Arabidopsis (Boxall et al., 2005), por lo que se supone un mecanismo similar al encontrado en esta planta.

Los metabolitos, además de regular la síntesis de PEPC-quinasa en plantas CAM (Nimmo, 2003), también tienen efectos en algunas plantas C₃ y C₄. Por ejemplo, plantas de tabaco a las que se les suministra malato por corriente transpiratoria, reducen los niveles de actividad y de transcriptos de la nitrato reductasa, que a su vez, están coordinados con los de PEPC y PEPC-quinasa (Nimmo, 2003). En nódulos, el gen que da lugar a la proteína PEPC-quinasa se expresa en función de los fotosintetatos translocados por la hoja, siendo la PEPC fosforilada durante el ciclo de luz, coincidiendo con el mayor aporte de fotosintetatos (Nimmo, 2003).

En la actualidad, las evidencias de que la actividad PEPC-quinasa está regulada por síntesis proteica en hojas de plantas C₃ y en órganos no fotosintéticos, a excepción de la semilla (Osuna et al., 1996 y 1999), se van acumulando. La señalización implicada tiene elementos comunes a los descritos para la C₄, aunque también se contemplan algunas variantes. En primer lugar, todas las PEPCs C₃ descritas hasta la fecha tienen la serina reguladora localizada en el dominio N-terminal conservado (con
la excepción de la forma bacteriana). Además, también se ha comprobado la actividad PEPC-quinasa y la fosforilación de la PEPC en estas plantas (Duff y Chollet, 1995; Zhang et al., 1995; Li et al., 1996; Osuna et al., 1999).

Mediante estudios farmacológicos en protoplastos de células del mesófilo de Arabidopsis, se ha comprobado que la cascada de fosforilación de la PEPC que controla la síntesis de la PEPC-quinasa1 en hojas de la roseta de Arabidopsis, se activa por luz e implica el ciclo de los fosfoinositídios, flujos de calcio desde la vacuola al citosol, y la regulación positiva de la PEPC-quinasa mediante un aumento en la tasa de renovación (Gousset-Dupont et al., 2005). Además, esta cascada es dependiente de fotosíntesis. Por lo tanto, aparentemente, esta maquinaria de señalización se conserva en todos los tipos de plantas examinados hasta hoy. Estos resultados son consistentes con los datos previos con protoplastos C4. Sin embargo, no se requiere la base débil (NH4Cl), además de la luz, para disparar la cascada en protoplastos de células del mesófilo de Arabidopsis (necesario en el caso de protoplastos C4). Es interesante destacar que en hojas y protoplastos de células del mesófilo de varias plantas C3, se ha visto una rápida alcalinización del citosol y una acidificación vacuolar en la luz, y el fenómeno inverso en oscuridad (Yin et al., 1990). Esto se puede deber al 3-PGA protonado importado a los cloroplastos, que actuaria a modo de bomba de protones. En las especies C4, el 3-PGA se produce en la célula de la vaina y no puede participar en este proceso en los protoplastos aislados del mesófilo, hasta que este metabolito no se añade a la suspensión iluminada (Giglioli-Guivarc’h et al., 1996). Sin embargo, los protoplastos de especies C3 tienen la capacidad de desarrollar este proceso en ausencia de 3-PGA externo. Por lo tanto, el aumento del pH citósólico, podría también ser un evento temprano en la cascada de fosforilación de la PEPC en plantas C3 (Gousset-Dupont et al., 2005).

En hojas cortadas de tabaco, el aumento de actividad PEPC-quinasa se bloquea por inhibidores de la fotosíntesis y por CHX (Li et al., 1996). Este fenómeno se revierte parcial y específicamente al aplicar glutamina exógena a las hojas, lo que induce a los autores a concluir que la PEPC-quinasa se activa por luz en plantas C3 mediante una ruta similar, pero no idéntica, a la que ocurre en maíz.

Al incubar protoplastos del mesófilo de cebada en la luz, se obtiene una reducción de la sensibilidad de la PEPC al L-Malato en un proceso dependiente de síntesis proteica sensible a CHX (Smith et al., 1996). La PEPC-quinasa aumenta en estos protoplastos tras aislarslos en oscuridad, y aún más tras un tratamiento con luz. Este aumento en actividad quinasa en la luz es sensible a CHX. Al iluminar los protoplastos
Introducción

en presencia de EGTA y un ionóforo de Ca$^{2+}$ para reducir el calcio intracelular, la PEPC es menos sensible al malato, aunque no se detecta más actividad quinasa que sin el EGTA y el ionóforo. Además, al incubar con DCMU e iluminar, no se altera la reducción en la sensibilidad al malato ni en la activación de la PEPC-quinasa inducidas por luz. Por lo tanto, en protoplastos de cebada existe una PEPC-quinasa constitutiva distinta de la que se induce en la luz por síntesis proteica. Además, la sensibilidad de la PEPC al malato puede no correlacionarse con la actividad PEPC-quinasa aparente. También en este caso, los autores concluyen que la PEPC de hojas C$_3$ se regula de forma diferente en protoplastos C$_3$.

En semillas de trigo, donde existe una PEPC-quinasa que no se activa por síntesis durante la germinación y cuya actividad está regulada por metabolitos, tampoco ocurre una ruta similar a la de plantas C$_4$ o CAM (Osuna et al., 1999).

Recientemente se ha descrito un gen de PEPC-quinasa de soja (GmPPCK4) que se regula de forma circadiana en hojas pero no en raíces (Sullivan et al., 2004). El gen del reloj circadiano LHY se expresa tanto en hojas como en raíces siguiendo el ciclo normal, lo que indica que el reloj funciona tanto en hojas como en raíces, pero sólo está conectado a la expresión del gen PPCK4 de soja en las hojas (Sullivan et al., 2005). Una posible explicación para el control circadiano de este gen en hojas es que dirija carbono hacia la biosíntesis (sobre todo de aminoácidos) mediante la activación de la PEPC. Aunque la función de este gen en raíces puede ser la misma, el control circadiano no debe ser tan importante como en hojas (Sullivan et al., 2005).

En arroz, se ha descrito recientemente un nuevo mecanismo en el control de la expresión de un gen de PEPC-quinasa (OsPPCK2). Este mecanismo se ha llamado iniciación alternativa de la transcripción, y consiste en la expresión de 2 transcriptos distintos a partir del mismo gen (Fukayama et al., 2006), uno más corto y otro más largo (OsPPCK2-S y OsPPCK2-L respectivamente), y también se ha descrito para varios genes de Arabidopsis (Lumbieras et al., 1995; Cunillera et al., 1997). El gen OsPPCK2 se expresa en todos los órganos de la planta a unos niveles relativamente bajos. Esta expresión constante sugiere que debe tener funciones básicas en el mantenimiento celular en todos los órganos (Fukayama et al., 2006). En hojas, el transcríptico de OsPPCK2-L se detecta en condiciones de iluminación, mientras OsPPCK2-S se detecta siempre. La suplementación con nitrato de las hojas induce la expresión de los dos transcritos de OsPPCK2, mientras la falta de fosfato induce la del transcrípto corto.
Introducción

(OsPPCK2-S). Por lo tanto, la iniciación alternativa de la transcripción debe tener importancia fisiológica (Fukayama et al., 2006).

Regulación posttraduccional de la PEPC-quinasa

Aunque la síntesis/degradación de la PEPC-quinasa representa el mecanismo principal de regulación, existen otros factores que pueden regular la actividad de la enzima. En este sentido, la PEPC-quinasa está regulada por el pH, siendo su óptimo in vitro de 8 (Echevarría et al., 1994; Chollet et al., 1996). Además, la fosforilación de la PEPC en ensayos reconstituidos con PEPC-quinasa está regulada por metabolitos. La fosforilación es inhibida por malato (Echevarría et al., 1994; Chollet et al., 1996; Bakrim et al., 1998; Echevarría y Vidal, 2003). Dicha inhibición se revierte por G6P (Echevarría et al., 1994). La base de este mecanismo sería un cambio de conformación de la PEPC en presencia de estos metabolitos y no una acción directa de ellos sobre la actividad PEPC-quinasa (Echevarría et al., 1994; Chollet et al., 1996; Bakrim et al., 1998; Echevarría y Vidal, 2003).

Recientemente, se ha aislado un inhibidor de la PEPC-quinasa de hojas de plantas C₄ (en maíz) y CAM (en K. fedtschenkoi). Su naturaleza es proteica, con un peso molecular de 100.000 ± 10.000, e inhibe de forma reversible a la quinasa, presumiblemente mediante una interacción directa (Nimmo et al., 2001). Por el momento no parece estar directamente implicado, como elemento esencial, en la regulación luz/oscuridad de la actividad PEPC-quinasa C₄ o circadiana de la PEPC-quinasa de plantas CAM. La función de este inhibidor parece ser la de inhibir los niveles basales de quinasa existentes en luz en las plantas CAM y en oscuridad en las C₄, condiciones en las que no se requiere un flujo rápido a través de la PEPC.

Por otra parte, los trabajos de Saze et al. (2001) muestran una posible regulación rédox de la PEPC-quinasa purificada de maíz. La PEPC-quinasa se podría inactivar rápidamente bajo condiciones semi-oxidativas, y reactivarse eficientemente por una reducción mediada por tiorredoxina. Además, observan el mismo fenómeno con la PEPC-quinasa de F. trinervia (Saze et al., 2001).

Otro mecanismo implicado en la regulación de la PEPC-quinasa podría provenir de la interacción con su sustrato, la PEPC. En este sentido, los trabajos realizados por Li et al. (1997) pusieron de manifiesto que, cuando se utiliza como sustrato un péptido sintético (de unos 20-30 aminoácidos) que contiene el dominio de fosforilación de la PEPC, la eficiencia de la fosforilación por la PEPC-quinasa era muy baja. Estos
resultados sugirieron la existencia de un sitio secundario de interacción con la PEPC-quinasa (Li et al., 1997). Este segundo sitio de interacción es, al menos in vitro, el extremo C-terminal de la PEPC (Álvarez et al., 2003). Resultados recientes obtenidos por nuestro grupo mostraron que un péptido sintético que contiene los últimos 19 aminoácidos del extremo C-terminal de la PEPC, inhibe in vitro la fosforilación de la PEPC por la PEPC-quinasa, aportando la primera evidencia de que la alta especificidad de la PEPC-quinasa por la PEPC, podría provenir de la interacción con el dominio C-terminal hidrofóbico de su sustrato (Álvarez et al., 2003).

Regulación de la degradación de la PEPC-quinasa

En relación al mecanismo de regulación de la PEPC-quinasa a nivel de la modulación de la cantidad de proteína, aún queda mucho por investigar. Existen pocos trabajos que incidan en la regulación de la degradación de la PEPC-quinasa y de los mecanismos implicados. Hasta el momento, la evaluación directa de la abundancia de esta proteína en diferentes contextos metabólicos o en condiciones fisiológicas diferentes ha fracasado debido a la escasa abundancia de la PEPC-quinasa in vivo (Agetsuma et al., 2005). En ensayos de la actividad quinasa in-gel utilizando 32P-ATP se revelan, al menos, dos especies moleculares de PEPC-quinasa con tamaños de unos 30 y 37 kDa respectivamente, en varias plantas como maíz, tabaco o soja (Li y Chollet, 1993, 1994; Li et al., 1996; Zhang y Chollet, 1997; Agetsuma et al., 2005). Aunque se han identificado muchos genes de PEPC-quinasa, todos codifican proteínas de 30 kDa, ninguna de 37. Los ARNm de isoformas de PEPC-quinasa de tomate y patata se someten a un mecanismo de procesamiento alternativo (Marsh et al., 2003), y el transcrito resultante no puede producir una PEPC-quinasa de 37 kDa. Por lo tanto, es posible que la PEPC-quinasa de 37 kDa se genere a partir de una modificación covalente de la PEPC-quinasa de 30 kDa. Una modificación posible es la conjugación con ubiquitina. La ubiquitina es una pequeña proteína de 76 aminoácidos que, junto con el complejo de proteasas proteosoma 26S, constituyen una ruta proteolítica muy importante (Smalle y Vierstra, 2004). En esta ruta, la ubiquitina se une a las proteínas que se deben degradar, y el conjugado resultante es reconocido y catabolizado por el proteosoma 26S. El proteosoma 26S es un complejo proteolítico dependiente de ATP con una masa de 2 MDa (Voges et al., 1999). Este complejo contiene 31 subunidades principales, repartidas en 2 subcomplejos: el núcleo proteasa 20S (CP) y la partícula regulatoria 19S (RP). CP es una proteasa de amplio espectro independiente de ATP y de
ubiquitina. Los sitios activos de CP son muy sensibles a los inhibidores MG115, MG132, lactacistina y epoxomicina (Yang et al., 2004). RP se asocia a CP y confiere al proteosoma 26S la dependencia de ATP y la especificidad por las proteínas unidas a ubiquitina (Voges et al., 1999). Los resultados obtenidos por el grupo de Izui utilizando una PEPC-quinasa recombinante de *F. trinervia* expresada en *E. coli*, sugieren que la PEPC-quinasa puede ser degradada vía ubiquitina-proteosoma (Agetsuma et al., 2005). La ruta del proteosoma-ubiquitina es reconocida hoy como un sistema de regulación importante en plantas, y cada vez es mayor el número de procesos en los que interviene (Smalle y Vierstra, 2004). Esta ruta ayuda a eliminar proteínas defectuosas que se originan del funcionamiento celular, además de estar involucrada en varios mecanismos regulatorios de plantas como la expresión de genes sensibles a la luz o la transducción de señales hormonales (Agetsuma et al., 2005). Las proteínas con actividad quinasa tienen papeles claves en sistemas de transducción de señales. Resultados actuales obtenidos en animales indican que muchas de ellas se degradan por ubiquitinación vía proteosoma (Agetsuma et al., 2005).

2.3 La PEPC-quinasa en condiciones de estrés salino

La actividad PEPC aumenta en plantas de *Sorghum bicolor* tratadas con sal (Amzallag et al., 1990). Resultados similares se han descrito para maíz (Sankhla y Huber, 1974), la planta C₃ *Hordeum vulgare* (cebada) (Popova et al., 1995), y para *Aleuropus litorales*, una planta intermedia C₃-C₄ (Sankhla y Huber, 1974). Sin embargo, en ninguno de estos trabajos se analizó el efecto del estrés salino sobre la PEPC-quinasa. En trabajos previos realizados por nuestro grupo, se comprobó que, en plantas de sorgo aclimatadas a estrés salino, la actividad PEPC aumenta sólo de forma moderada (entre un 20-40 %), tanto en hojas en oscuridad como iluminadas (Echevarría et al., 2001). Sin embargo, el estado de fosforilación de la PEPC C₄ (medido como sensibilidad al malato) y la actividad PEPC-quinasa, aumentan enormemente en hojas iluminadas de plantas aclimatadas a concentraciones crecientes de NaCl. Además, también se detecta un aumento en la fosforilación de la PEPC en hojas en oscuridad tratadas con concentraciones altas de sal (258 mM). La actividad PEPC-quinasa que aumenta por efecto de la sal en luz reconoce la Ser diana del dominio de fosforilación. La fosforilación *in vitro* de la PEPC se bloquea por anticuerpos anti sitio de fosforilación (APS-IgGs) y es insensible a 1 mM de EGTA, mostrando i) que la fosforilación de la PEPC sólo ocurre en la Ser8 del dominio de fosforilación y ii) que la
Introducción

PEPC-quinasa que aumenta en condiciones de estrés salino es una enzima independiente de calcio. Por otro lado, la cicloheximida bloquea la inducción de esta enzima. Finalmente, en experimentos de renaturalización *in gel* se observa una única banda de proteína quinasa con un peso molecular de 35 kDa en plantas controles iluminadas. En el caso de plantas tratadas con sal e iluminadas, se observa una banda más intensa del mismo peso molecular, y una banda adicional, más débil, de 32 kDa (Echevarría et al., 2001). Estos resultados indican que la PEPC-quinasa inducida en plantas aclimatadas a concentraciones altas de NaCl es la PEPC-quinasa fisiológica (Chollet et al., 1996; Vidal y Chollet, 1997; Hartwell et al., 1999).

Además, el KCl mimetiza los efectos del NaCl en las hojas de sorgo, pero no el ABA. El tratamiento de las plantas con NaCl reduce enormemente la fotosíntesis neta, la transpiración y la conductancia estomática, mientras que el tratamiento con ABA es mucho menos efectivo. La concentración intercelular de CO₂ no se afecta sustancialmente por el tratamiento con ABA, y aumenta con el NaCl (Echevarría et al., 2001). La reducción de la fotosíntesis neta asociada a una mayor concentración intercelular de CO₂ es un fenómeno ya descrito en las plantas C₄ *Spartina densiflora* y *Spartina maritima* en condiciones salinas (Nieva et al., 1999).

En el caso del estrés salino en sorgo, la menor concentración de PEP, malato y G6P podría justificar la necesidad de un alto nivel de fosforilación de la PEPC (Echevarría et al., 2001). Por lo tanto, en estas plantas, los elevados niveles de actividad PEPC-quinasa podrían ser vistos como un proceso adaptativo, para permitir a la planta mantener un estado consistente de fosforilación de la PEPC en las condiciones adversas causadas por el estrés (Echevarría et al., 2001).

Una alta proporción de plantas C₄ se encuentran en ambientes salinos, incluso en regiones relativamente frías (Long y Mason, 1983). Aunque las especies C₄ difieren de las especies C₃ en su requerimiento por el Na⁺ como micronutriente (Brownell y Bielig, 1996), ésta no es la causa del predominio de las especies C₄ en ambientes salinos (Sage y Monson, 1999). El síndrome C₄ puede ser favorecido bajo condiciones salinas porque la mayor eficiencia en el uso del agua (WUE), que capacita a estas especies a tener una menor demanda de este elemento, reduce la cantidad de sal que las plantas deben excretar o almacenar (Osmond et al., 1982; Adam, 1990). Al sobreexpresar el gen de la PEPC en maíz, las plantas transgénicas poseen una mayor WUE cuando el agua es limitante (Jeanneau et al., 2002a).
3. **ESTRÉS SALINO**

Las plantas que existen en la actualidad son el producto de eones de evolución, desde los organismos primigenios, en respuesta a cambios ambientales bióticos y abióticos (Zhu, 2002). La excesiva salinidad en el suelo es uno de los principales factores de estrés abiótico que afectan de forma negativa al crecimiento, desarrollo o productividad de las plantas. Los efectos dañinos de la salinidad incluyen: disminución en la disponibilidad del agua del suelo, desequilibrio y limitación de nutrientes, disfunción de las membranas, inhibición de rutas metabólicas básicas (como respiración y fotosíntesis), y estrés oxidativo (Hasegawa *et al.*, 2000; Orcutt y Nilsen, 2000). El estrés salino afecta la agricultura en muchas zonas del mundo, en especial, en los cultivos a gran escala en los que se emplean sistemas de riego convencionales (Epstein *et al.*, 1980; Zhu, 2002).

Los estreses abióticos producidos por sequía, salinidad, o congelación, disminuyen la disponibilidad de agua para las células de la planta (Verslues *et al.*, 2006). Las plantas, para resistir el estrés hídrico relacionado, modifican la pérdida y la toma de agua, acumulan solutos y cambian las propiedades de la pared celular para evitar la deshidratación, además de usar diversos mecanismos protectores. La mayor eficiencia en el uso del agua (WUE) de las plantas C₄ y CAM las capacita a estas para sobrevivir mejor en ambientes con episodios frecuentes de estrés hídrico (Jeanneau *et al.*, 2002b).

Además de estrés hídrico (hiperosmótico), la alta salinidad en el suelo causa estrés hiperiónico, y como consecuencia puede llegar a producirse la muerte de la planta (Niu *et al.*, 1995; Yeo, 1998; Glenn *et al.*, 1999; Hasegawa *et al.*, 2000). Normalmente, el estrés lo causan las altas concentraciones de Na⁺ y Cl⁻ en la solución del suelo. La salinidad elevada causa varios tipos de estrés en plantas; entre ellos, un desequilibrio de la absorción de nutrientes (especialmente de iones como K⁺ y Ca²⁺), la acumulación de iones tóxicos (especialmente Na⁺), estrés osmótico y estrés oxidativo. En el estrés salino, el principal causante del daño a largo plazo es el desequilibrio iónico y la toxicidad derivados del exceso de Na⁺, más que el potencial hídrico (ψ_w) bajo (Huh *et al.*, 2002). La absorción desequilibrada de iones en las raíces se puede contrarrestar mediante la síntesis de malato en respuesta al exceso de cationes, o mediante su degradación en el caso de exceso de aniones (Touraine *et al.*, 1992). En este sentido, la PEPC podría contribuir a la recuperación del balance iónico al sintetizar malato.
Introducción

Las respuestas a la sal a corto plazo (varias horas tras la aplicación del estrés), a menudo se parecen a las respuestas a un ψ_w bajo causado por solutos no iónicos. Sin embargo, las respuestas a largo plazo, que ocurren entre días y semanas después de aplicar la sal, son más específicas de este tipo de estrés (Verslues et al., 2006).

3.1. Plantas glicófitas y plantas halófitas

Las plantas halófitas requieren concentraciones de electrolitos más altas, o mucho más altas, típicamente Na⁺ y Cl⁻, para un crecimiento óptimo en comparación con las plantas encontradas en suelos no salinos. Las halófitas son capaces de conseguir rápidamente un estado metabólico estable durante el crecimiento en un ambiente salino. Sin embargo, no parecen existir respuestas adaptativas al NaCl que sean exclusivas en la mayoría de las halófitas estudiadas (Hasegawa et al., 2000). Estas plantas sobreviven y crecen en ambientes salinos gracias al ajuste osmótico, y a través de una compartimentalización intracelular, que elimina los iones tóxicos del citoplasma mediante un transporte dependiente de energía hacia la vacuola (Yeo, 1998). El ajuste osmótico, tanto de halófitas como de glicófitas, se consigue a través de la acumulación de solutos en el citosol, en el lumen, en la matriz, o en el estroma de los orgánulos (Yeo, 1998; Hasegawa et al., 2000). Parece ser que la mayor ventaja de las halófitas sobre las glicófitas no es sólo una mejor compartimentalización del Na⁺, sino también una mayor capacidad para coordinar esta compartimentalización con los procesos que controlan el crecimiento. En un ambiente salino, la capacidad de absorber y almacenar Na⁺ en hojas disminuye el potencial osmótico de la parte aérea de la planta, lo que facilita la toma de agua y el transporte, y constituye un ahorro metabólico en comparación con la producción de osmolitos. Por el contrario, la necesidad de una deposición vacuolar eficiente de Na⁺ exige un elevado coste para la bomba de H⁺, y posiblemente requiere mecanismos adicionales para la adquisición de nutrientes iónicos (principalmente K⁺) (Hasegawa et al., 2000).

Mediante estudios fisiológicos de adaptación a sal en plantas glicófitas y en cultivos celulares, se ha comprobado que las plantas poco resistentes a sal tienen genes de tolerancia al estrés salino. Cultivos celulares de muchos tipos de plantas glicófitas se hacen tolerantes a sal, simplemente, mediante una adaptación gradual a altos niveles de NaCl. Las plantas sensibles a sal se adaptan de forma similar a crecer en presencia de altas concentraciones de sal. Estos estudios ilustran que todas las plantas tienen en su
Introducción

genoma genes para la tolerancia a sal. Si no hay adaptación, los genes de tolerancia puede que no se expresen correctamente para conferir la tolerancia (Zhu, 2000).

Los genes de tolerancia a sal en las plantas halófitas pueden haber evolucionado a partir de genes de glicófitas que se adaptaron a bajos niveles de estrés salino, un factor medioambiental común en la mayoría de las plantas, ya que el Na⁺ es uno de los cationes más abundantes del suelo. Incluso a una concentración típicamente baja de 1 mM, el Na⁺ se puede acumular a altos niveles dentro de la planta, debido al elevado volumen de flujo transpiratorio de agua (Zhu, 2000).

3.2 Determinantes de la tolerancia al estrés salino

Los determinantes de la tolerancia a estrés salino se pueden clasificar en moléculas efectoras (metabolitos, proteínas, o componentes de rutas bioquímicas) que producen la adaptación; y en moléculas reguladoras (componentes de rutas de transducción de señales) que controlan la cantidad y la duración de estas moléculas efectoras (Hasegawa et al., 2000).

3.2.1 Moléculas efectoras:

Moléculas y mecanismos que median la homeostasis iónica

El daño producido por sal se puede evitar manteniendo una homeostasis iónica adecuada. Esto se consigue excluyendo sal del citoplasma, mediante la reducción de la toma de sal en las raíces, activando exportadores de sal, o recluyendo la sal en la vacuola (Zhu, 2003). En condiciones en que se produce transpiración, también es fundamental bloquear el transporte de sal desde las raíces a la parte aérea. La ruta de señalización SOS, que regula el transporte de Na⁺ y K⁺ en la membrana plasmática y en el tonoplasto, tiene un papel principal en el mantenimiento de la homeostasis iónica y, por lo tanto, suprimiendo los daños provocados por la sal (Verslues et al., 2006).

Un ambiente hipersalino, normalmente producido por altas concentraciones de NaCl, no sólo produce la perturbación del estado iónico para el Na⁺ y Cl⁻, sino también para otros iones como K⁺ o Ca²⁺ (Niu et al., 1995). El Na⁺ externo impacta de forma negativa en el flujo de K⁺ hacia el interior de la célula, disminuyendo así la absorción de este nutriente esencial para las células. Además, una alta concentración de NaCl produce la acumulación citosólica de Ca²⁺, el cual, produce respuestas de señal a estrés que pueden ser adaptativas o patológicas. La homeostasis iónica en ambientes salinos es
dependiente de proteínas transportadoras que median los flujos de iones. Entre ellas se incluyen ATPasas y pirofosfatases que translocan H⁺, ATPasas de Ca²⁺, transportadores activos secundarios o canales (Revisado en Hasegawa et al., 2000).

- **Gradiente electroquímico de H⁺**: El transporte activo secundario y el flujo electroforético a través de la membrana plasmática y del tonoplasto, son producidos por potenciales de gradiente electroquímico de H⁺, establecidos por bombas de H⁺ (Sze et al., 1999). En este sentido, la PEPC podría proporcionar H⁺ a través del malato para el funcionamiento de las bombas protónicas, favoreciendo así la adaptación a la salinidad.

- **Transporte de Na⁺ y Cl⁻ a través de la membrana plasmática**: El transporte de Na⁺ y Cl⁻ a través de la membrana plasmática en un ambiente hipersalino se debe considerar en dos contextos celulares: tras el choque de estrés salino y después del reestablecimiento de la homeostasis iónica. Inmediatamente después del estrés salino, el gradiente electroquímico de H⁺ se altera. El flujo de Na⁺ hacia el interior de la célula disipa el potencial de membrana, facilitando así la captura de Cl⁻, bajando el gradiente químico. Sin embargo, después de reestablecer las condiciones de equilibrio, incluyendo el establecimiento de un potencial negativo en el interior de la membrana plasmática de -120 a -200 mV, el flujo hacia el interior de Cl⁻ requiere el acoplamiento de un translocador de H⁺, presumiblemente a través de un simporte Cl⁻-H⁺ de estequiometría desconocida (Hasegawa et al., 2000).

El Na⁺ compite con el K⁺ en la entrada intracelular, debido a que estos cationes se transportan por proteínas comunes (Niu et al., 1995). El K⁺, pero no el Na⁺, es un cofactor esencial para muchas enzimas. La necesidad de Na⁺ como osmolito vacuolar en ambientes salinos puede ser la razón por la cual, las plantas no han desarrollado sistemas de transporte que excluyan completamente el Na⁺ en relación con el K⁺. El flujo de K⁺ y Na⁺ hacia el interior se puede dividir en dos categorías, una con alta afinidad por el K⁺ sobre el Na⁺ y otra en la cual la selectividad K⁺/Na⁺ es menor. Sin tener en cuenta los sistemas de transporte involucrados en la adquisición de K⁺ y Na⁺, un solo gen (SOS3), que codifica un intermediario de la transducción de señales, modula la toma de K⁺ de alta y de baja afinidad (Liu y Zhu, 1997; 1998). El Ca²⁺ puede facilitar una mayor selectividad K⁺/Na⁺. De hecho, el calcio externo puede suprimir la deficiencia de adquisición de K⁺ del mutante sos3.

- **Acumulación vacuolar de Na⁺ y Cl⁻**: La acumulación del Na⁺ en la vacuola requiere transporte dependiente de energía, y un efecto inmediato del tratamiento con NaCl es la alcalinización de ésta (Guern et al., 1989). Se ha descrito una actividad
antiporte Na⁺/H⁺ en vesículas del tonoplasto, la cual se cree que es, al menos parcialmente, responsable de esta alcalinización (DuPont, 1992). Para el transporte de Cl⁻ en el tonoplasto, se supone la existencia de un canal o de un transportador (Hechenberger et al., 1996).

- **Homeostasis del Ca²⁺**: Evidencias experimentales implican una función para el Ca²⁺ en la adaptación a la sal. El Ca²⁺ añadido de forma externa reduce los efectos tóxicos del NaCl, presumiblemente facilitando una mayor selectividad K⁺/Na⁺ (Liu y Zhu, 1997). Además, se sabe que la alta salinidad produce un aumento en el Ca²⁺ citósólico. El aumento transitorio de Ca²⁺ potencia la transducción de la señal de estrés y conduce a la adaptación a la sal (Sanders et al., 1999; Hasegawa et al., 2000). Una elevación prolongada de los niveles de Ca²⁺ puede, sin embargo, producir en sí misma un estrés. Si esto ocurre, es un requisito imprescindible el reestablecimiento de la homeostasis de Ca²⁺.

- **La ruta SOS**: Una de las rutas mejor conocidas en estrés salino es la ruta SOS (Salt Overly Sensitive). El estrés salino induce una señal de calcio citósólico que activa específicamente la ruta SOS. La proteína SOS3, una proteína miristilada de unión a calcio, detecta la señal de calcio inducida por sal, y la traduce en respuestas agudas abajo. SOS3 interacciona y activa a SOS2, una proteína quinasa de serina/treonina, y ambas regulan los niveles de expresión de SOS1, un gen de tolerancia a sal que codifica una proteína de membrana que realiza antiporte Na⁺/H⁺ (Zhu, 2002). SOS1 es altamente específico para Na⁺ y no puede transportar otros cationes monovalentes como K⁺ o Li⁺ (Pardo et al., 2006). Además, para la actividad del transportador SOS1, son necesarias SOS2 y SOS3. La expresión de una forma mutante de SOS2 constitutivamente activada, también puede aumentar la actividad de resistencia a sal de SOS1 en levaduras, lo que implica que la actividad quinasa SOS2 es suficiente para la activación de SOS1.

SOS3 pertenece a una nueva subfamilia de proteínas de unión a calcio con dominios EF (Zhu, 2002). Las proteínas de esta familia muestran una gran identidad de secuencia con la subunidad B de la calcineurina (una proteína fosfatasa de tipo 2B) y con sensores neuronales de calcio de animales. Poseen 3 dominios EF y se unen a calcio con baja afinidad, en comparación con otras proteínas como la calmodulina o la caltractina (Zhu, 2002). Sólo algunos miembros de esta familia proteica poseen un motivo de miristilación N-terminal como es el caso de SOS3. La miristilación de SOS3 puede ayudar al anclaje de SOS2 con las membranas, donde se localizan los transportadores diana como SOS1 (Zhu, 2002). SOS2 contiene un dominio catalítico y
un único dominio regulatorio que interacciona con SOS3. Estos dos dominios interaccionanpara mantener la quinasa inactiva, presumiblemente impidiendo el acceso del sustrato al sitio catalítico. La unión de SOS3 al dominio regulatorio, interrumpe la interacción intramolecular de SOS2, abriendo el sitio catalítico (Zhu, 2002).

El transportador de la membrana plasmática SOS1, tiene una cola larga, posiblemente, en la cara citoplasmática. Este tipo de transportadores suelen funcionar como sensores de los solutos que transportan. Por lo tanto, podría ser a la vez transportador y sensor. Si es un sensor de Na⁺, puede controlar la activación de SOS2 en plantas, formándose así un lazo regulatorio (Zhu, 2002).

Biosíntesis de osmóticos

La disminución en la disponibilidad de agua se puede cuantificar como una bajada en el potencial hídrico (ψ_w) (Kramer y Boyer, 1995). Un ψ_w bajo inicia una serie de respuestas que capacitán a la planta para evitar la pérdida de agua, para tomar agua o para tolerar un contenido hídrico bajo en los tejidos. En la mayoría de los casos, la primera respuesta de la planta es la de evitar un ψ_w bajo en sus tejidos, aumentando la toma de agua o limitando su pérdida. Este equilibrio se consigue, a corto plazo, principalmente mediante el cierre estomático. A largo plazo, son de vital importancia los cambios en el crecimiento de raíz y parte aérea (mayor ratio raíz/parte aérea), la capacidad de almacenamiento de agua en los tejidos, el grosor de la cutícula, y la permeabilidad al agua. De todos ellos, los cambios en el crecimiento de la raíz para maximizar la toma de agua es el de mayor importancia en las plantas de cultivo (Verslues et al., 2006). En el caso de un estrés hídrico medio o de duración limitada, estos mecanismos pueden ser suficientes para mantener el desarrollo de la planta (Kramer y Boyer, 1995).

Cuando la transpiración es mínima, como ocurre tras el cierre estomático, el ψ_w de la planta se tiene que equilibrar con el de la fuente de agua (normalmente el del suelo). Si el contenido hídrico del suelo y su ψ_w son bajos, el ψ_w de la planta también tiene que disminuir. El principal mecanismo para ello es la acumulación de solutos compatibles (que no inhiben las reacciones metabólicas) y el aumento de rigidez de la pared celular (Verslues et al., 2006). El ψ_w de una célula con pared, como es el caso de las células de las plantas, está gobernado por la ecuación: $\psi_w = \psi_s + \psi_p$, donde ψ_s es el potencial osmótico y ψ_p es el potencial de presión (presión de turgor). A un ψ_w determinado, se puede conseguir un mayor ψ_p acumulando solutos dentro de la célula,
disminuyendo así el ψ_s. La acumulación de solutos en respuesta a un ψ_w bajo se denomina ajuste osmótico (Zhang et al., 1999).

Las funciones generales de estos solutos o osmolitos son, por un lado, la protección de las estructuras y, por otro, conseguir el balance osmótico para mantener un flujo continuo de agua hacia el interior (o, al menos, reducir la salida). Los principales metabolitos con función de osmólito compatible son azúcares (principalmente sacarosa y fructosa), azúcares alcoholes (glicerol o pinitol), y azúcares complejos (trehalosa, rafinosa, fructanos). Además, también actúan como osmolitos iones (K^+) o metabolitos con carga eléctrica [glicina betaína, dimetil sulfonio propionato (DMSP), prolina o ectoína]. La acumulación de estos osmolitos compatibles disminuye el potencial osmótico interno, facilitando el ajuste osmótico y la tolerancia al estrés (McCue y Hanson, 1990). Además, los solutos compatibles son normalmente hidrofílicos, por lo que pueden sustituir al agua en la superficie de las proteínas, de los complejos proteicos, o en las membranas, actuando así como osmoproductores no enzimáticos, como las chaperonas de bajo peso molecular (Hasegawa et al., 2000).

Normalmente, las rutas de síntesis de los osmolitos compatibles están conectadas a rutas del metabolismo básico con altas velocidades de flujo, como es el caso de las rutas biosintéticas de prolina, glicina betaína, pinitol, o ectoína (McCue y Hanson, 1990). Las rutas por las cuales se originan estos osmolitos se sitúan en la ruta de biosíntesis de aminoaídos como glutámico (prolina) o aspartato (ectoína), metabolismo de la colina (glicina betaína), y síntesis del mio-inositol (pinitol). Las enzimas requeridas para la síntesis de osmolitos se suelen inducir por estrés, como es el caso de la enzima P5CS para la síntesis de prolina y algunas otras de glicina betaína, pinitol o ectoína (Hasegawa et al., 2000). Se han descrito aumentos de los niveles de PEPC en plantas de maíz bajo estrés osmótico, en concordancia con un aumento de los niveles de prolina (Rodríguez-Penagos y Muñoz-Clares, 1999). En este sentido, la PEPC podría intervenir suministrando esqueletos carbonados para la síntesis de osmolitos compatibles como prolina (Jeanneau et al., 2002b) y, de esta forma, contribuir a una mejor tolerancia de las plantas al déficit hídrico.

Absorción y transporte de agua

En condiciones de estrés hídrico o salino, es muy importante el control sobre la cantidad y actividad de las acuaporinas. La cantidad de transcriso y de proteína de los canales proteicos de agua cambia durante el estrés salino en *Mesembryanthemum*.
Introducción

crystallinum, así como su localización (Yamada *et al*., 1995; Vera-Estrella *et al*., 1999). Los estreses hídrico y salino, regulan las cantidades y localización de acuaporinas en el tonoplasto, vesículas internas y membrana plasmática de forma diferente, lo que indica que existen rutas de señalización que controlan los flujos de agua (Hasegawa *et al*., 2000). Es lógico que los canales de agua tengan importancia para las plantas estresadas, pero aún se conoce poco sobre la toma de agua por las raíces en estas plantas.

Coordinación de la respuesta a larga distancia

Aunque se conoce bastante sobre el fenómeno intracelular de la respuesta a estrés salino, el conocimiento de la coordinación de la respuesta del organismo en órganos diferentes es mucho menor, así como los mecanismos de detección en las membranas (Hasegawa *et al*., 2000).

La señalización a larga distancia en estrés se asocia, generalmente, con el transporte de ácido abscísico (ABA) de la raíz a la parte aérea, con el transporte de citoquinina/auxina, a través del etileno, o mediante la acción coordinada de diferentes fitohormonas (Leung y Giraudat, 1998).

Los análisis de mutantes con las respuestas a ABA alteradas, indican papeles reguladores para los genes *ABAl* (mutantes en la ruta biosintética del ABA), *ABI1* (insensibles al ABA), y *AXR2* (resistencia a auxina y etileno) en la expresión de genes responsables de la acumulación de proline bajo estrés (Strizhov *et al*., 1997). De igual forma, existen evidencias del movimiento de glutación y sus conjugados y de otros transportadores rédox, o de oxidantes hacia el apoplasto (Droog, 1997; Foyer *et al*., 1997; Berna y Bernier, 1999). En las cascadas de señalización descritas para las hormonas clásicas, se deben introducir otros compuestos como azúcares (u otros osmolitos) y enzimas extracelulares. Todo esto genera una gran variedad de señales químicas que pueden converger en la producción de especies reactivas de oxígeno (ROS). Receptores de señales transmembrana sensibles a estados rédox, podrían transferir la excitación al interior de la célula, disparando las respuestas a estrés (Hasegawa 2000).

3.2.2 **Moléculas reguladoras**

La modulación transcripcional es fundamental para el control de las respuestas de las plantas al estrés salino. Los factores de transcripción participan en la activación de genes inducibles por estrés y, presumiblemente, conducen a la adaptación osmótica
(Shinozaki y Yamaguchi-Shinozaki, 1996; 1997). Debido a que los promotores controlados por estos factores de transcripción responden a varias señales ambientales, no está claro si alguno de estos factores funciona sólo en respuestas a estrés salino.

Para estudiar la regulación de los genes sensibles a salinidad o sequía, éstos se pueden dividir en genes de respuesta temprana y en genes de respuesta tardía. Los de respuesta temprana son inducidos rápidamente (minutos) y, a menudo, de forma transitoria. Su inducción no requiere síntesis proteica porque todos los componentes de la señalización ya existen. Por el contrario, los genes de respuesta tardía, que constituyen la gran mayoría de los genes de respuesta a estrés, son activados más lentamente (horas), y su expresión no es transitoria. Normalmente, los genes de respuesta temprana codifican factores de transcripción que activan genes de respuesta tardía aguas abajo en la cadena (Zhu, 2002).

En la actualidad se conocen varios genes de respuesta temprana a sal, sequía, frío y ABA. Los factores de transcripción se expresan normalmente de forma constitutiva, y se regulan por el estrés a nivel postranscripcional, por ejemplo, por cambios en la fosforilación (Zhu, 2002).

En la señalización del estrés osmótico, la señal inicial es, principalmente, cambios en el turgor de las células. Las posibles consecuencias de esta señalización son la expresión de genes y/o activación de enzimas biosintéticas de osmolitos, así como de sistemas transportadores de agua y de osmolitos. La mayoría del resto de cambios inducidos por la sal o la sequía se pueden considerar dentro de la señalización de detoxificación, es decir, en el control y reparación del daño producido por el estrés. Estos incluyen a) hidrólisis de fosfolípidos; b) cambios en la expresión de genes LEA/tipo dehidrínas, chaperonas moleculares y proteasas que eliminan las proteínas desnaturizadas; y c) la activación de enzimas involucradas en la síntesis y degradación de ROS y de otras proteínas detoxificantes. Los desencadenantes de las rutas de detoxificación no suelen ser un cambio iónico o osmótico, sino un producto del daño por estrés, como por ejemplo, las ROS o la presencia de proteínas desnaturizadas (Zhu, 2002).
3.3 ABA y la señalización en estrés osmótico

3.3.1 Papel del ABA en la tolerancia al estrés hídrico

Aunque el ABA tiene amplias funciones en el crecimiento y desarrollo de la planta, su principal función es la de regular el balance de agua en la planta y la tolerancia al estrés osmótico. Se han descrito varios mutantes de Arabidopsis deficientes en la síntesis de ABA, llamados aba1, aba2 y aba3 (Koornneef et al., 1998). Si no existe estrés hídrico ni térmico, los mutantes aba crecen y se desarrollan con relativa normalidad, aunque tienen una estatura ligeramente inferior a la de los silvestres, debido al inevitable estrés que existe incluso bajo las mejores condiciones de crecimiento. Además, la menor estatura de los mutantes aba puede deberse al papel de esta hormona en el ciclo celular y en otras actividades celulares. Sin embargo, bajo condiciones de sequía los mutantes deficientes en ABA se marchitan y mueren rápidamente, al igual que los mutantes abi insensibles al ABA (Armstrong et al., 1995). En estrés salino, estos mutantes también tienen problemas de desarrollo (Xiong et al., 2001a). El papel del ABA en el estrés salino y en la deshidratación es, al menos, doble: balance hídrico y tolerancia a la deshidratación celular. Mientras que el papel en el balance hídrico se produce, principalmente, a través de la regulación de las células de la guardia, la tolerancia a la deshidratación celular se consigue mediante la inducción de genes que codifican proteínas de tolerancia a salinidad en casi todas las células (Xiong et al., 2001a).

La acumulación de ABA inducida en estrés osmótico se debe tanto a la activación de su síntesis como a la inhibición de su degradación (Zhu, 2002). Muchos de los genes implicados en la síntesis del ABA se inducen por deshidratación y estrés salino. El ABA se cataboliza a forma inactiva durante la rehidratación mediante oxidación o conjugación (Yamaguchi-Shinozaki y Shinozaki, 2006). Estudios bioquímicos sugieren que una citocromo P450 monooxigenasa cataliza el primer paso en la degradación oxidativa del ABA (Krochko et al., 1998).

3.3.2 Señalización dependiente e independiente de ABA

Debido a que la sal y la sequía aumentan los niveles de ABA en las plantas, y a que la aplicación exógena de ABA tiene efectos similares al estrés osmótico, es lógico suponer que el ABA media las respuestas a estrés osmótico (Shinozaki y Yamaguchi-Shinozaki, 1997). Muchos genes inducibles por ABA contienen en sus promotores un
elemento conservado sensible a ABA llamado ABRE (ABA-responsive element). ABRE es el principal elemento que actúa en cis en la expresión de genes sensibles a ABA (Yamaguchi-Shinozaki y Shinozaki, 2006). La región 5’ del gen Ppc1 de trigo (que codifica una PEPC) posee varios posibles elementos de regulación en cis, entre ellos un motivo ABRE. La expresión de Ppc1 se induce por estreses ambientales que afectan al balance hídrico (González et al., 2002, 2003).

Mediante el estudio de mutantes deficientes e insensibles a ABA, se han localizado factores de transcripción que participan en las respuestas a estrés osmótico, los cuales pueden ser dependientes o independientes de ABA (Shinozaki y Yamaguchi-Shinozaki, 1997). Entre los dependientes, se incluyen elementos regulatorios que se unen a ADN y poseen motivos bZIP, MYB o MYC (Hasegawa et al., 2000). Los factores de transcripción bZIP, interaccionan con el elemento ABRE. Entre los factores de transcripción independientes de ABA, se encuentran proteínas de unión a elementos DRE (Dehydratation-responsive element). Se han caracterizado dos familias de genes, DREBI y DREB2. Las plantas transgénicas que sobreexpresan DREB1A, exhiben una activación constitutiva de los genes de respuesta a estrés, y muestran mayor tolerancia a congelación, deshidratación y sal (Hasegawa et al., 2000). DRE y ABRE son los principales elementos que actúan en cis en la expresión de genes inducibles por estrés abiótico. DRE actúa en los procesos tempranos de la expresión de estos genes, mientras que ABRE funciona tras la acumulación de ABA, durante la respuesta a deshidratación y salinidad. Existen muchos otros factores de transcripción inducibles por ABA que actúan aguas debajo de las respuestas a ABA y estrés. Estos factores de transcripción están involucrados principalmente en los procesos tardíos y adaptativos durante las respuestas a estrés (Yamaguchi-Shinozaki y Shinozaki, 2006).

Los genes inducidos durante condiciones de estrés se pueden dividir en dos grupos (Yamaguchi-Shinozaki y Shinozaki, 2006). El primero incluye proteínas que favorecen la tolerancia al estrés, como es el caso de chaperonas, proteínas LEA, osmotina, proteínas que evitan la congelación, proteínas de unión al ARNm, enzimas clave para la biosíntesis de osmóticos como la prolin, proteínas de canales de agua, transportadores de azúcares y de prolin, enzimas detoxificantes, enzimas para el metabolismo de los ácidos grasos, inhibidores de proteasas, ferritina, y proteínas que transfieren lípidos. El segundo grupo, engloba factores proteicos que intervienen en la transducción de señales y en la expresión de genes. Entre ellos se incluyen diversos factores de transcripción, proteínas quinasas, fosfatasas, enzimas involucradas en el
Introducción

metabolismo de los fosfolípidos, y otras moléculas señal como la proteína de unión a calmodulina y las proteínas 14-3-3 (Yamaguchi-Shinozaki y Shinozaki, 2006).

Más de la mitad de los genes inducibles por sequía descritos hasta el momento, se inducen también por estrés salino, lo que indica la existencia de una comunicación importante entre las respuestas a estos tipos de estrés (Yamaguchi-Shinozaki y Shinozaki, 2006). Aunque existen ramas y componentes que son específicos de las rutas de señalización para sal, sequía, frío o ABA, todas ellas interaccionan e incluso convergen en múltiples pasos (Zhu, 2002). En estudios con mutantes de Arabidopsis, se ha comprobado que, la pérdida de un único gen, puede afectar a las respuestas de todas estas señales o a las combinaciones de varias de ellas (Ishitani et al., 1997). Un ejemplo de convergencia de las rutas es la mutación fry1 (fiery1). FRY1 codifica una inositol polifosfato 1-fosfatasa, proteína requerida para la degradación del inositol trifosfato (IP₃). Esta mutación, aumenta la amplitud y la sensibilidad de la inducción de los genes de estrés, no sólo por el ABA, sino también por sal, sequía y frío (Xiong et al., 2001b). El análisis de dobles mutantes fry1 y abal o abil indica que la hipersensibilidad al estrés osmótico o por frío en el mutante, no es dependiente de ABA (Zhu, 2002). En respuesta al ABA, las plantas silvestres acumulan IP₃ de forma transitoria, mientras que en los mutantes fry1 dura más tiempo y alcanza mayores niveles en respuesta al ABA. No es sorprendente que el estrés osmótico o por frío también conduzcan a una mayor acumulación de IP₃ en los mutantes fry1. El resultado concuerda con el papel del IP₃ como mensajero secundario que media, no sólo la regulación de genes por ABA, sino también por sal, sequía o frío (Xiong et al., 2001b). A pesar de tener una mayor expresión de los genes de estrés, las plantas mutantes fry1 son menos tolerantes a sal, sequía o congelación. Esto se puede deber a que el exceso de IP₃ impide la tolerancia al estrés. Por ejemplo, la acumulación incontrolada de IP₃ puede dar lugar a una señalización de calcio desequilibrada lo que, seguramente, impacta en la tolerancia al estrés. También podría ser que la inositol polifosfatasa FRY1 sea crítica para la tolerancia al estrés (Zhu, 2000).

4. SEÑALIZACIÓN FOSFOLÍPIDICA

Las células están recibiendo constantemente señales desde su entorno. Éstas señales pueden tener naturaleza química (hormonas, elicitores de patógenos, ozono) o naturaleza física (cambios en la luz, la temperatura o la presión osmótica). Los mecanismos moleculares por los cuales la información extracelular se recibe, transduce,
y convierte en respuestas intracelulares específicas, son de vital importancia para la célula. Algunas vías de transducción de la señal comienzan con receptores proteicos de la membrana plasmática, que perciben el cambio y envían la información al interior de la célula. Debido a que las enzimas efectoras se localizan en la superficie de la célula, a menudo los mensajeros son derivados de componentes de la membrana. A principios de los años 80, se empezó a considerar a los fosfolípidos no como simples constituyentes de las membranas, sino como elementos de información dinámicos entre la célula y el ambiente (Munnik et al., 1998). Hoy en día se considera a los fosfolípidos como nuevos mensajeros secundarios.

Aunque se pueden distinguir varias clases de fosfolípidos, todos tienen la misma base, una región fosfatídica con diferentes grupos polares. Las fosfolipasas son las enzimas que hidrolizan fosfolípidos, la columna vertebral de las membranas biológicas. Las actividades de estas enzimas no sólo tienen un profundo impacto en la estructura y estabilidad de las membranas celulares, sino que también juegan un papel crucial regulando muchas funciones celulares importantes (Wang, 1999). La Fosfolipasa C (PLC) participa, junto con varias quinasas y fosfatases, en el ciclo de síntesis y degradación de los fosfolípidos de inositol, en la cual se generan segundos mensajeros como IP3, DAG, DGPP y PA. La fosfolipasa A2 (PLA2) produce lisofosfolípidos y ácidos grasos libres. Uno de los productos de la PLA2, el ácido linolénico, es el precursor de la vía del octadecanoico que sintetiza el ácido jasmónico, molécula clave en la respuesta defensiva de las plantas frente a herbívoros (respuesta a herida) y patógenos. La Fosfolipasa D (PLD) produce PA, un segundo mensajero que está adquiriendo importancia creciente en plantas, en las que regula diversos procesos fisiológicos (senescencia, maduración de frutos) y media respuestas a estrés biótico y abiótico.

Por otro lado, los fosfolípidos pueden actuar como dianas ancladas en la membrana para proteínas que contengan un dominio de unión al lípido apropiado (Munnik et al., 1998). Esto significa que, durante la señalización lipídica, proteínas citosólicas pueden translocarse a sitios de la membrana ricos en la señal. De esta forma, agregando proteínas señal en micro dominios, se promueven las interacciones que conducen después a la transmisión de la señal. Aumentando las concentraciones de enzima/sustrato en los sitios de anclaje, se estimula la transmisión de la señal. Además, el lípido puede jugar un papel más activo induciendo un cambio de conformación que aumente la actividad de la enzima (Meijer y Munnik, 2003). Más aún, algunos lípidos
pueden cambiar las propiedades físicas de la membrana como la curvatura, y eso afecta a su capacidad de formar vesículas. Esta propiedad puede promover el tráfico de vesículas, el reciclaje de membrana o la secreción (Burger, 2000).

4.1 Síntesis de polifosfoinositoles (PPI)

Las quinasas específicas de polifosfoinositoles (PPI) fosforilan el anillo de inositol en la posición D3, D4 o D5. Algunos de los componentes de las rutas de síntesis de los PPI son:

- Fosfatidilinositol 3-quinasa (PI3K): esta quinasa fosforila el anillo de inositol en la posición D3. para producir fosfatidilinositol 3-fosfato (PI3P). Están involucradas en tráfico vacuolar, proliferación celular y organización del citoesqueleto (Odorizzi et al., 2000)

- Fosfatidilinositol 4-quinasa (PI4K): Fosforila el anillo de inositol en la posición D4. El fosfatidilinositol 4-fosfato (PI4P) formado es el primer paso para la formación de fosfatidilinositol 4,5-bisfosfato [PI(4,5)P_{2}, sustrato de la fosfolipasa C (PLC)].

- Fosfatidilinositol 4-fosfato 5-quinasa (PI4P5K): La mayoría del PI(4,5)P_{2} se forma mediante esta enzima. La expresión de PI4P5K en Arabidopsis se induce por estrés hídrico, sal y tratamientos con ABA (Mikami et al., 1998). El PI(4,5)P_{2} no sólo actúa como sustrato de la PLC. Además de ser precursor de IP_{3} y DAG, varias enzimas se activan por PIP_{2} y muchas se unen a él mediante dominios específicos, como los dominios PH (plekstrin homology) (Laxalt y Munnik, 2002). Por lo tanto, el PIP_{2} puede actuar concentrando proteínas solubles en sitios concretos de la membrana.

- Fosfatidilinositol 3-fosfato 5-quinasa (PI3P5K): Esta enzima es la encargada de sintetizar, a partir de PI3P, el fosfatidilinositol 3,5-bisfosfato [PI(3,5)P_{2}] (Whiteford et al., 1997). Los niveles de este lípido aumentan entre 2 y 20 veces en plantas y levaduras durante el estrés hiperosmótico (Dove et al., 1997; Meijer et al., 1999). En Chlamydomonas, aumenta en condiciones de estrés osmótico y, en menor grado, de estrés oxidativo (Meijer y Munnik, 2003). En Arabidopsis, el estrés hiperosmótico produce un aumento en PI(4,5)P_{2} más que en PI(3,5)P_{2} (Pical et al., 1999; DeWald et al., 2001).
4.2 Fosfolipasas

Las fosfolipasas son las enzimas que hidrolizan los fosfolípidos de membrana. La fosfolipasa C específica de fosfatidilinositol (PI-PLC o PLC) y la fosfolipasa D (PLD) son fosfodiesterasas. La PI-PLC hidroliza específicamente el fosfatidilinositol 4,5-bisfosfato (PIP2), produciendo dos mensajeros secundarios: inositol 1,4,5-trisfosfato (IP3) y diacilglicerol (DAG). La PLD tiene varios sustratos, pero sólo produce ácido fosfatídico (PA) y un grupo libre como, por ejemplo, colina. Las fosfolipasas A₁ y A₂ (PLA₁ y PLA₂) son acilhidrolasas, que cortan específicamente la cadena acídica en la posición sn-1 ó -2 del esqueleto glicerol (Fig. 4). La PLA₂ cataliza el paso limitante en la síntesis y regulación de eicosanoides (Wang, 1999).

![Diagrama de fosfolipasas](image)

Figura 4. Estructura general de los fosfolípidos y posiciones sujetas a acción fosfolipasa. En general, los fosfolípidos constan de dos cadenas de ácido graso esterificadas a un glicerol en las posiciones sn-1 y -2, un grupo fosfato en la posición sn-3 (que da lugar a la mitad fosfatídica), al que se une un grupo polar variable, el cual da nombre al fosfolípido. Se indican las posiciones sujetas a acción fosfolipasa. (Modificado de Meijer y Munnik, 2003).

4.2.1 Fosfolipasa C específica de fosfatidilinositol (PI-PLC)

Reacción catalizada por la PLC

La señalización de la fosfolipasa C (PLC) es una ruta eucariota ubicua, que cataliza la hidrólisis del fosfatidilinositol 4,5-bisfosfato (PIP2) en los mensajeros secundarios IP₃ y DAG. El IP₃ difunde al citosol, donde libera calcio de reservas intracelulares, mientras que el DAG permanece en la membrana. El DAG, en células animales, activa varios miembros de la familia de proteínas quinasa C (PKC). En
Introducción

plantas, estas enzimas no parecen existir, ya que no se han encontrado en el genoma de Arabidopsis. Sin embargo, el DAG es inmediatamente fosforilado a PA por la DAG-quinasa (DGK). Del PA existen muchas más evidencias convincentes de que sea un mensajero secundario en plantas (Munnik, 2001). Por lo tanto, la PLC se puede interpretar como generadora de PA y de IP₃ para señalización en plantas (Meijer y Munnik, 2003).

Muchas PLC de mamíferos tienen un requerimiento absoluto por Ca²⁺, y la especificidad por el sustrato varía según el pH y el Ca²⁺. La hidrólisis de los polifosfoinositoles fosforilados en la posición D4 del anillo de inositol, y en particular del PIP₂, representa la acción fisiológica de la PLC (Irvine, 1992). La mayoría de las PLC descritas en plantas tienen un pH óptimo entre 6-7 y son estimuladas por deoxicicolato (Munnik et al., 1998). Las PLC de mamíferos están controladas principalmente por dos mecanismos: proteínas G heterotríméricas y proteínas tirosín quinasas. Además, su dependencia de Ca²⁺ también supone un importante punto regulatorio (Munnik et al., 1998).

Funciones de la PLC

En células animales, la activación de la PLC juega un papel fundamental en la transducción de señales, con efectos sobre crecimiento, proliferación, metabolismo, secreción, contracción o percepción sensitiva (Munnik et al., 1998).

En plantas, el estrés hiperosmótico y el hídrico activan la señalización de la PLC (Munnik y Meijer, 2001). En general, casi todas las plantas responden a estrés hiperosmótico aumentando los niveles de PI(4,5)P₂ (Meijer y Munnik, 2003), probablemente activando las quinasas lipídicas responsables de ello.

Se han detectado aumentos de IP₃ en respuesta a luz (Coursol et al., 2000), ABA (Lee et al., 1996), elicitores fúngicos (Walton, 1995), ácidos débiles (Quarmby y Hartzell, 1994), mastoparán (Cho et al., 1995), H₂O₂ (Jones y Kochian, 1995) y etanol (Musgrave et al., 1992). Cuando se inyecta IP₃ en células de plantas, se produce un aumento de la concentración de Ca²⁺ citoplasmático (Blatt et al., 1990) y se inducen respuestas fisiológicas como cierre estomático (Gilroy et al., 1991), aumento del turgor de protoplastos (Shacklock et al., 1992), inhibición del crecimiento del tubo polínico (Franklin-Tong et al., 1996) o cierre de plasmodesmos en la planta Setcreasea purpurea (Tucker y Boss, 1996). La presión osmótica y el turgor se pueden regular rápidamente modificando los flujos de iones a través de la membrana plasmática o, en
un periodo de tiempo más largo, mediante la síntesis de diferentes compuestos. La PLC está involucrada en la activación de estas respuestas. Por ejemplo, está descrito que el estrés osmótico cambia los niveles de PPI y de PA en *Dunaliella* (Einspahr et al., 1988), *Chlamydomonas* (Munnik et al., 1998), o en células de zanahoria (Cho et al., 1993), así como los de IP₃ (Srivastava et al., 1989; Smolenska-Sym y Kacperska, 1996). En otro ámbito, la apertura estomática se regula según el estado osmótico de las células de la guarda. La señalización por PLC puede disparar el mecanismo de cierre estomático mediante la inactivación reversible de los canales de K⁺ por un aumento en los niveles de Ca²⁺ debido al IP₃ (Schroeder y Hagiwara, 1989). El ABA aumenta los niveles tanto de IP₃ como de Ca²⁺, y produce pequeños cambios en los niveles de PPI y de PA (Lee et al., 1996). De aquí se deduce que el ABA activa a la PLC (Munnik et al., 1998). En el árbol *Samanea saman*, la luz activa la señalización por PLC para regular el movimiento de dormición exhibido por su hojas (Kim et al., 1996). Además de en las respuestas a estrés osmótico, la PLC también interviene en la señalización de las respuestas de defensa (Walton, 1995; Munnik et al., 1998).

Teóricamente, el IP₃ generado por la PLC podría estar involucrado en el aumento de los niveles de Ca²⁺ citosólico, que es una de las respuestas más rápidas a los elicitores y a otros tipos de estrés. Sin embargo, las evidencias sugieren que el Ca²⁺ entra en la célula mediante canales de Ca²⁺ de la membrana plasmática (Blume et al., 2000; Nurnberger y Scheel, 2001; Laxalt y Munnik, 2002). En células animales, los canales receptores de IP₃ se localizan en el retículo endoplasmático, desde donde se libera Ca²⁺ al citosol. Estos canales, y los genes que los codifican, están bien caracterizados en animales, pero no existen homólogos en el genoma de *Arabidopsis*, a pesar de la presencia de muchos genes de PLC (9 en total) en esta planta. De forma similar, las levaduras expresan actividad PLC pero carecen de homólogos de receptores de IP₃. En ellas, el IP₃ es fosforilado a IP₆, el cual, afecta a la transcripción de genes y al transporte de ARNm (York et al., 2000). En plantas, podría ocurrir un mecanismo similar. Alternativamente, el IP₆ podría inhibir un canal de K⁺ que rectificaría el flujo hacia el interior (Lemtiri-Chlieh et al., 2000). Aunque el IP₃ se considera aún como un inositol fosfato que libera Ca²⁺ de las reservas internas, el inositol hexaquisfosfato (IP₆) está empezando también a tenerse en cuenta. Células de la guarda de *Solanum tuberosum* y *Vicia faba* tratadas con ABA, muestran un aumento en los niveles de IP₆. La adición de IP₆ mimetiza el efecto inhibitorio del ABA y del Ca²⁺ en los canales de entrada de K⁺, siendo 100 veces más potente que el IP₃ (Lemtiri-Chlieh et al., 2000).
Introducción

Quizás, el IP₃ se metabolice rápidamente a IP₆, como está descrito en plantas de Solanum pombe sometidas a estrés osmótico (Ongusaha et al., 1998), aunque aún no existen evidencias directas de este fenómeno en células de la guarda (Lemtiri-Chlieh et al., 2000). Pudiera ser que las plantas y los hongos hayan evolucionado una PLC diferente de la de animales, que genera IP₆ y PA como mensajeros, en lugar de IP₃ y DAG. Esto explicaría también la ausencia de genes que codifiquen canales de Ca²⁺ activados por IP₃ y de PKC en sus genomas (Meijer y Munnik, 2003).

La señalización lipídica se puede manipular artificialmente con inhibidores y estimuladores. Los inhibidores de PLC más utilizados son el aminoesteroide U-73122 o el aminoglucósido Neomicina. Este último inhibe a la PLC al quedar el PIP₂ (den Hartog et al., 2001). La neomicina inhibe varios procesos fisiológicos como la respuesta de defensa inducida por elicitores (Legendre et al., 1993), el aumento o disminución de turgencia por luz y oscuridad en protoplastos (Bossen et al., 1990; Mayer et al., 1997) o la deflagelación (Quarmby et al., 1992). Además de éstos, el litio también se puede utilizar para disminuir la señalización de la PLC. El litio se utiliza en medicina para tratar la psicosis maníaco-depresiva. Se cree que su efecto terapéutico se debe a la atenuación de la señalización de la PLC. En este sentido, el íon Li⁺ inhibe las monofosfátasas de inositol (IMP) (Gillaspy et al., 1995), enzimas encargadas del reciclaje de los fosfolípidos de inositol, por lo que disminuyen los niveles de inositol del cerebro (Berridge et al., 1989). En plantas, el Li⁺ inhibe las IMP in vitro, y afecta a diversos procesos biológicos que pueden involucrar señalización por PLC (Gillaspy et al., 1995) como la citocinesis (Chen y Wolniak, 1987), la despolimerización del microtúbulo inducida por frío (Bartolo y Carter, 1992), la proliferación (Nishida et al., 1993), la apertura de la hoja inducida por auxina (Bourbouloux et al., 1992), el aumento de turgor del protoplasto inducido por fitocromo (Bossen et al., 1990) y la reducción inducida por oscuridad (Mayer et al., 1997), y la expresión de la ACC sintasa (Liang et al., 1996).

Familia génica PLC

La familia génica de PLC de animales es más compleja que la de plantas. Los animales tienen 5 tipos de PLC (β, γ, δ, ε y ζ), mientras que las de plantas sólo pertenecen a un tipo (Zhang et al., 2005), parecido a la subclase δ (Hirayama et al., 1995; Meijer y Munnik, 2003). Las PLCδ de animales contienen los dominios X e Y característicos que constituyen el sitio catalítico, un dominio N-terminal PH (Plekstrin
homology), más de 4 dominios EF que unen Ca$^{2+}$, y un dominio C2 que media las interacciones entre el Ca$^{2+}$ y los lípidos (o proteínas) (Meijer y Munnik, 2003). Sin embargo, las PLC de plantas no poseen el dominio PH y los dominios EF están incompletos (Rebecchi y Pentyala, 2000). Aún así, estas enzimas realizan una hidrólisis de PIP$_2$ dependiente de Ca$^{2+}$. En el genoma de Arabidopsis existen 9 genes de PLC distintos (AtPLC1-9). La expresión del gen AtPLC1 se induce bajo estreses ambientales como deshidratación, alta salinidad o baja temperatura (Hirayama et al., 1995).

4.2.2 Fosfolipasa D (PLD)

La fosfolipasa D (PLD) es una enzima ubicua en plantas que hidroliza fosfolípidos estructurales como fosfatidilcolina (PC), fosfatidilglicerol (PG) o fosfatidiletanolamina (PE) en la unión terminal fosfodiéster, generando un grupo libre (colina, glicerol y etanolamina) y PA (Munnik et al., 1996; Wang, 2002; Meijer y Munnik, 2003).

La PLD está controlada a tres niveles diferentes. En primer lugar, por la expresión diferencial o específica de isoformas de PLD durante el desarrollo de la planta (Dyer et al., 1994; Ryu y Wang, 1995). Un segundo mecanismo, controla la cantidad de enzima presente en cualquier momento, regulando su síntesis y degradación (Wang et al., 1993). Existe un tercer mecanismo a corto plazo que consiste en la regulación de la actividad de la PLD pre-existente (Munnik et al., 1998), que es importante para una transducción rápida de la señal. En células de mamíferos, la PLD se puede activar en respuesta a una gran variedad de ligandos extracelulares. En general, los mecanismos se pueden considerar como dependientes de PLC, que comprenden concentraciones elevadas de Ca$^{2+}$ intracelular y activación de PKC; o independientes de PLC, que comprenden proteínas G o receptores tirosina quinasa (Munnik et al., 1998). Al contrario que ocurre en células de mamíferos, en plantas no existen evidencias de PKC que controlen la actividad de PLD. El calcio es un elemento importante en la activación de muchas PLD. Esto es debido, principalmente, a la presencia de dominios C2 en muchas de ellas. Las proteínas que contienen este dominio, se unen a lípidos de membrana, como el PIP$_2$, cuando son activadas por calcio (Ponting y Parker, 1996; Williams y Katan, 1996). De esta forma, se translocan del citosol a las membranas, donde está concentrado su sustrato y, como consecuencia, aumenta su actividad (Munnik et al., 1998)
Introducción

La reacción que cataliza la PLD ocurre en dos pasos. En primer lugar, se forma un intermediario fosfatiilado (es decir, enzima-acido fosfatídico) en una reacción que libera colina. Este intermediario es posteriormente hidrolizado por el agua, generando PA libre y restaurando el sitio activo de la enzima (Morris et al., 1997).

Funciones de la PLD

Aunque la actividad PLD se caracterizó por primera vez en plantas (Hanahan y Chaikoff, 1947), es en animales donde más se ha estudiado su papel en señalización intracelular, donde está involucrada en la regulación del tráfico de membrana (Brown et al., 1993; Cockcroft et al., 1994; Liscovitch et al., 1994; Boman y Kahn, 1995; Liscovitch y Cantley, 1995), el estallido respiratorio de neutrófilos (Bauldry et al., 1992; Cockcroft, 1992), la polimerización de actina (Ha y Exton, 1993; Ha et al., 1994) y la mitogénesis (Boarder, 1994). Se conocen muchas condiciones que activan la PLD y que cambian su expresión en plantas: ABA (Lee et al., 1996; Ritchie y Gilroy, 1998; Jacob et al., 1999; Ritchie y Gilroy, 2000; Zhang et al., 2005), etileno (Fan et al., 1997; Lee et al., 1998), regulación de proteína G (Munnik et al., 1995; De Vrije y Munnik, 1997; Ritchie y Gilroy, 2000; Lein y Saalbach, 2001), maduración del fruto (Whitaker et al., 2001), germinación (Dyer et al., 1994; Novotna et al., 2000), señalización Nod (Den Hartog et al., 2001), estrés oxidativo (Sang et al., 2001; Zhang et al., 2005), senescencia (Ryu y Wang, 1995), estrés hídrico (El Maarouf et al., 1999; Frank et al., 2000; Munnik et al., 2000; Katagiri et al., 2001; Meijer et al., 2001; Sang et al., 2001; Meijer et al., 2002), defensa en plantas (Van der Luit et al., 2000; Laxalt et al., 2001; Laxalt y Munnik, 2002), heridas (Ryu y Wang, 1996; Lee et al., 1997; Ryu y Wang, 1998; Wang et al., 2000; Lee et al., 2001) y frío (Wang et al., 2000; Welti et al., 2002). Además, la PLD se une a microtúbulos (Gardiner et al., 2001), por lo que puede jugar un papel en el tráfico vesicular mediante algún tipo nuevo de anclaje a la membrana (Munnik y Musgrave, 2001).

La mayoría de los estudios de activación de PLD en plantas están relacionados con la señalización del estrés. El estrés hídrico es uno de los activadores de PLD mejor documentados. Altas concentraciones de osmolitos estimulan la actividad PLD en Chlamydomonas, tomate y alfalfa (Munnik et al., 2000), así como la deshidratación de plantas como Craterostigma y Arabidopsis (Frank et al., 2000; Sang et al., 2001; Katagiri et al., 2001). Recientemente se ha visto que bajas concentraciones de KCl (50-75 mM) y de otras sales, pero no de osmolitos no iónicos, activan específicamente la
actividad PLD sin activar la PLC. Esta actividad PLD debe ser diferente de la activada en condiciones de un estrés osmótico más extremo (Munnik et al., 2000).

La relación entre la PLD y el Ca\(^{2+}\) es compleja. Por un lado, el Ca\(^{2+}\) es un cofactor necesario para la regulación y la catálisis de las PLD que contienen el dominio C2 (Pappan et al., 2004), es decir, de todas menos las isoformas de PLD\(\alpha\). El Ca\(^{2+}\) se une a la PLD en el dominio regulatorio C2 y también en la región catalítica, y esta unión modula la interacción de la PLD con su sustrato lipídico y con su activador el PIP\(_2\) (Pappan et al., 2004). Esto parece colocar la activación de la PLD aguas abajo del aumento de Ca\(^{2+}\) citosólico. Por otro lado, los canales de Ca\(^{2+}\) están regulados por H\(_2\)O\(_2\) (Pei et al., 2000). La PLD y el PA están involucrados en la producción y en la respuesta a especies reactivas de oxígeno (ROS). Además, el PA proveniente de la PLD es un potente activador de la síntesis de PI4P5K en animales, que sintetiza PIP\(_2\) (McDermott et al., 2004). El PIP\(_2\) es sustrato de la PLC, la cual produce IP\(_3\), que moviliza Ca\(^{2+}\). Por lo tanto, la activación de la PLD podría afectar los niveles de Ca\(^{2+}\) citosólico tanto directa como indirectamente (Zhang et al., 2005).

Una de las razones por las que la PLD\(\delta\) favorece la tolerancia de la planta al estrés, es porque interviene en la señalización de resistencia a los daños causados por las ROS. La PLD\(\delta\) se activa por agua oxigenada (H\(_2\)O\(_2\)) y, el PA sintetizado, disminuye la muerte celular programada provocada por este compuesto (Zhang et al., 2003). El H\(_2\)O\(_2\) es un importante mediador celular, y su concentración aumenta ante varias condiciones de estrés. Aunque la PLD\(\delta\) se activa por H\(_2\)O\(_2\), no participa en su producción (Zhang et al., 2003). Sin embargo, la PLD\(\alpha\) y el PA producido por ella, sí están involucrados en la producción de ROS (Sang et al., 2001; Wang, 2005). Este doble efecto del PA, proveniente de la PLD\(\alpha\) o de la PLD\(\delta\), no es contradictorio. La localización espacial y temporal de la producción de PA, las concentraciones celulares, y la especie molecular del PA, son determinantes importantes de su función (Wang, 2005). Además, la asociación de ambas especies de PLD a la membrana es distinta. Mientras PLD\(\delta\) se une estrechamente a la membrana plasmática y a los microtúbulos del citoesqueleto, PLD\(\alpha\) puede estar presente tanto en la membrana plasmática y endomembranas como en fracciones solubles. Además, PLD\(\alpha\) y PLD\(\delta\) tienen diferente preferencia por el sustrato (Qin et al., 2002) y se expresan de forma distinta. Todas estas propiedades distinguibles sugieren que, la PLD\(\delta\) y la PLD\(\alpha\), se activan de forma distinta por Ca\(^{2+}\), PIP\(_2\) y lípidos de membrana, y que su activación puede dar lugar a la hidrólisis selectiva de fosfolípidos y a la producción de distintas especies de PA (Zhang...
Introducción

et al., 2005). El hecho de que los mutantes en PLDo y PLDa tengan distintos fenotipos y composición lipídica, apoya la idea de que las 2 PLD tienen funciones metabólicas y fisiológicas únicas (Sang et al., 2001; Zhang et al., 2003; Li et al., 2004; Zhang et al., 2004).

La actividad PLD genera PA e, indirectamente, DAG por acción de la PA-fosfatasa. También a la inversa, la actividad PLC genera DAG e, indirectamente, PA debido a la actividad DGK. Por lo tanto, existe una interconexión entre las dos rutas de señalización, y una enzima puede suplir a la otra (Fig. 5). Por ello, muchas hormonas y factores de crecimientos de animales pueden activar ambas vías (Liscovitch, 1992; Munnik et al., 1995). La activación dual de las dos enzimas, en sí misma, enfatiza la importancia potencial de los productos comunes de ambas rutas de señalización, es decir, DAG y PA. Aunque el DAG está establecido como un mensajero secundario que activa PKC en animales, no se ha conseguido clonar ninguna PKC clásica activada por Ca^{2+} y DAG en plantas. El PA puede activar a la PI4P5K (enzima que genera PIP_{2}) y a la PLC de forma específica, amplificando de esta forma la cascada de señalización de la PLC (Munnik et al., 1995).

Figura 5. Activación dual de PLC y PLD en plantas. La PLC hidroliza el PIP_{2} en IP_{3} y DAG. El IP_{3} difunde en el citosol donde libera Ca^{2+} de las reservas intracelulares, o es convertido a IP_{6}, disparando respuestas nucleares. El DAG permanece en la membrana, donde es fosforilado a PA por la DGK. La PLD genera PA directamente al hidrolizar lipidos estructurales como PC. El aumento en los niveles de PA afecta diversos procesos en las plantas mediante varias dianas intracelulares. La señalización se atenua cuando el PA se fosforila a DGPP por la PAK. El DGPP también puede actuar como molécula señal. Los inhibidores de PLD, n-butilanol, y de PLC, U-73122 o neomicina, también están indicados. (Modificado de Meijer y Munnik, 2003).
Familia génica PLD

La actividad PLD está compuesta por una familia enzimática heterogénea con características bioquímicas, regulatorias y estructurales distintas. En plantas, la familia génica de la PLD es más compleja que en otros organismos: en Arabidopsis existen 12 genes, mientras que sólo hay dos en mamíferos y 1 en levaduras como Saccharomyces cerevisiae (Wang 2002, 2004, 2005). Las 12 PLD de Arabidopsis se pueden clasificar en 6 tipos: PLDa (3), β (2), γ (3), δ (1), ε (1) y ζ (2) (Wang, 2005; Zhang et al., 2005). Basándose en la estructura general de los dominios proteicos, las PLD se pueden dividir en 2 subfamilias, PLD-C2 y PLD PX/PH. C2 (también llamado CalB) es un dominio de unión a Ca$^{2+}$ y fosfolípido, y los dominios PX y PH son dos pliegues estructurales de interacción con fosfoinositóles (Wang, 2005). De las 12 PLD de Arabidopsis, 10 contienen el dominio C2 (α, β, γ, δ y ε). Las PLDs ζ contienen los dominios PX y PH, y este dominio estructural está también presente en las PLD de mamíferos (Wang, 2005). La secuencia global de las PLD ζ es más parecida a la de mamíferos que a las del resto de Arabidopsis. A su vez, las PLD-C2 se pueden clasificar según su dependencia de Ca$^{2+}$ y de lípido, pudiendo requerir concentraciones μM (PLDβ, PLDγ y PLDδ) o mM (PLDa) (Meijer y Munnik, 2003) de este elemento. La clase α requiere valores bajos de pH para su actividad in vitro, mientras las de las clases β y γ requieren PIP$_2$ y condiciones de pH neutro (Wang, 2000). Un aumento del Ca$^{2+}$ citosólico podría producir un cambio conformacional en la PLD que produjera su translocación a membranas ricas en PIP$_2$, donde serían activadas para hidrolizar sustratos lipídicos. Estas PLD podrían, por tanto, ser uno de los componentes de la cadena de señalización en la ruta de respuesta a estrés, donde una de las primeras respuestas celulares es un aumento local de Ca$^{2+}$ (Wang, 2005). La clase δ se distingue del resto en que su actividad in vitro se estimula por ácido oleico (Wang y Wang, 2001, Bargmann et al., 2006).

La PLDa$_1$ es la forma más abundante en plantas. La PLDa$_1$ es, predominantemente, la responsable de la actividad PLD en plantas (Wang, 2005). Plantas de Arabidopsis deficientes en PLDa$_1$ muestran alteraciones en varios procesos, como la producción de ROS, acumulación de ácido jasmónico inducida por heridas, tolerancia a la congelación, pérdida de agua, y señalización por ABA (Wang, 2002, 2005).
Medida de la actividad PLD

Una de las dificultades en la medida de la actividad PLD es que su producto, el PA, también se genera por la actividad conjunta de PLC y DGK, además de ser un intermediario en la ruta biosintética de los fosfolípidos por acilación del glicerol 3-fosfato. Sin embargo, la PLD tiene la particularidad única de poder transferir la mitad fosfatídica de un fosfolípido a un alcohol primario en lugar de al agua, produciendo fosfatidil alcohol en lugar de PA. Por lo tanto, en presencia de una baja concentración de alcoholes primarios como n-butanol, se puede determinar la actividad PLD midiendo la producción de fosfatidilalcohol (fosfatidilbutanol en el caso del butanol). De esta forma se puede medir la actividad PLD in vivo (Munnik et al., 1995). Sin embargo, los alcoholes primarios también pueden activar proteínas G heterotriméricas en animales (Hoek et al., 1992) y Chlamydomonas eugametos (Musgrave et al., 1992) y, por lo tanto, pueden estimular su propia fosfatidilación y la formación de PA. A parte del butanol, otros alcoholes como etanol, propanol, o hexanol, también estimulan la formación de PA y de fosfatidilalcohol (Munnik et al., 1995). Al igual que en animales, la transfosfatidilación es específica para alcoholes primarios, pero no para secundarios ni terciarios. Como el butanol compite con el agua, el sustrato fisiológico de la fosfatidilación, la formación de fosfatidilbutanol es sólo una medida relativa, más que absoluta, de la actividad PLD (Munnik et al., 1995).

4.3 Ácido fosfatídico (PA)

El PA es un intermediario bien conocido de la biosíntesis de lípidos (Athenstaedt y Daum, 1999). Sin embargo, recientemente se ha identificado como una molécula señal importante, tanto en plantas como en animales (Testerink y Munnik, 2005). No tiene una única función general, realiza diferentes funciones según el proceso en el que intervenga e incluso según el organismo. Hasta el momento, se sabe que en animales participa en la señalización mitogénica, en el tráfico vesicular y en el estallido oxidativo (Rizzo y Romero, 2002; Ktistakis et al., 2003). En plantas, el PA se sintetiza en respuesta a varias situaciones de estrés, entre ellas frío, estrés hídrico, salinidad, heridas y ataques por patógenos (Testerink y Munnik, 2005) y también en la interacción entre una bacteria simbiótica del género Rhizobium y una leguminosa (den Hartog et al., 2001, 2003). En general, la producción de la señal de PA es rápida (minutos) y pasajera.
4.3.1 Origen del PA

El PA involucrado en señalización se genera mediante dos fosfolipasas distintas. Se puede formar, bien directamente por la PLD, o bien por la acción secuencial de PLC y DGK que fosforila DAG. El IP₃ formado por la PLC difunde en el citosol donde, posiblemente a través de IP₆ (Meijer y Munnik, 2003), dispara la salida de Ca²⁺ de las reservas intracelulares; mientras que el DAG permanece en la membrana. En células animales, el DAG activa proteínas PKC, pero en plantas no parece existir esta enzima. Sin embargo, el DAG se fosforila rápidamente a PA por la DGK, el cual actúa como mensajero secundario (Munnik, 2001). La señal se atenúa por la acción de la PA fosfatasa o por la conversión de PA en diacilglicerol pirofosfato (DGPP) por acción de la PA-quinasa (PAK) (Munnik et al., 1996).

4.3.2 Funciones del PA

En células de mamíferos, se han identificado varias proteínas de señalización que interaccionan con el PA. Entre esas dianas de PA se incluyen proteínas quinasa como Raf-1 (Rizzo et al., 2000) y PKCe (Corbalan-García et al., 2003), la quinasa de lípidos esfingosina quinasa (Delon et al., 2004), y la quinasa PIP de tipo I (Jenkins et al., 1994), y también proteínas fosfatasas (Frank et al., 1999; Jones y Hannun, 2002), fosfodiesterasas de AMPc (Grange et al., 2000; Baillie et al., 2002), NADPH oxidasa (Palicz et al., 2001) y proteínas pequeñas de unión a GTP (Manisava et al., 2001). En S. cerevisiae, se han identificado dos proteínas que se unen a PA, una proteína SNARE (Nakanishi et al., 2004) y Opi 1p, un represor transcripcional de genes involucrados en la biosíntesis de lípidos. Curiosamente, Opi 1p tiene también afinidad por DGPP (Loewen et al., 2004). En general, las dianas de PA están involucradas en diversos procesos celulares como señalización mitogénica, tráfico vesicular o estallido oxidativo (Ktistakis et al., 2003; Daum, 2004).

En plantas, existen numerosos trabajos sobre la formación de PA en respuesta a distintos estímulos, aunque aún no se conocen bien las consecuencias de este fenómeno. Las primeras dianas de PA funcionalmente caracterizadas en plantas fueron ABI1 (Zhang et al., 2004) y PDK1 (proteína quinasa dependiente de fosfoinositol 1) (Anthony et al., 2004). El PA se une y activa la proteína PDK1 de Arabidopsis y activa a AGC2-1 en un proceso dependiente de PDK1. AGC2-1 es idéntica a OX11, proteína quinasa que interviene en las respuestas al estrés oxidativo.
Introducción

En Arabidopsis se han identificado otras posibles dianas de PA, entre ellas, Hsp90, proteínas 14-3-3, la proteína serina/treonina quinasa SnRK2, la subunidad regulatoria de PP2A RCN1 y además la PEPC (Testerink et al., 2004). Algunas de estas proteínas están involucradas en la señalización por ABA, como proteínas 14-3-3 y SnRKs (Himmelbach et al., 2003), y otras están relacionadas con el metabolismo, como la PEPC. Además, la PEPC se une con mayor afinidad al PA que a otros lípidos (Testerink et al., 2004; Testerink y Munnik, 2005). En tomate, son las isoformas PEPC1 y 2 las que se unen al PA, mientras en Arabidopsis son las isoformas PEPC1 y 3 (Testerink et al., 2004), por lo que puede ser un fenómeno dependiente de isoforma. El pretratamiento de células con estrés hipoosmótico o el elicitor fúngico xilanasa, también aumenta el grado de unión del PA a la PEPC. Por lo tanto, la interacción del PA y la PEPC puede jugar un papel en la adaptación a estreses ambientales (Zhang et al., 2005).

El efecto del PA al unirse a estas proteínas puede ser diverso. Puede activar enzimas directamente o hacerlo de forma indirecta, reclutándolas hacia sitios de la membrana, aumentando así la concentración local de la enzima de forma que se promuevan interacciones regulatorias (Munnik, 2001; Laxalt y Munnik, 2002). En algunos casos, el PA parece actuar junto con otros mensajeros secundarios lipídicos (López-Andreo et al., 2003). Otros posibles modos de regulación de la unión a PA pueden ser la modificación post-traduccional (Manifava et al., 2001); o la fosforilación de la diana (Testerink y Munnik, 2005). El PA también puede intervenir en la inactivación de proteínas de forma indirecta, al retirarla del lugar donde se activan (Zhang et al., 2004). Alternativamente, podría activar o inactivar una proteína que estuviera siempre en la membrana, e incluso un canal iónico. En plantas, la adición de PA afecta la actividad de canales iónicos in vivo, aunque no se sabe si esto se debe a la unión directa del PA (Jacob et al., 1999). Otra opción no envuelve directamente proteínas diana, sino que se basa en la propia naturaleza del PA. La forma y la carga negativa del PA podrían promover, por sí misma, la curvatura de la membrana e inducir la formación de vesículas (Kooijman et al., 2003).

Actualmente, está bastante claro que el PA participa en la señalización de estrés, ya que se forma rápidamente y de forma transitoria en respuesta a varios estímulos ambientales. Además, la identificación de las primeras dianas de PA refuerza su papel como mensajero secundario lipídico. Estudios recientes con las distintas isoformas de PLD, han revelado papeles diferentes, e incluso opuestos a veces, de las distintas
isoenzimas en la señalización de estrés (Testerink y Munnik, 2005). Teniendo en cuenta que, además de la PLDα1 y la PLDδ, en Arabidopsis hay más de diez isoformas de PLD, nueve de PLC y siete de DGK que aún no han sido caracterizadas, queda mucho por descubrir sobre el modo de acción de todos estos fosfolípidos y cómo se regula la activación específica de cada uno de las enzimas.

4.4 Atenuación de la señal fosfolípídica

Los fosfolípidos de membrana constituyen un sistema dinámico que genera multitud de moléculas señal (IP₃, DAG, PA, etc.), además de tener importantes papeles estructurales durante las respuestas a estrés. El sistema fosfolípídico, al igual que las especies ROS, son un arma de doble filo: como moléculas señal a bajos niveles, los mensajeros lipídicos pueden activar respuestas adaptativas agudas abajo, mientras que a altos niveles, los productos fosfolípídicos generados pueden reflejar daño por el estrés e incluso ser dañosos en sí mismo (Zhu, 2002).

En plantas, los niveles de PA aumentan entre segundos y minutos después de la estimulación, pero también disminuyen rápidamente. Un posible mecanismo para la atenuación de la señal de PA es su conversión a DGPP por la PAK (Munnik et al., 1996). La PAK es una proteína intrínseca de las membranas celulares, predominantemente asociada a la membrana plasmática (Wissing et al., 1994). El DGPP es un lípido común en plantas, pero minoritario. En todas las condiciones en las cuales se ha visto la formación de DGPP, ésta siempre iba precedida de un aumento transitorio en PA (van Shooten et al., 2006). Por lo tanto, la formación de DGPP parece ser un proceso general en la señalización por PA en plantas. La producción de DGPP se ha descrito en condiciones de estrés hiperosmótico en Chlamydomonas moewusii, en Craterostigma plantagineum, en cultivos de células de tomate, en alfalfa y en Arabidopsis (Pical et al., 1999; Munnik et al., 2000; Meijer et al., 2001). El tratamiento de células o de semillas de Arabidopsis con ABA también induce un aumento en los niveles de DGPP (Zalejski et al., 2005; Katagiri et al., 2005). Además, algunas de las respuestas provocadas por el ABA, como la expresión del gen Rab 18, se inducen por el tratamiento de las células con DGPP (18:1) (Zalejski et al., 2005). Estos resultados indican que debe existir una función para el DGPP en la señalización por ABA. La conversión del PA como mensajero secundario en DGPP podría hacer creer que la función de éste último es, simplemente, la de atenuar la señal de PA. Esto implicaría que el DGPP es sólo una forma inactiva de PA. Sin embargo, con el descubrimiento de
Introducción

la enzima que lo desfosforila, la diaciglicerol pirofosfato fosfatasa (DPP) y su inducción por estrés, parece claro que los niveles de DGPP también se regulan. Teniendo en cuenta la baja concentración inicial y su rápida y transitoria acumulación en respuesta a estrés, el DGPP es un buen candidato para ser una molécula señal por sí misma (van Shooten et al., 2006).

Otros modos de atenuación de la señal de PA son su conversión en DAG por la PA fosfatasa o en liso-PA por la PLA₂. Además, también puede ser convertido a CMP-PA para la regeneración de ciertos fosfolípidos (Kent, 1995; Munnik et al., 1996).

Otro punto importante de regulación de la señal es la atenuación de la señal lipídica IP₃, el cual puede ser desfosforilado hasta inositol por las inositol monofosfatasas (IMP) o fosforilado secuencialmente hasta IP₆ (Martinoia et al., 1993; Gillaspy et al., 1995). Las IMP son enzimas sensibles a Li⁺ (Gillaspy et al., 1995) requeridas para la desfosforilación del IP₃ en PIP₂ (Hallcher y Sherman, 1980) y del inositol 1-fosfato para generar inositol libre (Loewus et al., 1983). Por lo tanto, estas enzimas se requieren tanto para la síntesis de novo como para el reciclaje del inositol. El IP₆ se está empezando a considerar en sí mismo como una molécula señal (Meijer y Munnik, 2003).

5. PROTEÍNAS QUINASA DEPENDIENTES DE CALCIO (CDPK)

El Ca²⁺ es un mensajero secundario ubicuo en las cascadas de transducción de señales de eucariotas. En plantas, los niveles intracelulares de Ca²⁺ están modulados en respuesta a varias señales, incluyendo hormonas, luz, estrés abiótico o elicitor de patógenos (Cheng et al., 2002). Diferentes estímulos inducen señales de Ca²⁺ específicas, que varían en la cinética, magnitud, y la fuente celular para la entrada del Ca²⁺. Las plantas tienen múltiples reservas de Ca²⁺, incluyendo el apoplasto, la vacuola, membrana nuclear, retículo endoplasmático, cloroplastos y mitocondria. Por lo tanto, cada estímulo puede disparar una señal característica de Ca²⁺. Diferentes sensores reconocen señales específicas de Ca²⁺ y las transducen aguas abajo (Cheng et al., 2002).

En plantas, la señal de calcio funciona en la mayoría de los aspectos del crecimiento y desarrollo, incluyendo respuestas a sequía, frío y estrés salino, heridas mecánicas, simbiosis y patógenos (Harper y Harmon, 2005). Las señales de calcio están implicadas en muchas respuestas a hormonas vegetales, incluyendo ABA, giberelinas, citoquininas, auxina, brasinoestroides, acido jasmónico y etileno. En plantas, numerosas actividades de proteínas quinasas estimuladas por Ca²⁺ ocurren a través de la
familia de proteínas quinasa dependientes de Ca2+ (CDPK). Estos sensores de Ca2+ son mediadores cruciales de las respuestas a diversas señales endógenas y ambientales. Entre las funciones biológicas de las CDPK, se incluyen metabolismo de carbono, nitrógeno y azufre, respuestas de defensa y metabolismo secundario, síntesis de etileno, metabolismo de fosfolípidos (activador de fosfatidilinositol 4-quinasa), transporte de agua e iones, regulación del citoesqueleto, transcripción, regulación del proteosoma (factor regulatorio del proteosoma 26S), regulación de la fertilización, o proteínas quinasa (quinasas parecidas a CDPK y autofosforilación de las propias CDPK, importante para la unión a proteínas como las 14-3-3) (Harper y Harmon, 2005). El genoma de Arabidopsis contiene 34 genes de CDPK diferentes. La función biológica precisa de muchas CDPK permanece desconocida (Cheng et al., 2002). La familia CDPK no parece existir en animales ni hongos, aunque se han encontrado algunos miembros en protistas como Paramecium tetraurelia o Plasmodium falciparum (Hardie, 1999).

5.1 Estructura de las CDPK

Las proteínas pertenecientes a la familia CDPK poseen 4 dominios distintos: un dominio variable N-terminal, uno de proteína quinasa, uno autoinhibitorio y uno tipo-calmodulina (Revisado en Cheng et al., 2002) (Fig. 6). Esta estructura molecular única posibilita la activación directa de estas proteínas por Ca2+. Las CDPK funcionan como monómeros.

Estudios de alineamiento han revelado que todos los dominios, salvo el N-terminal, están altamente conservados. El dominio quinasa (264-273 aminoácidos de longitud), contiene los 12 subdominios altamente conservados típicos de proteínas Ser/Thr quinasas. En la región del sitio activo, se encuentra casi un 100% de identidad entre las 34 CDPK de Arabidopsis.

El dominio autoinhibitorio es una región de aminoácidos básicos (31 aminoácidos de longitud) que funciona como pseudosustrato. De las 34 CDPK de Arabidopsis, 16 poseen un sitio potencial de autofosforilación en este dominio, aunque se desconoce si las CDPK se autofosforilan en este sitio.

El dominio tipo-calmodulina (94-147 aminoácidos) contiene dominios EF de unión a Ca2+, haciendo que la proteína funcione como sensor de este elemento. Cada dominio EF consiste en un lazo de 13 residuos de aminoácidos flankeado por dos α-hélices. Sólo una molécula de Ca2+ se une a cada dominio EF. El número de dominios
EF difiere según la isoforma. La mayoría contienen 4, mientras que algunas sólo tienen 1, 2 o 3. El número de dominios EF puede ser importante para determinar la regulación por calcio de la actividad CDPK.

Figura 6. Estructura de una CDPK de plantas típica. N, dominio variable N-terminal; K, dominio quinasa; A, dominio autoinhibitorio; tipo-CAM, dominio tipo-calmodulina; las 4 barras en color verde representan los dominios EF de unión a Ca^{2+} (Modificado de Cheng et al., 2002).

Las proteínas CDPK representan un nuevo tipo de sensores de Ca^{2+}, teniendo dominios de proteína quinasa y de tipo calmodulina en un solo polipéptido. Como resultado, estas proteínas unen calcio directamente, y su actividad quinasa estimulada por Ca^{2+} es independiente de calmodulina. Actualmente, la mayoría de las proteínas quinasa estimuladas por calcio en plantas están asociadas con CDPK. La especificidad funcional de una CDPK individual está determinada por regulaciones a nivel transcripcional y postraduccional, así como por la compartimentalización celular, sensibilidad a calcio y a lípidos, y el reconocimiento del sustrato.

La PEPC-quinasa pertenece a esta familia de proteínas CDPK, aunque no posee ningún motivo regulatorio, sólo posee el dominio quinasa y además es independiente de calcio.

5.2 Mecanismo de activación

El mecanismo por el cual se regula la actividad CDPK está altamente controlado a través de interacciones entre los dominios quinasa, autoinhibitorio y tipo calmodulina. Bajo condiciones basales de poco Ca^{2+} libre, el dominio autoinhibitorio está unido al dominio quinasa, manteniendo la actividad de fosforilación del sustrato baja. Al producirse la unión del Ca^{2+} al dominio EF, se producen cambios conformacionales que sacan el dominio autoinhibitorio del sitio catalítico, activando la proteína (Cheng et al., 2002). Se sabe poco de la función del dominio variable N-terminal. Se cree que puede contener información para dianas subcelulares.
5.3 Localización subcelular

En plantas existen isofórmulas de CDPK tanto solubles como ancladas a la membrana, con varias isofórmulas distribuidas a través del citoplasma y del núcleo. Por lo tanto, las CDPK tienen acceso a cientos de sustratos potenciales en el citoplasma y en el núcleo. La mayoría de las CDPK tienen sitios hipotéticos de miristilación y de palmitilación en el extremo amino, lo que explica que muchas de las isofórmulas estén asociadas a membranas, como la membrana plasmática, membranas de los peroxisosomas, retículo endoplasmático, mitocondrias, etc. Además, 3 isofórmulas de CDPK en Arabidopsis parecen ser solubles. Por otro lado, existen evidencias de que algunas CDPK pueden cambiar de localización en respuesta a tratamientos con estrés (Harper y Harmon, 2005).

5.4 Regulación

5.4.1 Por fosforilación y desfosforilación

Además del Ca\(^{2+}\), la fosforilación reversible regula la actividad de las CDPK. Se ha observado autofosforilación de CDPK, tanto en formas nativas como recombinantes, aunque no está claro el papel de esta autofosforilación. La activación de la CDPK también puede ser modulada por otras quinasas. Por ejemplo, la completa activación de una CDPK de tabaco requiere Ca\(^{2+}\) y fosforilación. Tampoco se sabe cómo afecta esta fosforilación a la actividad (Cheng et al., 2002).

La desfosforilación en tan importante como la fosforilación para controlar las rutas de señalización. En la regulación de las actividades CDPK, existe una estrecha relación entre las quinasas y las fosfatatasas.

5.4.2 Por fosfolípidos

En presencia de Ca\(^{2+}\), diferentes fosfolípidos pueden aumentar la fosforilación del sustrato de varias CDPK in vitro entre 2 y 30 veces, en relación con la fosforilación observada con Ca\(^{2+}\) sólo (Farmer y Choi, 1999). Estos fosfolípidos no son los mismos para todas las CDPK estudiadas, lo que puede suponer un nuevo nivel de especificidad. Debido a la especificidad que tienen los fosfolípidos estimulando CDPK, el efecto debe tener importancia fisiológica.

Aunque no se conoce ninguna proteína PKC en plantas, diversos autores han demostrado la existencia de proteínas CDPK con propiedades de PKC. En un estudio en
Introducción

el que se utilizó una proteína CDPK recombinante de zanahoria, se comprobó que diversos fosfolípidos como PA, fosfatidilserina o fosfatidilinositol, aumentaban la actividad de esta proteína en combinación con Ca\(^{2+}\) (Farmer y Choi, 1999). Los inhibidores de calmodulina (W7) y de proteínas quinasas (estaurosporina) inhibían la actividad de esta proteína recombinante. Las similitudes entre esta CDPK de zanahoria y la PKC de mamíferos en cuanto a especificidad por el sustrato, la sensibilidad a los inhibidores, y la activación por Ca\(^{2+}\) y fosfolípidos, sugiere que varias isoformas de CDPK pueden ser responsables de algunas actividades de tipo PKC en plantas. Esta CDPK de zanahoria se localiza principalmente en la membrana. La proximidad a las membranas y la estimulación de la actividad por PA y Ca\(^{2+}\) son consistentes con un papel para esta CDPK en las rutas de transducción de señales que involucran a la PLD.

En otro estudio, se analizó una CDPK purificada de semillas de arroz, encontrándose que compartía la especificidad por sustrato, la activación por Ca\(^{2+}\) y fosfolípidos, y la inhibición por estaurosporina y por W7 con las proteínas PKC de animales. Además, esta proteína de semillas de arroz era reconocida por anticuerpos anti-PKC (Abo-El-Saad y Wu, 1995).

Recientemente, se ha descrito la participación de una proteína CDPK con características de PKC en la ruta de transducción de señales para la síntesis de la PEPC-quinasa en protoplastos de células del mesófilo de *Digitaria sanguinalis* (Osuna *et al*., 2004). Esta proteína era capaz de fosforilar un péptido específico de PKC y se inhibía fuertemente por el dominio pseudosustrato de PKC, además de ser reconocida por un anticuerpo anti-PKC de conejo. Más aún, esta proteína se activaba de forma moderada por diversos fosfolípidos además de por Ca\(^{2+}\), por lo que podría ser un buen candidato para la confluencia de las vías PLC (produce Ca\(^{2+}\)) y PLD (produce PA) en diversas vías de señalización.

5.4.3 Por proteínas 14-3-3

Se ha demostrado que 3 isoformas de proteínas 14-3-3 se unen específicamente y activan a una CDPK de *Arabidopsis* (AtCPK1) *in vitro* en presencia de Ca\(^{2+}\). El calcio se debe necesitar, en parte, para inducir la autofosforilación de la CDPK porque, las proteínas 14-3-3 suelen regular muchas enzimas uniéndose a residuos fosforilados (Cheng *et al*., 2002).
OBJETIVOS
El trabajo de investigación objeto de esta tesis se ha focalizado en la actividad PEPC-quinasa de hojas de plantas de sorgo aclimatadas a concentraciones crecientes de NaCl. Dicho tratamiento producía un notable aumento de actividad PEPC-quinasa, y sólo un incremento moderado de actividad PEPC (Echevarría et al., 2001), por lo que la investigación se ha centrado en la primera de las dos enzimas. Los objetivos de este trabajo han sido:

1. Determinar qué componente del estrés salino (osmótico o iónico) es el responsable del aumento de actividad PEPC-quinasa.

2. Elucidar el sentido fisiológico del aumento de actividad PEPC-quinasa que se produce en oscuridad como consecuencia de la aclimatación de las plantas de sorgo a salinidad.

3. Analizar la contribución de variaciones en la velocidad de la degradación de la PEPC-quinasa al aumento de dicha actividad que se produce en salinidad. En este sentido, se investigará si el Ácido Abscisico (ABA), cuyo nivel aumenta en estrés salino, modifica o impide la degradación de la PEPC-quinasa.

4. Estudiar la vía de transducción de señales que conduce a la síntesis de la PEPC-quinasa en discos foliares o en hojas de sorgo, determinando si son operativos los elementos descritos en protoplastos de células del mesófilo, si el uso de un sistema más complejo (hojas completas) implica la participación de nuevos elementos, y si se detectan alteraciones en respuesta a la salinidad. En este estudio, se utilizará como herramienta el LiCl, debido a sus conocidos efectos sobre la vía de los fosfoinosítidos y la señalización derivada de la activación de la Fosfolipasa C (PI-PLC ó PLC).

5. Investigar si existe una expresión diferencial de dos genes que codifican PEPC-quinasa en hojas de sorgo (PPCK1 y PPCK2) en respuesta a la luz y a la salinidad, y evaluar la relación existente entre la expresión de dichos genes y las vías de señalización activadas por las dos señales citadas.
MATERIALES Y MÉTODOS
I. MATERIAL VEGETAL Y CONDICIONES DE CULTIVO

1. Material vegetal

La principal especie vegetal utilizada en este trabajo ha sido el cereal tipo C₄ Sorghum vulgare L. var. Tamarán, Rhône-Poulenc Agro, Sevilla, España (sorgo). Donde se indica, se utilizaron semillas de Hordeum vulgare, var. Beka Rhône-Poulenc Agro, Sevilla, España.

2. Condiciones de cultivo

Las plantas de sorgo se cultivaron en cultivos hidropónicos a 28°C y 60% de humedad relativa durante el fotoperíodo (12 h, 350 µE · m⁻² · s⁻¹) y a 20°C y 70% de humedad relativa durante el periodo de oscuridad. A las plantas se les suministró una solución nutritiva tipo nitrato (Hewitt, 1966). Para los tratamientos de estrés, las plantas de sorgo se aclimataron a sal aumentando la concentración de NaCl en el medio de cultivo semanalmente (43, 86, 172 y 344 mM). El tratamiento con LiCl 10 mM se hizo añadiéndolo al medio de cultivo durante 4 días, o bien suministrado por corriente transpiratoria o por infiltración al vacío. Para las plantas tratadas con ABA, la fitohormona se suministró al medio de cultivo aumentando la concentración semanalmente (15, 30 y 60 µM).

3. Infiltración al vacío de discos foliares

La infiltración al vacío de discos foliares de sorgo se realizó en discos de 1 cm de diámetro con un tampón Tris-ClH 0.1 M pH 8 que contenía 2 mM de HCO₃⁻, en el que se disolvía el compuesto suministrado en cada tratamiento.

II. OBTENCIÓN DE EXTRACTOS CRUDOS

Los extractos de proteínas se obtuvieron triturando en un mortero, a 4°C, 0.2 g de peso fresco de tejido de hoja o 10 discos de 1 cm de diámetro en 1 ml de tampón de extracción que contenía 0.1 M Tris-ClH pH 7.5, 20% glicerol, 1 mM EDTA, 10 mM MgCl₂ y 14 mM β-mercaptoetanol. El homogenizado se centrífugó a 12,000 rpm durante 2 min y el sobrenadante se filtró a través de Sephadex G-25 para eliminar las sales y moléculas de bajo peso molecular.

III. PURIFICACIÓN DE LA PEPC C₄ DE HOJAS DE SORGO

La PEPC C₄ desfosforilada de hojas de sorgo en oscuridad se purificó por cromatografía de intercambio iónico (Econo-PacQ). Para ello, unos 20 g de hojas se trituraron
Materiales y Métodos

con un homogeneizador “Waring blender” en 100 ml de tampón de extracción compuesto por Tris-HCl 100 mM pH 7.5, MgCl₂ 10 mM, EDTA 1 mM, glicerol al 5% (v/v), 2-mercaptoetanol 14 mM, PVP al 2% (p/v), PMSF 1 mM, KF 10 mM, quimostatina 10 µg ml⁻¹ y leupeptina 10 µg ml⁻¹. El homogenizado se filtró en una gasa de nylon (80 µm), y se centrifugó a 48.000 g durante 5 min a 4 ºC. El sobrenadante obtenido se precipitó con PEG del 0 al 8.5% (p/v) en continua agitación durante 10 min y se centrifugó a 45.000 g durante 10 min a 4 ºC. El sobrenadante obtenido se precipitó con PEG del 8.5% al 15% (p/v) y se centrifugó a 48.000 g durante 10 min a 4 ºC. El precipitado obtenido se resuspendió en 2.5 ml de tampón A, compuesto por Tris-HCl 20 mM pH 8, DTT 1 mM, L-Malato 5 mM y glicerol al 5% (v/v).

La solución proteica anterior se hizo pasar por una columna Econo-Pac Q (Bio-Rad, Cod. 732-0021) de intercambio aniónico (5 ml) conectada a un equipo Econo System (Bio-Rad). Las proteínas no retenidas se eliminaron lavando la columna con tampón A. Para la elución de las proteínas retenidas se utilizó un gradiente de sal utilizando un tampo B compuesto por Tris-HCl 20 mM pH 8, DTT 1 mM, L-Malato 5 mM, glicerol al 5% (v/v) y NaCl 0.5 M. La PEPC eluyó a una concentración de entre 0.12 y 0.15 M de NaCl, y el pico de proteína detectado se recogió a través de un colector de fracciones conectado al equipo. Las proteínas recogidas se precipitaron con sulfato de amonio a un 60% de saturación. A continuación, se centrifugó a 48.000 g durante 10 min a 4 ºC, y el precipitado obtenido se resuspendió en tampón A. finalmente, la muestra proteica se filtró en una columna de Sephadex G-25. El filtrado obtenido se volvió a pasar por la columna para proceder a una segunda purificación. El protocolo utilizado para la segunda purificación se realizó en las mismas condiciones descritas anteriormente. La PEPC obtenida de la columna se llevó hasta un 20-30% de glicerol y se congeló a -20 ºC, conservando sus propiedades durante al menos 2 meses. Esta preparación se utilizó como PEPC exógena en la medida de actividad PEPC-quinasa in vitro.

IV. ENSAYOS ENZIMÁTICOS

1. Determinación de la actividad PEPC en condiciones óptimas de ensayo.

La determinación de la actividad fosfoenolpiruvato carboxilasa (PEPC) en condiciones óptimas de ensayo se realizó espectrofotométricamente a pH 8 y 30ºC utilizando Malato deshidrogenasa (MDH), que reduce el oxalacetato producido por la PEPC a L-Malato, en presencia de NADH. La oxidación del NADH se registró en un espectrofotómetro (Modelo
U-2001 UV/Vis HITACHI), a 340 nm, en 1 ml de medio de reacción que contenía tampón HEPES-NaOH 100 mM, pH 8, fosfoenolpiruvato (PEP) 2.5 mM, NaHCO₃ 1 mM, MgCl₂ 5 mM, NADH 0.2 mM y MDH 5 U (Echevarría et al., 1994). El coeficiente de extinción del NADH a 340 nm es 6.23 μmoles ml⁻¹ cm⁻¹. El ensayo se inicia con la adición del extracto crudo.

Una unidad enzimática se define como la cantidad de PEPC que cataliza la carboxilación de 1 μmol de PEP por min a pH 8 y 30°C. En el caso de sorgo, 1U de PEPC corresponden con aproximadamente 30 μg de PEPC purificada (Vidal et al., 1981).

2. Determinación del grado de fosforilación in vivo de la PEPC. Test Malato.

En este test se estima la sensibilidad (IC₅₀) de la PEPC a su inhibidor alostérico L-Malato. Para el cálculo de la IC₅₀ se determinó la actividad PEPC en extractos crudos de hojas en el medio de reacción descrito en el apartado anterior en condiciones subóptimas de pH 7.3 y PEP 2.5 mM y en presencia de diferentes concentraciones de L-Malato. La concentración de L-Malato requerida para inhibir al 50% la actividad de la enzima (IC₅₀) se calculó a partir de una gráfica de la velocidad frente a la concentración de L-Malato (Nimmo et al., 1984). En estas condiciones de ensayo, la enzima fosforilada presenta una IC₅₀ para el L-Malato de 2 a 3 veces mayor que la enzima desfosforilada (Jiao y Chollet, 1991; Bakrim et al., 1992).

La actividad PEPC-quinasa de hojas de sorgo se determinó en extractos crudos desalados obtenidos según se describe en el apartado II. Una alícuota del extracto se incubó a 30°C durante 1h en presencia de un medio de reacción que contenía Tris-HCl 100 mM pH 7.5, MgCl₂ 5 mM, glicerol al 20 % (v/v), el inhibidor de la adenilato quinasa Adenosina-pentafosfo-adenosina (AP₅A) 0,25 mM y [γ-³²P]ATP 2,7 μM (1μCi; 10 Ci/mmol) y PEPC exógena desfosforilada purificada como se indica en el apartado III, en un volumen final de 35 μl (Echevarría et al., 1990). La reacción se inició con la adición de [γ-³²P]ATP. Finalizado el tiempo de incubación, se añadió a las muestras el tampón de disociación descrito en el apartado VI.1, se calentaron a 90°C durante 3 min y se analizaron en SDS-PAGE. Tras la tinción con azul de coomasie y secado del gel, éste se puso en contacto con una pantalla Fuji Imaging Plate, para ser revelado en un densitómetro (Fuji Bas 1000) después de 24h de contacto.
4. Medida de actividad PEPC-quinasa en gel

Para la detección de proteínas con actividad PEPC-quinasa, se analizó una muestra de aproximadamente 500 µg de proteínas en SDS-PAGE. El gel de separación se polimerizó con o sin 300 µg · ml⁻¹ de PEPC desfosforilada inmunopurificada. Finalizada la electroforesis, las proteínas contenidas en el gel se renaturalizaron según Li y Chollet (1994) y el gel se incubó con ATP [γ⁻³²P] (50 µCi/15 ml). Tras eliminar el ATP residual, el gel se secó, se puso en contacto y se autorradiografió.

5. Actividad proteasa (zimograma)

Para los ensayos de actividad proteasa en geles de acrilamida (zimograma), se partió de 0.2 g de hojas o 10 semillas de cebada, que se trituraron con tampón acetato de sodio 50 mM pH 4.7 y 2 mM de cisteína. 10 µg de proteínas para el caso de hojas de sorgo, y 30 µg para semillas, se mezclaron con tampón de disociación Tris-HCl 50 mM pH 6.8, glicerol al 25% (v/v), SDS al 10% (p/v), y azul de bromofenol al 1% (p/v) sin calentar. Las proteasas se separaron mediante electroforesis en geles de acrilamida que contenían gelatina (Bio-Rad, Cod. 161-1113), se lavaron con tampón de renaturalización (Bio-Rad, Cod. 161-0765), y los geles se incubaron en un tampón ácido (pH 4) o neutro (pH 6.5) para la detección de proteasas ácidas y neutras, respectivamente. Los geles se tiñeron con amido black (Sigma, Cod. A8181) para la detección de actividad proteasa, que se revela como una banda clara en el gel.

6. Medida de actividad CDPK tipo PKC

Para la medida de la actividad CDPK se trituraron 0.2 g de hojas de sorgo con 1 ml de tampón de extracción que contenía Hepes-KOH 20 mM pH 7.4, 5% (v/v) glicerol, EGTA 10 mM, EDTA 2 mM, β-mercaptoetanol 14 mM, 10 µg quimostatina y leupeptina 20 µM. El homogenizado se centrifugó a 14.000 rpm y 4°C durante 15 min, y el sobrenadante se precipitó con sulfato de amonio al 60%. El precipitado se resuspendió en el mismo tampón de extracción sin EGTA ni EDTA, y se filtró en una columna de sephadex G25 para eliminar las sales. El extracto crudo obtenido se utilizó para realizar ensayos de fosforilación con el producto PepTag® Assay for Non-Radiative Detection of Protein Kinase C (Promega, cod. V5330) específico de PKC, y de esta forma medir la actividad CDPK tipo PKC. Los ensayos de fosforilación se realizaron utilizando 38 µM del péptido sintético PepTag C1 (P-L-S-R-T-L-S-V-A-A-K) y siguiendo las instrucciones del fabricante. Una vez finalizada la incubación, las muestras se desnaturizaron y se resolvieron en geles horizontales de agarosa, que se
revelaron en un transiluminador en el UV. El péptido sintético fosforilado posee carga negativa y migra hacia el ánodo, mientras el no fosforilado posee carga positiva y migra hacia el cátodo.

V. TÉCNICAS ANALÍTICAS

1. Electroforesis en geles de poliacrilamida en condiciones desnaturizantes (SDS-PAGE)

Para la separación de proteínas, se realizaron electroforesis en geles de poliacrilamida en condiciones desnaturizantes (SDS-PAGE) según el método descrito por Laemmli (1970). Se utilizaron geles discontinuos, constituidos por un gel de separación al 12% de acrilamida (p/v), y un gel de empaquetamiento al 4% de acrilamida (p/v). El gel de separación se preparó con la mezcla de acrilamida/bisacrilamida en tampón Tris-HCl 375 mM pH 8.8, SDS al 0.1% (p/v), amonio persulfato al 0.5% (p/v) y TEMED 6 mM. El gel de empaquetamiento contenía los mismos componentes, excepto el tampón que fue Tris-HCl 125 mM pH 6.8. Las muestras fueron suplementadas con tampón de disociación (1/4 del volumen total de la muestra) compuesto por tampón Tris-HCl 0,1 M pH 8,8, glicerol al 25% (v/v), SDS al 1% (p/v), β-mercaptoetanol al 1% (v/v) y azul de bromofenol al 0.02% (p/v). Finalmente, las muestras se calentaron 3 min a 90 °C y se resolvieron en el gel de acrilamida en una cubeta Mini-Protean® III-2D Cell (Bio-Rad), que contenía tampón de electroforesis Tris 25 mM- Glicina 192 mM pH 8.3, SDS al 0.1% (p/v), a voltaje constante de 110 V durante 2 h. El peso molecular de la PEPC se determinó utilizando como marcadores proteínas preteñidas de pesos moleculares conocidos (Sigma): miosina (205 kD), β-galactosidasa (117 kD), albúmina (82 kD), ovoalbúmina (49 kD), anhidrasa carbónica (29 kD), inhibidor tripsina (22 kD), α-lactoalbúmina (19 kD) y aprotinina (6 kD).

2. Detección de fosfolípidos de membrana

Los fosfolípidos de membrana de hojas de sorgo se marcaron con 32P, se extrajeron, y se resolvieron mediante cromatografía en capa fina (TLC)

2.1 Extracción de fosfolípidos

La extracción de fosfolípidos se realizó siguiendo dos metodologías distintas, según se indique en el texto:
2.1.1. **Extracción de fosfolípidos con Hexano:Isopropanol**

Para la extracción de lipídos con Hexano:Isopropanol, 5 discos foliares de sorgo de 1 cm de diámetro se infiltraron al vacío y se mantuvieron durante 12 h en oscuridad en una solución que contenía 75 μCi/ml de 32P en agua, y se sometieron a los distintos tratamientos indicados en cada experimento. Los discos se trituran en un mortero con Hexano:Isopropanol (HIP) (3:2) y al homogenizado se le añadió sulfato sódico al 6.7 % (p/v). Tras la separación de las dos fases, se tomó la fase acuosa donde se encuentran los fosfolípidos. La solución así obtenida, se gaseó con N$_2$ hasta la total evaporación del HIP. El precipitado obtenido se resuspendió en un volumen mínimo de una solución cloroformo:metanol (9:7) y se utilizó como extracto crudo para la cromatografía en capa fina (TLC).

2.1.2. **Extracción de fosfolípidos con Cloroformo:Metanol:HCl**

Para la extracción con este sistema, se partió de 1 disco foliar de sorgo de 1 cm de diámetro, incubado durante 12 h en oscuridad en presencia de 10 μCi/ml 32P en 0.05% MES-KOH pH 5.8. Tras los tratamientos, se añadió una solución al 5% de ácido perclórico para parar las reacciones, y los discos se transfirieron a una solución de Cloroformo:metanol:HCl (50:100:1) para extraer los fosfolípidos. Para crear dos fases, se añadió NaCl al 0.9% (p/v) y Cloroformo. Se tomó la fase inferior, a la que se añadió una solución de cloroformo:metanol:HCl 1M (3:48:47). La fase inferior así creada, se tomó y se evaporó el cloroformo mediante centrífugación al vacío. El precipitado de lipídos se disolvió en cloroformo y se utilizó como extracto crudo para la cromatografía en capa fina.

2.2 **Cromatografía en capa fina (TLC)**

Los fosfolípidos de membrana se separaron y detectaron mediante cromatografía TLC. Para ello, se utilizaron placas de sílica (Merck) en las que se aplicaron las muestras. Las placas se colocaron en tanques de cristal en presencia de una solución cloroformo:metanol:NH$_3$ al 25%:Agua (90:70:4:16), que produjo la separación de los fosfolípidos según su polaridad. Posteriormente, las placas se secaron y se pusieron en contacto con una pantalla Fuji Imaging Plate, para ser revelado en un densitómetro.

Para detectar de forma específica actividad Fosfolipasa D (PLD), se utilizó la propiedad única de esta enzima de sintetizar fosfatidilbutanol a partir de 1-butanol, en lugar de ácido fosfatídico a partir de agua. En este caso, el 1-butanol, a una concentración final del 0.5%, se suministró a los discos inmediatamente antes de comenzar el tratamiento específico. La solución utilizada para la separación del fosfatidilbutanol del resto de fosfolípidos fue etil
Materiales y Métodos

3. Cuantificación de L-Malato

La determinación de la concentración de L-Malato se realizó espectrofotométricamente a partir de la medida de NADH formado en las siguientes reacciones:

\[
\text{Malato} + \text{NAD}^+ \xrightarrow{\text{MDH}} \text{OAA} + \text{NADH} + \text{H}^+ \\
\text{OAA} + \text{Glu} \xrightarrow{\text{GOT}} \text{Asp} + \alpha\text{-cetoglutarato}
\]

El extracto crudo se obtuvo triturando 0.2 g de hoja en 1 ml de ácido perclórico al 7% (v/v). El triturado se centrífugó a 13.000 rpm durante 2 min a temperatura ambiente, y el sobrenadante se neutralizó con cloruro de tetraetilamono-KOH (1M/5N) al 15% (v/v). El residuo se precipitó por centrífugación a 13.000 rpm durante 2 min a 4 °C. El sobrenadante se usó para la cuantificación del L-Malato, midiendo el incremento de absorbancia a 340 nm debido a la reducción enzimática del NAD\(^+\) en un medio de reacción que contenía tapón 2. amino-2-metil-1-propanol 40 mM pH 9.9, NAD\(^+\) 0.4 mM, 3.5 U Malato Deshidrogenasa (MDH) y 0.9 U Glutamato-Oxalacetato-Transaminasa (GOT) (Lowry y Passoneau, 1972).

4. Cuantificación de prolina

La prolina se midió según el método de Bates et al. (1973). Se trituraron muestras de 0,5 g de hojas con 10 ml de ácido sulfosalicílico acuoso al 3% (p/v). El extracto obtenido se centrífugó a 15.000 g durante 5 min a 4°C. Se tomaron 2 ml de sobrenadante, a los que se añadieron ácido acético glacial y ácido de ninhidrina en proporción 1:1:1, y la mezcla se incubó a 100°C durante 1h. Posteriormente, se añadieron 4 ml de tolueno y se midió la absorbancia de la fase acuosa a 517 nm. La concentración de prolinas se infirió de una recta de calibrado realizada con concentraciones de prolinas conocidas.

5. Medida de IP\(_3\)

Para las medidas de IP\(_3\) se utilizaron discos foliares de sorgo infiltrados al vacío, que se trituraron en N\(_2\) líquido con ácido perclórico al 20%. Las muestras se centrífugaron a 20.000 g durante 10 min a 4 °C, y el sobrenadante se neutralizó con KOH 1.5 M HEPES 60 mM. El neutralizado se centrífugó a 20.000 g durante 10 min a 4 °C y el sobrenadante se utilizó para
Materiales y Métodos

medir el IP₃. Para ello, se utilizó el producto D-myo-Inositol 1,4,5-trisphosphate (IP₃) [³H] BioTrak Assay System (Amersham Pharmacia Biotech, Cod. TRK1000) siguiendo las instrucciones del fabricante. El método se basa en la competición por la unión a una proteína de corteza adrenal bovina entre el IP₃ marcado con ³H (suministrado por el fabricante) y el IP₃ sin marcar de la muestra. Para la medida, se usó líquido de centelleo Optiphase® ‘HiSafe’ 2 (Wallac) y los viales se analizaron en un contador de centelleo. Para la determinación final de IP₃ se utilizó la siguiente fórmula:

\[
\frac{\text{cpm muestra} - \text{NSB}}{\text{Bo} - \text{NSB}} \times 100
\]

Siendo:
B: IP₃ de la muestra unido
Bo: IP₃ [³H] unido
NSB: Uniones inespecíficas (cpm de IP₃ no marcado suministrado por el fabricante)
cpm: cuentas por millón

El resultado de %B/Bo se extrapoló a una recta de calibrado semilogarítmica realizada con cantidades conocidas de IP₃ no marcado.

6. **Cuantificación de clorofila**

Para la medida de clorofilas, se trituraron 0.1 g de material vegetal en acetona al 80 % (v/v). El homogenizado se centrifugó y el sobrenadante se utilizó para medir las clorofilas espectrofotométricamente a 652 nm (Arnon, 1949).

7. **Medida de proteínas solubles**

La determinación de proteínas en los extractos crudos se realizó según el método colorimétrico descrito por Bradford (1976), midiendo la absorbancia a 595 nm en un espectrofotómetro de una mezcla del extracto y el reactivo específico (Bio-Rad). Para determinar la concentración de proteínas presente en la muestra, se utilizó una curva patrón realizada con concentraciones conocidas de albúmina de suero bovina (Merck).
VI. MÉTODOS INMUNOLÓGICOS

1. Transferencia de proteínas a membrana de nitrocelulosa y revelado con anticuerpos específicos (Western blot)

En los experimentos que se indican, una vez finalizada la electroforesis SDS-PAGE, las proteínas se transfirieron a membranas de nitrocelulosa en un aparato Semidry Transfer blot (Bio-Rad), con voltaje constante (10 V) durante 30 min y una corriente límite de 5.5 mA/cm². Una vez finalizada la transferencia, se saturó la membrana con leche desnatada en polvo (5% p/v) y se incubó con los anticuerpos primarios específicos hechos en conejo. Éstos fueron, según se especifica, anticuerpos totales dirigidos contra la totalidad de la PEPC C₄ de sorgo; anticuerpos anti-sitio de fosforilación o anti N-terminal (APS-IgG), dirigidos contra un péptido sintético de 23 aminoácidos de la secuencia N-terminal de la PEPC C₄ de sorgo [ERHHSIDAQLRALAPGKVSEE(YG)] que contiene el dominio de fosforilación; o anticuerpos anti C-terminal, dirigidos contra un péptido sintético de 20 aminoácidos de la secuencia C-terminal de la PEPC C₄ de sorgo [(Y)EDTLILTMKGIAGMQNTG]. Para la detección de los anticuerpos primarios, se usaron anticuerpos secundarios anti-conejo marcados con peroxidasa (Bio-Rad, cod. 170-6515).

2. Inmunoprecipitación y detección de la PEPC-quinasa mediante anticuerpos específicos.

Para los ensayos de inmunoprecipitación de la PEPC-quinasa, el extracto crudo se obtuvo triturando 2 g de hoja en un tampón PBS (fosfato 50 mM pH 7.4, NaCl 150 mM), 10 μg · ml⁻¹ quimostatina, 20 μM leupeptina y 1 μM microcistina-LR. Tras centrifugar a 14.000 rpm durante 25 min a 4°C, el sobrenadante se inmunoprecipitó con anticuerpos policlonales anti PEPC-quinasa de Mesembryanthemum crystallinum (planta CAM) durante toda la noche. El inmunocomplejo se adsorbió con proteína A inmovilizada en sefarosa y se limpió con tampón Hepes 0.5 M pH 8, NaCl 1.5 M, Tritón 1% (v/v). Tras eliminar los restos de detergente con el mismo tampón sin tritón, se añadió un tampón de disociación que contenía Tris-HCl 1 M pH 8.8, glicerol 25% (v/v), SDS 1% (p/v) y azul de bromofenol 0.02% (p/v) y las muestras se resolvieron mediante SDS-PAGE. Las proteínas se transfirieron a una membrana de nitrocelulosa y se revelaron mediante Western blot como se describe en el apartado anterior, utilizando como anticuerpos primarios los mismos anticuerpos usados para la inmunoprecipitación.
Materiales y Métodos

VII. MEDIDA DE INTERCAMBIO DE GASES (IRGA)

Las medidas de intercambio de gases se monitorizaron con un sistema analizador LI-6262 CO₂/H₂O (LI-COR, Lincoln, Nebraska). Las medidas fueron hechas a una densidad de flujo de fotones de 300 µmoles m⁻² s⁻¹ o en oscuridad, a una temperatura de 25°C y 0,35 ml l⁻¹ de CO₂.

VIII. ANÁLISIS DE EXPRESIÓN GÉNICA

1. Extracción de ARN

Para la extracción de ARN total de discos foliares u hojas de sorgo, se utilizó el método descrito en Chomczynski y Sacchi (1987) con algunas modificaciones. Tras triturar en N₂ líquido, se añadió 1 ml de una mezcla de fenol (Trizol® Reagent, Sigma, Cod. T 9424) y se centrífugó a 12.000 rpm durante 10 min a 4 °C. Al sobrenadante se le añadieron 200 µl de cloroformo, y se centrífugó a 12.000 rpm durante 15 min a 4 °C para separar las dos fases, tomándose la fase acuosa superior. A la fase recuperada, se le añadió 500 µl de isopropanol, se mantuvieron 10 min a 4 °C y se centrífugó a 12.000 rpm durante 10 min a 4 °C, obteniéndose un precipitado de ARN. Tras descartar el sobrenadante, se añadió 1 ml de etanol al 70 % (v/v) y se centrífugó a 7.500 rpm durante 5 min. El precipitado se resuspendió en agua milíQ, se eliminó la posible contaminación de ADN con ADNasa (Sigma, Cod. AMPD1) y se midió la cantidad de ARN espectrofotométricamente a 260 nm o en un fluorímetro (Quiagen). El ARN extraído se congeló a -80°C hasta su uso.

2. Retrotranscripción de ARN a ADNc

Para la formación del ADNc a partir del ARN total extraído, se utilizó 1 µg de ARN y el sistema ImProm-II™ Reverse Transcriptase (Promega, Cod. A 3802) y oligo(dt)₁₅, siguiendo las instrucciones del fabricante. La reacción de retrotranscripción se llevó a cabo durante 1h a 42°C, en presencia de inhibidores de ARNasa. Posteriormente, las muestras se calentaron a 70°C para desnaturalizar la transcriptasa inversa. Este ADNc sintetizado se conservó a -20°C hasta su uso.

3. Reacción en cadena de la polimerasa (PCR)

El ADNc obtenido como se indica en el apartado anterior se sometió a PCR siguiendo dos metodologías diferentes, según se realizara PCR semicuantitativa (RT-PCR) o cuantitativa a tiempo real (q-PCR):
3.1 RT-PCR

Para las reacciones de PCR semiquantitativas, la mezcla de amplificación contenía 1 μl de ADNc, 10 μM de cebadores específicos descritos en los artículos 2, 3 y 4, 1 U de Taq polimerasa (Biotools) y el tampón suministrado por el fabricante, hasta un volumen final de 20 μl. La mezcla se sometió a diferentes ciclos de amplificación en un termociclador sin llegar a la saturación de la reacción, utilizando un programa específico para cada pareja de cebadores. El ADN amplificado se cargó en electroforesis horizontal en agarosa con bromuro de etidio, y se analizó en un transiluminador UV. Como control interno se utilizó ARNr 18S.

3.2 qRT-PCR

Para los ensayos de PCR cuantitativa en tiempo real (qRT-PCR), la reacción en cadena de la polimerasa se realizó en un termociclador MiniOpticonTM Real-Time PCR Detection System (Biorad), y el ciclo umbral (Ct) se determinó utilizando el software Opticon MonitorTM (Biorad). Como fluoróforo se usó SYBR Green (Roche, cod. 04 673 484 001) para la detección de ADN de doble cadena, utilizando 15 μM de cebadores específicos descritos en los artículos 3 y 4. Como control interno para normalizar los resultados se usó la expresión del ARNr 18S de cada muestra, y el método Livak (2^{ΔΔC_T}) para el tratamiento de los datos. Por lo tanto, los resultados que se muestran son relativos a los niveles de expresión de un control definido en cada caso. Para validar los cebadores y el programa de amplificación utilizados, se usaron diluciones seriadas de ADNc para la construcción de una recta de expresión: R^2>0.98 y eficiencia 90-105%.
RESULTADOS
ARTÍCULO 1

Es un hecho bien conocido que las plantas con metabolismo fotosintético C₄ y CAM están entre las más competitivas en ambientes salinos. En condiciones de restricción hídrica, las plantas C₄ pueden fijar eficazmente el carbono inorgánico reduciendo la apertura estomática y la transpiración, lo que confiere a estas plantas ventajas ecológicas respecto a las plantas C₃. En este sentido, las plantas que realizan un metabolismo fotosintético de tipo C₄, como maíz o sorgo, poseen una mayor eficiencia en el uso del agua que las C₃. Esta propiedad puede ser la causante de que, una alta proporción de plantas C₄, se localicen en ambientes salinos (Osmond et al., 1982; Adam, 1990).

La fosfoenolpiruvato carboxilasa (PEPC) cataliza la primera fijación de CO₂ en el metabolismo fotosintético C₄ y CAM. Su actividad está regulada por fosforilación en un residuo de Ser en un dominio altamente conservado en el extremo N-terminal de la proteína (Chollet et al., 1996). Trabajos previos realizados por nuestro grupo de investigación, han puesto de manifiesto un notable aumento de actividad PEPC-quinasa en plantas de sorgo (una planta C₄) sometidas a estrés salino en respuesta a la luz (Echevarría et al., 2001), mientras que dicho tratamiento sólo aumentó discretamente la actividad PEPC. En hojas de plantas C₄, la luz es la señal que activa la fosforilación de la PEPC, a través de una compleja vía de transducción de señales que culmina con la síntesis de la PEPC-quinasa (Giglioli-Guivarc’h et al., 1996; Coursol et al., 2000). Por este motivo, un resultado sorprendente fue la observación de que la salinidad produjo un aumento de actividad PEPC-quinasa también en oscuridad.

Con este punto de partida, la investigación subsiguiente se centró en el estudio de la PEPC-quinasa en salinidad. Los objetivos principales del trabajo que se presenta a continuación fueron discriminar qué componente del estrés salino (iónico u osmótico) causaba el aumento de actividad PEPC-quinasa, así como caracterizar la PEPC-quinasa existente en oscuridad y sus implicaciones fisiológicas.
Characterization of salt stress-enhanced phosphoenolpyruvate carboxylase kinase activity in leaves of *Sorghum vulgare*: independence from osmotic stress, involvement of ion toxicity and significance of dark phosphorylation

Sofía García-Mauriño · José Antonio Monreal · Rosario Álvarez · Jean Vidal · Cristina Echevarría

Received: 5 April 2002 / Accepted: 30 July 2002 / Published online: 17 September 2002
© Springer-Verlag 2002

Abstract C₄ phosphoenolpyruvate carboxylase (PEPCase; EC 4.1.1.31) is subjected to in vivo regulatory phosphorylation by a light up-regulated, calcium-independent protein kinase. Salt stress greatly enhanced phosphoenolpyruvate carboxylase-kinase (PEPCase-k) activity in leaves of *Sorghum*. The increase in PEPCase-k anticipated the time course of proline accumulation thereby suggesting that water stress was not involved in the kinase response to salt. Moreover, osmotic stress seemed not to be the main factor implicated, as demonstrated by the lack of effect when water availability was restricted by mannitol. In contrast, LiCl (at a concentration of 10 mM in short-term treatment of both excised leaves and whole plants) mimicked the effects of 172 mM NaCl salt-acclimation, indicating that the rise in PEPCase-k activity resulted primarily from the ionic stress. Both NaCl and LiCl treatments increased the activity of a Ca²⁺-independent, 35 kDa kinase, as demonstrated by an in-gel phosphorylation experiment. Short-term treatment of excised leaves with NaCl or LiCl partially reproduces the effects of whole plant treatments. Finally, salinization also increased PEPCase-k activity and the phosphorylation state of PEPCase in darkened *Sorghum* leaves. This fact, together with increased malate production during the dark period, suggests a shift towards mixed C₄ and grassulacceae acid metabolism types of photosynthesis in response to salt stress.

Keywords Phosphoenolpyruvate carboxylase · Protein kinase · Regulatory phosphorylation · Salt stress · *Sorghum*

Introduction

Phosphoenolpyruvate carboxylase (PEPCase) catalyzes the β-carboxylation of phosphoenolpyruvate using HCO₃⁻ as substrate in a reaction that yields oxaloacetate and Pi. PEPCase plays an essential role in the photosynthetic carbon metabolism of C₄ and grassulaceae acid metabolism (CAM) plants since it is involved in the initial fixation of atmospheric CO₂ (Andreo et al. 1987; Leegood and Osmond 1990; Rajagopalan et al. 1994; Chollet et al. 1996; Vidal et al. 1996; Vidal and Chollet 1997; Nimmo 2000). In C₄ plants, PEPCase is tightly controlled by a light-dependent regulatory phosphorylation process (Echevarría et al. 1990; Chollet et al. 1996; Vidal et al. 1996). In CAM plants, the regulatory phosphorylation of PEPCase occurs during the night, in parallel with the active period of CO₂ fixation (Nimmo 2000; Bakrim et al. 2001). This relatively short-term post-translational regulation impacts positively on the functional and regulatory properties of PEPCase, i.e., decreased sensitivity to feedback inhibition by malate, increased affinity for the allosteric activator glucose-6-phosphate and an increase in Vₘₐₓ (Nimmo et al. 1987; Echevarría et al. 1994; Duff and Chollet 1995; Vidal et al. 1996).

The presence and the inducible nature of leaf phosphoenolpyruvate carboxylase kinase (PEPCase-k) have been established further in various C₄, CAM and C₃ plant species (Chollet et al. 1996; Nimmo 2000). In all cases, cycloheximide proved to be a potent inhibitor of the upregulation process so that apparent changes in the turnover rate of PEPCase-k itself account for changes in...
activity (Carter et al. 1991; Jiao et al. 1991; Chollet et al. 1996). This low abundance, Ca\(^{2+}\)-independent, 30-32 kDa (Jiao and Chollet 1989; Hartwell et al. 1999) serine/threonine kinase is thought to represent the genuine PEPCase-k (Chollet et al. 1996; Vidal and Chollet 1997).

The fact that PEPCase has an important role in C\(_4\) and CAM plant metabolism allows this enzyme to be linked to adaptation to stress conditions. Several papers have shown that PEPCase activity increased in salt-treated Sorghum bicolor (a C\(_4\) plant), Hordeum vulgare (a C\(_3\) plant) and Aeluropus littoralis (a C\(_4\)-C\(_3\) intermediate plant) (Sankhla and Huber 1974; Amzallag et al. 1990; Popova et al. 1995). The induction by salt of both PEPCase and PEPCase-k activities in the facultative CAM plant Mesembryanthemum crystallinum has also been described (Li and Chollet 1994). We have previously reported (Echevarria et al. 2001) that PEPCase-k activity is strongly enhanced in Sorghum leaves following salt treatment. The present work was devoted to clarifying which component – water or ionic stress – accounts for the increase in PEPCase-k activity in leaves of salt-treated Sorghum plants. In addition, we present results showing that under prolonged treatment, NaCl promoted a concomitant increase in both the Ca\(^{2+}\)-independent PEPCase-k activity and accumulation of L-malate during the night.

Materials and methods

Plant growth conditions

Sorghum plants (Sorghum vulgare var. Tamaran, Rhône-Poulenc, Seville, Spain) were grown hydroponically at 28°C and 60% relative humidity during the photoperiod (12 h, 350 \(\mu\)mol photons m\(^{-2}\) s\(^{-1}\)) supplied by Sylvania Luxline ES homeight de luxe fluorescent lamps supplemented with Osram Superlux incandescent bulbs and at 20°C and 70% relative humidity during the dark period. Plants were supplied with nitrate-type nutrient solution (Hewitt 1966). They were acclimated to salt by increasing the NaCl concentration in the culture medium weekly (43, 86, 172, 344 mM final concentrations). LiCl treatment was performed by addition of the salt (10 mM) to the culture medium.

Enzyme extraction and analysis

Except for the experiment presented in Fig. 6, fully expanded youngest leaves were excised and illuminated (750 \(\mu\)mol photons m\(^{-2}\) s\(^{-1}\)) or placed in the dark for 2 h. Protein extracts were obtained by grinding 0.2 g [fresh weight (FW)] of leaf tissue in 1 ml extraction buffer containing 0.1 M Tris-HCl pH 7.5, 20% (v/v) glycerol, 1 mM EDTA, 10 mM MgCl\(_2\) and 14 mM \(\beta\)-mercaptoethanol. The homogenate was centrifuged at 15,000 g for 2 min and the supernatant was filtered through Sephadex G-25 equilibrated with the extraction buffer without mercaptoethanol.

Determination of PEPCase activity, malate test, in vitro phosphorylation assay, and SDS-PAGE were performed as described (Echevarria et al. 1990). An enzyme unit is defined as the amount of PEPCase that catalyzes the carboxylation of 1 \(\mu\)mol phosphoenolpyruvate min\(^{-1}\) at pH 8 and 30°C. Polyclonal anti-Sorghum C\(_4\) PEPCase antibodies were used for western-blot analysis (Echevarria et al. 1990).

Malate quantification

Malate was extracted from a sample (0.2 g FW) of leaf tissue with 1 ml 7% (v/v) perchloric acid by grinding the leaf material in a mortar. The acid suspension was neutralized with 15% (v/v) tetraethylammonium chloride-KOH (1 M/5 N), and the residue was removed by centrifugation at 15,000 g for 2 min. The supernatant was used for malate quantification or stored at -35°C. L-Malate concentration was determined by a spectrophotometric assay according to Lowry and Passoneau (1972), by measuring the increase in absorbance at 340 nm due to the enzymatic reduction of NAD\(^+\). The reaction was carried out in 1 ml of a reaction mixture containing an aliquot of the supernatant in 50 mM 2-amino-2- methyl-1-propanol pH 9.9, 4 mM \(\beta\)-NAD\(^+\), 4 mM Glu, 3.5 U NAD-MDH and 0.9 U aspartate transaminase.

Proline and protein quantification and gas-exchange measurements

Proline was quantified by the method of Bates et al. (1973). Protein amounts were determined by the method of Bradford (1976), using BSA as standard. Gas exchange measurements were monitored with an LI-6262 CO\(_2\)/H\(_2\)O analyzer system (LI-COR, Lincoln, Neb.). Measurements were made at a photon flux density of 300 \(\mu\)mol m\(^{-2}\) s\(^{-1}\) or in darkness, a leaf temperature of 25°C, and 1 mL min\(^{-1}\) CO\(_2\).

Statistical analysis

Data were subjected to analysis of variance (ANOVA). The treatment means were compared by unpaired t-test. ANOVAs and the mean difference of the treatments were considered to be significant at the level of \(P = 0.05\).

Results

Influence of osmotic and ionic stress on PEPCase-k activity in illuminated Sorghum leaves

In a previous study (Echevarria et al. 2001), we reported that leaf PEPCase-k activity was strongly enhanced in illuminated leaves of Sorghum plants acclimated to increasing amounts of NaCl or KCl. To clarify further the effect of salt on PEPCase-k activity, plants were acclimated to moderate (86 mM NaCl), severe (172 mM NaCl), and extreme (344 mM NaCl) salt stress. The in vitro PEPCase-k activity (Fig. 1a) and the proline content of the leaf (Fig. 1b) were measured at each experimental condition used. Proline is a compatible solute that has been associated with osmotic adjustment in higher plant cells in response to osmotic stress (Hasegawa et al. 1994). Proline accumulation confers enhanced drought tolerance (Yoshida et al. 1997) and is an indicator of water stress (Somal and Yapa 1998; Ain-Lhout et al. 2001). No direct relationship between proline accumulation and the enhancement of PEPCase-k activity was seen (Fig. 1a). Indeed, at moderate salt
stress, proline content showed very little variation while PEPCase-k activity was already markedly increased. Conversely, extreme salt stress, which caused a tremendous increase in the leaf proline content (Fig. 1b), was less effective in raising PEPCase-k activity.

To explore the role of water stress on PEPCase-k activity, mannitol was substituted for the salt in the culture medium. Fig. 2 shows that neither 75 mM mannitol nor a further 24 h treatment with 150 mM mannitol caused any increase in PEPCase-k activity; rather, 150 mM mannitol markedly decreased PEPCase-k activity. In addition, mannitol treatment had little effect on PEPCase activity while causing proline accumulation at a level similar to that caused by 172 mM NaCl treatment (data shown in Fig. 2).

Lithium is known to be absorbed via the same transporters as Na and to be toxic for plant growth at relatively low concentrations that do not cause any osmotic effect. When given to the plants at a concentration of 10 mM in the culture medium for 4 days, LiCl triggered the enzyme response (Fig. 3a, LiCl), being as efficient as the long-term acclimation process of plants on 172 mM NaCl (Fig. 3a, NaCl). Meanwhile, the proline content in the leaves from LiCl-treated plants was very close to control plants and very much lower than NaCl-treated plants (Fig. 3a, proline).

The identity of the up-regulated PEPCase-k in illuminated, Li-treated plants was studied by performing an 'in-gel' kinase assay, in the presence of the calcium chelator EGTA. The gel was polymerized in either the presence (Fig. 3b, right) or absence (Fig. 3b, left) of 300 μg ml⁻¹ immunopurified PEPCase. The kinase was found to be the typical, low molecular mass (35 kDa), Ca²⁺-insensitive PEPCase-k (Chollet et al. 1996; Vidal et al. 1996; Hartwell et al. 1999).

Short-term (overnight) treatment of excised Sorghum leaves with LiCl (10 mM) or NaCl (172 mM) also resulted in a significant increase in PEPCase-k activity in illuminated leaves (Fig. 4, lanes 2 and 5). This was further enhanced by the phytotoxin fusicoacin (Fig. 4, lane 6) when added to the 172 mM NaCl solution. This compound is known to activate the plasmalemma proton pump in all plant tissues (Oecking et al. 1997) and to promote stomatal aperture thereby facilitating water (and thus salt) flow through the leaf. Feeding the leaves with fusicoacin alone did not show any effect on PEPCase-k activity (Fig. 4, cf. lanes 3 and 4).

Collectively, these results suggested that the observed increase in PEPCase-k activity in salt-treated plants (Echevarría et al. 2001) is due to the ion toxicity component of the salt stress and not to a water deficit.
Dark phosphorylation of *Sorghum* PEPCase

As judged by the in vitro phosphorylation assay, PEPCase-k activity was also considerably increased in protein extracts from dark-treated leaves of the salt-treated *Sorghum* plant (Fig. 5a, cf. lanes 1 and 2). The in vitro phosphorylation of PEPCase was inhibited by the anti-phosphorylation domain IgG (Fig. 5a, lane 3) and was insensitive to 1 mM EGTA (Fig. 5a, lane 4). In addition, PEPCase-k activity was almost completely abolished in excised leaves from salt-treated plants incubated in the dark with the protein synthesis inhibitor cycloheximide (Fig. 5a lane 6). The effect of the salt treatment on PEPCase-k activity in dark-adapted plants was accompanied by consistent changes in the kinetic properties of

Fig. 3a, b I tonic stress increases PEPCase-k activity. Plants (salt-acclimated on 172 mM NaCl, Li-treated, controls) were grown for 4 weeks under culture conditions described in Materials and Methods. Lithium (10 mM LiCl) was added to the culture medium 4 days before sampling. **a** Leaves were excised, illuminated for 2 h and aliquots from protein extracts were used to measure PEPCase-k activity in reconstituted assays as described in the legend to Fig. 1. **b** Proline 210.~4~ 6.9 6.3 ± 48.3 ± 1.4 ± 0.3

Without PEPCase With PEPCase

Fig. 4 Short-term treatment with LiCl or NaCl increases PEPCase-k activity. Excised leaves from control plants (4-week-old plants) were fed overnight with 10 mM LiCl (lane 2), 10 mM fusococin (lane 4), 172 mM NaCl (lane 5), 172 mM NaCl plus 10 μM fusococin (lane 6). Lanes 1 and 3 Control plants without any addition. The in vitro PEPCase-k activity was assayed after 2 h of illumination as described in the legend to Fig. 1. **R** Autoradiography, S Coomassie blue-stained gel. The arrows show PEPCase in gels

Fig. 5a, b Characterization of the in vitro phosphorylation of PEPCase from dark-adapted leaves. **a** Desalted protein extracts were used to measure PEPCase-k activity as described in the legend to Fig. 1. Control plants (lane 1) or 172 mM NaCl salt-acclimated plants (lanes 2–4), plus 20 μg of antiphosphorylation-site antibodies (APS-IgG) (lane 3), plus 1 mM EGTA (lane 4). In parallel experiments, the effect of the protein synthesis inhibitor cycloheximide (CHX), was checked. Excised leaves were fed overnight with a solution containing CHX (5 μM) in culture medium. Protein extraction was performed at the end of the night period and the PEPCase-k measured as described above; control leaf (lane 5), plus CHX (lane 6). **b** Autoradiography, S Coomassie blue-stained gel. The arrows show PEPCase in gels. **b** Excised leaves were illuminated for 2 h (L) or kept in darkness (D), and the apparent phosphorylation state of PEPCase was estimated in protein extracts from 172 mM NaCl salt-acclimated or control plants by using the malate test (PEPCase activity in the presence or absence of 1 mM malate, pH 7.3). Data are means ± SE of five experiments. b, P < 0.01 versus control (t test)
the enzyme (Fig. 5b). Indeed, PEPCase sensitivity to 1 mM malate was significantly decreased by salinization; NaCl treatment changed the inhibition of PEPCase activity by 1 mM malate from 80% (control D) to 55% (NaCl D) in dark-adapted leaves. Taking into account that 1 mM malate inhibited PEPCase activity by 44% after light induction (control L), this fact suggests that dark phosphorylation of PEPCase in salt-stressed plants may be an event of physiological relevance.

The time course of PEPCase content and PEPCase-k activity were subsequently investigated in protein extracts from dark-adapted leaves during aging and extended salinization. Both the kinase activity and PEPCase protein content vanished with time in control plants (Fig. 6a, b, control), while they were maintained at high and almost constant levels in salt-treated plants during the course of the experiment (Fig. 6 a, b, NaCl). PEPCase activity varied accordingly, steadily decreasing in control plants and showing a moderate increase in NaCl-treated plants. The results presented in Fig. 6a, b were not considered to be caused by a reduction in the rate of overall developmental changes (Echevarria et al. 2001). It has been reported that, by reducing the growth rate of plants, salt stress induces and accelerates senescence (Feng and Barker 1992; Lutts et al. 1996; Santos et al. 2001); consistent with this, the chlorophyll content in leaves of 172 mM NaCl salt-stressed plants was much lower than in control plants (0.39 ± 0.03 versus 2.58 ± 0.12 mg gDW⁻¹, means ± SE, n = 3) after 4 weeks of maintained stress. As short-term (overnight) treatment with 172 mM NaCl (Fig. 4, lanes 5 and 6) can enhance PEPCase-k activity of leaves from control plants, senescence seems not to be the main cause of this NaCl effect. The observation that levels of PEPCase and PEPCase-k activity remained high in salinized plants, in contrast with the gradual decrease measured in control plants, suggests a role for this enzyme and its regulatory phosphorylation in the adaptation of plants to saline environments.

To clarify further the physiological significance of this process we measured the malate content of leaves from NaCl-treated and control plants. Malate was quantified on a dry weight basis to avoid overestimation in salt-treated plants, which probably have an altered water content. In salt-treated plants, the malate content increased with treatment during the night to become significantly higher than the corresponding day value (Fig. 7). In contrast, control plants showed no such behavior (Fig. 7). This observation supports the hypothesis that the PEPCase continues to carboxylate PEP during the night in salt-treated plants, in good agreement with the increased phosphorylation state of the enzyme.

To cast light on the origin of the CO₂ used for malate synthesis, gas exchange measurements were performed both in light and in darkness, and the results are displayed in Table 1. Salt stress reduced the net photosynthetic rate and the transpiration rate of illuminated leaves. No net CO₂ uptake was detected when the leaves

Fig. 6a, b Stability of PEPCase-k and PEPCase during extended salinization. Hydroponically grown plants were salt-acclimated (172 mM NaCl) or not (Control), and then kept under the same conditions for 2 (lane 2), 4 (lane 4) or 6 (lane 6) weeks. Estimation of PEPCase-k activity and PEPCase content were performed on protein extracts from the oldest healthy leaf from each plant. a PEPCase-k activity was assayed in the presence of 0.2 μg exogenous dephosphorylated Sorghum C₄ PEPCase. R Autoradiography, S Coomassie blue-stained gel. The arrows show PEPCase in gels. b Proteins resolved by SDS-PAGE were transferred onto nitrocellulose and probed with polyclonal C₄ PEPCase IgGs. P Immunopurified Sorghum C₄ PEPCase as a control. PEPCase activity (U mg protein⁻¹) was assayed in duplicate samples and the mean values are displayed.

Fig. 7 Enhanced malic acid accumulation during the dark period caused by salt-stress. Malic acid content in leaves from control and NaCl-treated plants during the light period (5 h light) and at the end of the dark period. After reaching the final concentration of 172 mM NaCl during the acclimation process, the plants were kept under constant conditions for a further 10 days. Leaf samples were taken at days 4, 8 and 10 for malic acid determination. Open circles illuminated control plants, closed circles dark-treated control plants, open triangles illuminated salinized plants, closed triangles dark-treated salinized plants. Data are mean values ± SE of three different plants.
Table 1 Gas-exchange analysis of *Sorghum vulgare* leaves in light (300 μmol photons m⁻² s⁻¹) and darkness. Plants were acclimated to 86 and 172 mM NaCl and maintained under these conditions for 2 weeks. Data are the means ± SE of measurements in different plants (*n* = 4–8).

<table>
<thead>
<tr>
<th></th>
<th>Net photosynthetic rate (μmol CO₂ m⁻² s⁻¹)</th>
<th>Transpiration (mmol H₂O m⁻² s⁻¹)</th>
<th>Stomatal conductance (mmol m⁻² s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>-0.52 ± 0.09</td>
<td>0.21 ± 0.07</td>
<td>21.17 ± 6.15</td>
</tr>
<tr>
<td>86 mM NaCl</td>
<td>-0.38 ± 0.31</td>
<td>0.18 ± 0.03</td>
<td>16.33 ± 3.76</td>
</tr>
<tr>
<td>172 mM NaCl</td>
<td>-0.68 ± 0.19</td>
<td>0.09 ± 0.03</td>
<td>7.25 ± 2.06</td>
</tr>
<tr>
<td>Light</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>7.75 ± 0.71</td>
<td>0.64 ± 0.07</td>
<td>57.20 ± 9.45</td>
</tr>
<tr>
<td>86 mM NaCl</td>
<td>4.42 ± 1.16*</td>
<td>0.36 ± 0.08*</td>
<td>26.00 ± 5.63*</td>
</tr>
<tr>
<td>172 mM NaCl</td>
<td>0.33 ± 0.35**</td>
<td>0.15 ± 0.06**</td>
<td>13.50 ± 5.33**</td>
</tr>
</tbody>
</table>

*P < 0.05 versus control
**P < 0.01 versus control (t test)

were kept in darkness. Moreover, the stomatal conductance in darkened leaves of salt-treated plants was lower than in control plants. This makes it improbable that atmospheric CO₂ is fixed at night, and suggests the recycling of respiratory CO₂ as the main source for malate synthesis in darkness.

Discussion

An increase in soil salinity commonly causes a reduction in growth and yield of plants. Detrimental effects of salinity include reduced soil water availability, nutrient imbalance and nutrient limitation, membrane dysfunction, inhibition of basic metabolic pathways (such as respiration and photosynthesis), and oxidative stress (Hasegawa et al. 2000; Orcutt and Nilsen 2000). Acclimation to salinity involves mechanisms that must alleviate the dual detrimental effects of water deficit and ion toxicity. Stomatal closure, which minimizes water loss, is often a rapid response to the initiation of hypersalinity. This rapid closure is promoted by abscisic acid (ABA) and there is considerable evidence that ABA levels increase during salinity stress (Nilsen and Orcutt 1996). Our previous results had shown an increase in PEPCase-k activity in leaves of *Sorghum* plants acclimated to NaCl; however, this has not been found to be dependent upon ABA (Echevarria et al. 2001). By comparing the effect of equimolar concentrations of NaCl and mannitol, an organic osmotically active substance, we can now discount ABA-independent drought stress signalling as a factor responsible for the enhanced PEPCase-k activity in leaves of treated plants. Indeed, mannitol caused a general detrimental effect on plant growth, and led to no increase — or even decreased — PEPCase-k activity.

On the other hand, proline increases faster than other amino acids, and accumulates to high levels in plants during water stress (Sivaramakrishnan et al. 1988). In salt-treated *Sorghum* leaves, the PEPCase-k activity was raised to high levels, while the proline content had not yet increased under mild salt stress (86 mM NaCl). Moreover, mannitol treatment (osmotic stress) did not increase PEPCase-k activity while causing proline accumulation, and conversely, LiCl treatment (ionic stress) increased PEPCase-k activity without changing the proline content of the leaves. These observations support the hypothesis that PEPCase-k changes are not directly linked to water stress during salt acclimation of *Sorghum* plants.

Due to the high sensitivity of all cells to lithium, low concentrations can be used thus avoiding hyperosmotic stress effects. Results in this paper show that 10 mM LiCl enhanced PEPCase-k activity to an even greater extent than 172 mM NaCl salt-treatment. As revealed by an in-gel kinase assay, we can detect a 35 kDa Ca²⁺-independent PEPCase-k with both treatments; this band was strongly increased by LiCl treatment. We have shown previously (Echevarria et al. 2001) that the 35 kDa kinase induced by salt in the light was the genuine Ca²⁺-independent PEPCase-k already described by others (Li and Chollet 1994; Chollet et al. 1996; Vidal and Chollet 1997; Hartwell et al. 1999; Taybi et al. 2000).

In addition, the increase of PEPCase-k activity seems to be an early event in the molecular responses to the ionic stress associated with salinity. Indeed, supplying excised leaves with LiCl or NaCl overnight causes an enhancement of PEPCase-k activity. The signalling cascade leading to the upregulation of PEPCase-k in *C₄* plants involves the phosphonositide pathway and a transient increase in inositol 1,4,5-triphosphate (IP₃) in illuminated mesophyll cells (Giglioli-Guivarc’h et al. 1996; Coursol et al. 2000). In this respect, it has been shown recently that inositol monophosphatases, a family of Li⁺-sensitive soluble proteins (Gillaspy et al. 1995), are required for both de novo synthesis and recycling of inositol, thus being considered a potential regulatory point for all pathways that utilize free inositol. Based on the present results, the following hypothesis can be proposed. The blocking of a mesophyll monophosphatase in Li-treated *Sorghum* plants leads to over accumulation of IP₃ thereby stimulating the synthesis of PEPCase-k. As a corollary, this second messenger appears to be a good candidate to couple the perception of ionic stress to the PEPCase-k response. NaCl is expected to act in a similar way since changes in
the metabolism of phospholipids have been reported to be associated with salinity (Pical et al. 1999), and IP₃ production in plant cells has been reported to be an early response to salt stress (Drobak and Watkins 2000).

Results in this paper show a gain in both PEPCase-k activity and the phosphorylation state of PEPCase in dark-adapted leaves from salinized plants. To our knowledge, this is the first time that this effect has been described in C₄ plants. We have characterized this kinase activity and found that, as in the case of salt-enhanced PEPCase-k from illuminated leaves (Echevarria et al. 2001), the PEPCase-k promoted by salt in the dark is a calcium-independent enzyme that phosphorylates PEPCase only on Ser² of the phosphorylation domain, as shown by the inhibition caused by the APS-IgG. Likewise, in illuminated leaves, this PEPCase-k is dependent upon protein turnover as it is blocked by the protein synthesis inhibitor cycloheximide in plants. Whether this increase in PEPCase-k activity is due to a salt-induced change in the activity of the phosphorylation cascade, or in the degradation rate of the kinase is not known.

During aging of salt-stressed plants, both the PEPCase and PEPCase-k were found to be more stable than in control plants, thereby indicating a role for this enzyme and its regulatory phosphorylation in the response of plants to saline environments.

The gain in PEPCase-k activity and PEPCase phosphorylation state might allow the enzyme to carboxylate PEP during the night. Indeed, malate accumulates during the dark period during NaCl treatment, and becomes higher than the corresponding values during the day, in contrast to control plants where malate decreases with treatment in both light and dark periods. This dark fixation of CO₂ and corresponding synthesis of malate may feed the C₄ photosynthesis pathway during the next light period. Although the fixation of atmospheric CO₂ during the night by salt-stressed Sorghum is probably not the main source for malate synthesis, as deduced from the data shown in Table 1, the use of respiratory CO₂ would allow the preservation of a positive carbon balance in conditions of severely reduced photosynthesis. This salt-induced atypical functioning of C₄ plants is reminiscent of the CAM mode of CO₂ fixation in salt-induced CAM species like the facultative halophyte M. crystallinum (Winter and von Willert 1972; Baur et al. 1992; Li and Chollet 1994; Taybi et al. 2000). However, it cannot be considered as a full CAM species (Kluge and Ting 1978) because of the lack of fixation of atmospheric CO₂ and open stomata during the night. Based on the nocturnal acidification of Sorghum leaves, a shift towards mixed C₄ and CAM types of photosynthesis in response to salt stress is suggested. However, further experiments will be necessary to assess this point.

Acknowledgements The authors thank Dr. Alfonso de Cires (Dpto Biologia Vegetal y Ecología, University of Seville, Spain) for CO₂ exchange analyses. This research was supported by grants PB97-0745-C02-02 from Dirección General de Investigación Científica y Técnica (DGICYT) Spain, BMC 2001-2366-C03-02 from Ministerio de Ciencia y Tecnología, by the Acción Integrada Hispano-Francesa HF009-2000, and by the Junta de Andalucía (PAI group CVI-134).

References

COMENTARIOS

El estrés provocado por el exceso de sal en el suelo posee dos componentes, uno osmótico inducido por la disminución del potencial hídrico de la solución, y otro iónico producido por las altas concentraciones de iones, principalmente Na⁺ (Hasegawa et al., 2000). La prolinia es un osmolito compatible que aumenta en respuesta a la restricción de agua, y que es un buen índice de estrés hídrico. Al aclimatar plantas de sorgo a concentraciones crecientes de NaCl, no se observó correlación entre la acumulación de prolinia y el aumento de actividad PEPC-quinasa en respuesta a la salinidad. Por ejemplo, el máximo de actividad PEPC-quinasa se observó a una concentración de NaCl de 172 mM, mientras que el máximo de prolinia correspondía a la mayor concentración de NaCl utilizada. Por otro lado, un estrés salino moderado (NaCl 86 mM) tuvo un marcado efecto aumentando la actividad PEPC-quinasa sin que repercutiera sobre la prolinia detectada. Además, un estrés hídrico simple (producido mediante la adición de manitol al medio de cultivo) no aumentó la actividad PEPC-quinasa, aumento que, por el contrario, se observó en respuesta a un estrés iónico simple (producido por la sal altamente tóxica LiCl a baja concentración). En conjunto, estos resultados indican que los cambios en la actividad PEPC-quinasa que se observan en salinidad no están directamente asociados al estrés hídrico, sino que, por el contrario, parecen ser consecuencia del estrés iónico.

Un segundo aspecto analizado en este trabajo fue la posible relevancia fisiológica de la actividad PEPC-quinasa detectada en oscuridad en respuesta a la salinidad. Las características de dicha actividad enzimática eran las distintivas de la genuina PEPC-quinasa: a) independencia de calcio; y b) bloqueo de la actividad PEPC-quinasa como consecuencia de la incubación de su sustrato con anticuerpos dirigidos contra el motivo de fosforilación. En oscuridad, el inhibidor de la síntesis de proteínas cicloheximida (CHX) causaba la desaparición de la actividad PEPC-quinasa; por tanto, dicha actividad enzimática era consecuencia de síntesis proteica. La trascendencia fisiológica del fenómeno se evaluó de dos formas. En primer lugar, se estudió si el aumento de la actividad PEPC-quinasa producía un aumento de fosforilación de la PEPC, que se traduce en una disminución de la sensibilidad a su inhibidor malato. En efecto, pudo comprobarse que la salinidad producía una disminución de la sensibilidad al málico en la PEPC del mismo orden de la observada en la transición luz-oscuridad, que es la señal fisiológica que promueve la fosforilación de la PEPC en hojas de plantas C₄. Por tanto, es muy probable que el aumento de actividad PEPC-quinasa en oscuridad
Artículo 1
tenga consecuencias relevantes en el estrés salino. En segundo lugar, se cuantificó el málico producido en luz y en oscuridad en plantas controles y en plantas aclimatadas a NaCl. Se observó que la salinidad produjo un aumento en la cantidad de málico acumulado en oscuridad, y que dicho málico era utilizado durante las horas de luz. Este fenómeno tiene similitudes con la transición a un metabolismo fotosintético CAM que causa el estrés salino en algunas especies. Sin embargo, cuando se midió el intercambio de gases de hojas de sorgo en salinidad no se detectó una absorción neta de CO₂ en el periodo nocturno, y la conductancia estomática era inferior que en las plantas control. Por tanto, parece improbable que la fuente de C empleada para sintetizar málico sea el CO₂ atmosférico; una fuente más probable es el reciclaje del CO₂ respiratorio. Este hecho podría permitir el mantener un balance de carbono positivo en condiciones (salinidad) en las que la fotosíntesis está severamente reducida. Nuestros resultados muestran que en condiciones de salinidad se promueve en el sorgo un metabolismo mixto C₄-CAM cíclico (Guralnick y Jackson, 2001), en el que no hay apertura estomática nocturna pero los niveles de L-Malato aumentan considerablemente durante la noche y se produce fijación de CO₂ a partir del proveniente de la respiración.

Por tanto, los resultados más relevantes de este trabajo son:
*Se identifica el estrés iónico como causa principal del notable aumento de actividad PEPC-quinasa que se produce en respuesta a la salinidad.
*El estrés salino es el primer contexto fisiológico en el que se describe la síntesis de la PEPC-quinasa en oscuridad en la hoja de una planta C₄.
*Se atribuye una función fisiológica a la síntesis de PEPC-quinasa en oscuridad en respuesta al estrés salino.
ARTÍCULO 2

En las hojas de plantas C₄, la luz activa la síntesis de la PEPC-quinasa a través de una vía de señalización que implica la activación de la Fosfolipasa C (PL-PLC o PLC) y la acumulación transitoria de inositol 1,4,5-trifosfato (IP₃) (Giglioli-Guivarc'h et al., 1996; Coursol et al., 2000). Tanto en animales como en plantas, el litio es un inhibidor de las inositol monofosfatasas, y, como consecuencia, altera la señalización en la que participan los fosfoinositóles (Gillaspy et al., 1995). Estas enzimas participan tanto en la atenuación de la señal mediada por IP₃ como en el reciclaje del inositol a las membranas celulares. Como consecuencia, podrían esperarse dos efectos antagónicos del Li⁺: una amplificación de la señal, al disminuir la velocidad de desaparición del IP₃, y una atenuación de la misma consecuencia de la depleción de inositol.

En este trabajo, se investigan ambos efectos del litio en relación con el marcado aumento de la actividad PEPC-quinasa que causa cuando se suministra a las plantas de sorgo (García-Mauriño et al 2003; artículo 1). El litio es una herramienta útilísima para explorar la participación de la vía de la PLC (descrita en protoplastos de Digitaria sanguinalis) en un sistema más complejo (hojas de plantas de sorgo), y para analizar la relación existente entre el aumento del segundo mensajero IP₃ y los niveles de expresión de la PEPC-quinasa. Por otro lado, dado el espectacular aumento de actividad PEPC-quinasa que produce, es una herramienta para conseguir plantas productoras de PEPC-quinasa en gran cantidad.
Effect of LiCl on phosphoenolpyruvate carboxylase kinase and the phosphorylation of phosphoenolpyruvate carboxylase in leaf disks and leaves of *Sorghum vulgare*

José Antonio Monreal · Francisco Javier López-Baena · Jean Vidal · Cristina Echevarría · Sofía García-Mauriño

Received: 8 June 2006 / Accepted: 22 August 2006 / Published online: 16 September 2006
© Springer-Verlag 2006

Abstract In the present work, the effect of LiCl on phosphoenolpyruvate carboxylase kinase (PEPCase-k), C₄ phosphoenolpyruvate carboxylase (PEPCase: EC 4.1.1.31) and its phosphorylation process has been investigated in illuminated leaf disks and leaves of the C₄ plant *Sorghum vulgare*. Although this salt induced severe damages to older leaves, it did not significantly alter the physiologival parameters (photosynthesis, transpiration rate, intercellular CO₂ concentration) of young leaves. An immunological approach was used to demonstrate that the PEPCase-k protein accumulated rapidly in illuminated leaf tissues, consistent with the increase in its catalytic activity. In vivo, LiCl was shown to strongly enhance the light effect on PEPCase-k protein content, this process being dependent on protein synthesis. In marked contrast, the salt was found to inhibit the PEPCase-k activity in reconstituted assays and to decrease the C₄ PEPCase content and phosphorylation state in LiCl treated plants. Short-term (15 min) LiCl treatment increased IP₃ levels, PPCK gene expression, and PEPCase-k accumulation. Extending the treatment (1 h) markedly decreased IP₃ and PPCK gene expression, while PEPCase-k activity was kept high. The cytosolic protein synthesis inhibitor cycloheximide (CHX), which blocked the light-dependent up-regulation of the kinase in control plants, was found not to be active on this process in preilluminated, LiCl-treated leaves. This suggested that the salt causes the kinase turnover to be altered, presumably by decreasing degradation of the corresponding polypeptide. Taken together, these results establish PEPCase-k and PEPCase phosphorylation as lithium targets in higher plants and that this salt can provide a means to investigate further the organization and functioning of the cascade controlling the activity of both enzymes.

Keywords Lithium · Phosphoenolpyruvate carboxylase · Phosphoenolpyruvate carboxylase kinase · *Sorghum*

Abbreviations

CHX Cycloheximide
PI-PLC Phosphoinositide-specific phospholipase C
IP₃ Inositol 1,4,5-triphosphate
PEPCase Phosphoenolpyruvate carboxylase
PEPCase-k Phosphoenolpyruvate carboxylase kinase

Introduction

It is now a well documented fact that phosphoenolpyruvate carboxylase (PEPCase) is subject to a regulatory phosphorylation of a N-terminal serine in mesophyll...
cells of various plants including examples from C₃, CAM and C₄ species (Li et al. 1996; Vidal and Chollet 1997; Nimmo 2000; Echevarría and Vidal 2003; Izui et al. 2004). This is achieved by a low molecular mass protein kinase [phosphoenolpyruvate carboxylase kinase (PEPCase-k)] whose activity is up-regulated by a complex transcription cascade involving light signal-induced changes in the phosphoinositide pathway (inositol 1,4,5-trisphosphate; IP₃) and cytosolic calcium (Giglioli-Guivarc'h et al. 1996; Courisol et al. 2000). Upon darkness, the kinase is rapidly down-regulated following decreased synthesis. Recent results have indicated that several genes encoding this kinase are present in plant genomes (Hartwell et al. 1996, 1999; Taybi et al. 2000; Fontaine et al. 2002; Nimmo 2003); however, so far no information about the molecular mechanism involved in the control of PEPCase-k gene expression is available. Moreover, it has been suggested that the activity of maize leaf PEPCase-k can be modulated by a redox mechanism involving thioredoxin-mediated reduction of the enzyme (Saże et al. 2001; Tsuchida et al. 2001). Finally, the presence of a protein that reversibly inhibits PEPCase-k has been reported in Kalanchoë fedtschenkoi and in maize (Nimmo et al. 2001).

In the CAM species Mesembryanthemum crystallinum, an increase in salt concentration results in the accumulation of CAM PEPCase and promotes PEPCase-k synthesis and PEPCase phosphorylation during the night (Cushman et al. 1989; Baur et al. 1992; Li and Chollet 1994; Nimmo 2000). In previous works, we have shown that salt stress greatly enhances PEPCase-k activity in leaves of Sorghum vulgare (Echevarría et al. 2001). This fact, together with an increased malic acid production during the dark period, pointed to a shift towards a mixed C₃-C₄-CAM type of photosynthesis in this C₃ plant in response to salt (García-Mauriño et al. 2003). On a short timescale, 10 mM LiCl mimicked the effects of 172 mM NaCl thereby suggesting that the increase in PEPCase-k activity resulted primarily from ionic stress (García-Mauriño et al. 2003). In animals, it has been demonstrated that one major effect of lithium is to perturb the phosphoinositide cycle (by blocking inositol-P monophosphatases leading to decreased inositol levels) and related signal transduction processes (Berridge et al. 1989). Other targets of this salt are the protein kinase GSK-3 (glycogen synthase kinase-3) that accounts for teratogenic properties (Zhang et al. 2003), mammalian inositol polyphosphate 1-phosphatase (Inhorn and Majerus 1987), yeast Hal2 nucleotidase (Murguia et al. 1996) and fructose 1,6 bisphosphatase (Black et al. 1972). In plants, lithium produces developmental alterations (Gillaspy and Gruissem 2001) and several inositol monophosphatases (three in tomato) have been characterized and shown to be sensitive to the salt in vitro (Gillaspy et al. 1995). Other plant enzyme activities have been shown to be modified by lithium including phosphatases of the Arabidopsis HAL-2 like gene family (AtSAL1, AtSAL2 and AtAHL) (Gill-Mascarel et al. 1999) and ACC synthase (1-aminocyclopropane-1-carboxylate synthase), the enzyme that catalyzes the first committed step in ethylene biosynthesis (Kende 1973). Therefore, because lithium has the capacity to modulate the functioning of the phosphoinositide pathway, it can provide a means for investigating the signaling mechanism acting on C₄ PEPCase. In the present work, we have studied further how this salt affects the plant physiology and more specifically PEPCase-k content and activity, as well as its PEPCase target.

Meanwhile a great deal of literature concerning light up-regulation of PEPCase-k synthesis is available, the mechanism in charge of the degradation of the kinase is inadequately understood. Recent work by Agetsuma et al. (2005) points to an ubiquitin—proteasome mediated degradation of PEPCase-k in C₄ plants. Mechanistic features of this process are lacking and require to be established at the whole plant level. We report here an augmentation of PEPCase-k activity that is not exclusively a consequence of an increased rate of synthesis. Conversely it can be attributed to a decreased rate of degradation, being the LiCl treatment the cause of this later effect.

Materials and methods

Plant materials

Sorghum plants (S. vulgare var. Tamaran, Rhône-Poulenc) were grown under a 12-h photoperiod of 350 μmol photons m⁻² s⁻¹ photosynthetically active radiation (PAR) and a temperature of 28/20°C (light/dark), in hydroponic cultures with nitrate-type nutrient solution (Hewitt 1966) and 60% relative humidity. LiCl treatment was performed by addition of the salt (10 mM) to the culture medium.

Enzyme extraction and analysis

Experiments were carried out with whole leaves or with excised leaf disks. Fully expanded youngest leaves were excised and illuminated (750 μmol photons m⁻² s⁻¹) or kept in the dark for 2 h and used to prepare protein extracts. Disks were punched out with a 1-cm diameter cork borer and floated adaxial
side up in plastic dishes. The leaf disks were vacuum-infiltrated (two cycles of 5 min) with 0.1 M Tris–HCl, pH 8, 2 mM NaHCO₃, in the presence or absence of 10 mM LiCl, 10 mM CsCl, 172 mM KCl or 172 mM NaCl. The disks were illuminated or kept in the dark, and used to prepare protein extracts. These were obtained by grinding 0.2 g FW of leaf tissue in 1 ml of extraction buffer containing: 0.1 M Tris–HCl pH 7.5, 20% (v/v) glycerol, 1 mM EDTA, 10 mM MgCl₂ and 14 mM β-mercaptoethanol. The homogenate was centrifuged at 15,000×g for 2 min and the supernatant was filtered through Sephadex G-25 equilibrated with the extraction buffer without β-mercaptoethanol.

Determination of PEPCase activity, malate test, in vitro phosphorylation assay, and SDS-PAGE were carried out as described elsewhere (Echevarría et al. 1990). An enzyme unit is defined as the amount of PEPCase that catalyzes the carboxylation of 1 μmol of phosphoenolpyruvate min⁻¹ at pH 8, 30°C. Immunoinhibition of PEPCase phosphorylation by antiphosphorylation-site antibodies (APS-IgG) in in vitro reconstituted assays was carried out as previously described by Pacquit et al. (1995).

Immunoprecipitation and Western Blot

PEPCase-k was immunoprecipitated overnight (4°C) from a soluble protein extract of Sorghum leaves (2 g FW) using a polyclonal antiserum raised against the CAM (Mesembryanthemum crystallinum) PEPCase-k (Ermolova et al. 2003; generous gift from Pr. R. Chollet). The immunocomplexes were adsorbed on protein A Sepharose. Proteins bound to the Sepharose were solubilized in dissociating medium, resolved by SDS-PAGE, transferred onto nitrocellulose and detected with a peroxidase-based system.

Inositol 1,4,5-triphosphate assay

Samples were immediately frozen in liquid nitrogen. After being ground in liquid nitrogen, the samples were extracted with 20% perchloric acid and supernatants collected after centrifugation at 2,000×g for 15 min at 4°C. The supernatants were neutralized to pH 7.5 with KOH, and then the IP₃ content was measured by the bovine adrenal binding protein assay using a [³H]IP₃ assay kit following manufacturer’s instruction (Amersham Pharmacia Biotech).

RNA extraction

Total RNA was extracted from 100 mg of frozen, powdered leaves by the addition of Trizol (1 ml) and centrifugation for 10 min, 12,000×g, 4°C. Chloroform (200 μl) was added to the supernatant and after centrifugation for 15 min, 12,000×g, 4°C, RNA was precipitated with 0.5 ml isopropanol (10 min at room temperature), and recovered by centrifugation for 10 min, 12,000×g, 4°C. The pellet was washed with 70% ethanol, dried and the RNA was dissolved in 20 μl sterile water. RNA amounts were estimated spectrophotometrically at 260 nm.

RT-PCR experiments

Reverse transcription was performed with 1 μg purified total RNA from leaves of S. vulgare, 1 μl ImProm-II™ Reverse Transcriptase (Promega) and associated bufler, 0.5 mM dNTP, 6 mM MgCl₂, 20 U recombinant RNasin® ribonuclease inhibitor and 0.5 μg oligo(dt)₁₅ according to the manufacturer’s instructions. Subsequent PCR experiments (PPCK, locus AF399915) were performed in a 20 μl final volume containing 1/20th of the reverse transcription product, 10 μM of the primers (SbPPCK5, 5'-GACAACATCCATCGAATAC-3'; SbPPCK3, 5'-TTAAGAGAGCATCCC AA-3') and 1 U Taq polymerase (Biotools). The reactions were cycled in a thermocycler with a 5 min denaturation step at 95°C followed by 30 cycles of 95°C for 30 s, 48°C for 30 s and 72°C for 30 s and a final extension step at 72°C for 5 min. The PCR product was used for a second PCR using the primers SbPPCK5b (5'-ATACATTACGAGCAAGA-3') and SbPPCK3 with temperature profile as above. The amplified fragment (267 bp) was analyzed by electrophoresis in a 1% agarose gel by electrophoresis in TAE buffer, stained with ethidium bromide and visualized with a UV transilluminator (260 nm). The fragment amplified was excised from the agarose gel and purified using agarose gel DNA extraction kit® (Roche) following the manufacturer’s instructions, and sequenced (Newbiotechnic S.A., Seville, Spain).

For the 18S rRNA (locus SRGRRE04), the specific primers were: forward, 5'-GGCTCGAAAGCCGATCAGTACCC-3'; reverse, 5'-TCGGCATCTTATTTATGG TT-3'. PCR was performed as follows: one round at 95°C for 1 min; 25 cycles: 95°C for 30 s, 59°C for 30 s, 72°C for 45 s: and a final step at 72°C for 1 min. The amplified fragment (50 bp) was analyzed by electrophoresis in a 2% agarose gel in TAE buffer, stained with ethidium bromide and visualized.

Protein quantification

Protein amounts were determined by the method of Bradford (1976), using BSA as standard.
Gas-exchange measurements

Gas-exchange measurements were monitored with a LI-6262 CO$_2$/H$_2$O analyzer system (LI-COR Inc., Lincoln, Nebraska). Measurements were made at a photon flux density of 350 μmol m$^{-2}$ s$^{-1}$, a leaf temperature of 25°C, and 1 ml l$^{-1}$ CO$_2$.

Results

Symptoms of LiCl-treated sorghum plants

Sorghum plants treated for 1 week with LiCl (10 mM) in the culture medium showed little reduction in size; however, necrosis originating in the marginal tissues appeared on older leaves (Fig. 1) when compared to control plants. Of course, when the treatment was prolonged, the symptoms spread over the entire plant leading to death. A physiological analysis of apparently unaltered, younger leaves, did not detect any decrease in the photosynthetic assimilation capacity, transpiration rate, stomatal conductance and Ci (data in Fig. 1). In a previous work, we had established the occurrence of a large LiCl-dependent increase in leaf PEPCase-k activity that was attributed to an ionic stress of the sorghum plant (García-Mauriño et al. 2003). In this work, we analyze further the effects of lithium on C$_4$ PEPCase and PEPCase-k activities in sorghum leaves.

LiCl effect on C$_4$ PEPCase

The effect of an overnight incubation of excised leaves with increasing concentrations of LiCl on C$_4$ PEPCase was tested. It was seen that the PEPCase content (Fig. 2a, b) and activity (numbers below Fig. 2a, leaves) gradually decreased with increasing the salt, almost completely disappearing at the highest LiCl concentration tested (100 mM). This experiment was repeated on leaf disks with an even higher sensitivity to the salt (numbers below Fig. 2a, disks).

The PEPCase-k contained in protein extracts from Li-treated disks could efficiently phosphorylate an exogenous purified C$_4$ PEPCase (Fig. 2c R, +PEPCase$_{ex}$). However, the in vitro phosphorylation of endogenous PEPCase was decreased by LiCl in a concentration-dependent manner (Fig. 2c R, –PEPCase$_{ex}$). The immunological detection of PEPCase by specific N- and C-terminal antibodies revealed the integrity of the enzyme subunit and, notably, the presence of the phosphorylation motif (N-terminal domain) (50 mM LiCl-treated leaves; Fig. 2b). This indicated that the decreased phosphorylation of endogenous PEPCase was, at least partially, due to a decreased availability of the substrate protein and not to a loss of the phosphorylatable Ser.

The malate sensitivity of PEPCase has been shown to reflect the phosphorylation status of the enzyme (Jiao et al. 1991). Unexpectedly, the malate IC$_{50}$ values were found to decrease with increasing LiCl concentration (Fig. 2d, IC$_{50}$), thus indicating that C$_4$ PEPCase phosphorylation was weakened in vivo in response to the salt.

LiCl causes PEPCase-k content to increase in illuminated sorghum leaves

In a previous work, we have reported that lithium treatment of sorghum plants or excised leaves caused a marked enhancement of PEPCase-k activity (García-Mauriño et al. 2003). To show whether this effect is actually correlated to a concomitant increase in the corresponding protein, we took advantage of Mesembryanthemum PEPCase-k polyclonal antibody (a generous gift from R. Chollet) to develop an improved
immunodetection system of the protein. Soluble protein fractions from dark-adapted or illuminated sorghum leaves (2 g) were extracted in 5 ml of extraction medium in the presence of protease inhibitors. The clarified extract was incubated overnight with antibodies and the immunocomplexes were adsorbed onto protein A Sepharose. Bound proteins were solubilized in a dissociating buffer and subjected to Western blot analysis coupled to a luminescence-based detection system. Two protein bands were decorated by the specific antibody: a major band of about 34–35 kDa and a minor band of about 31–32 kDa. Both bands were up-regulated by light (Fig. 3a) and the molecular mass corresponded to those reported by others investigators (Li and Chollet 1994; Vidal and Chollet 1997; Hartwell et al. 1999; Taybi et al. 2000; Nimmo 2003). A further and significant increase was seen in plants that had been treated for 1 week in the presence of LiCl (Fig. 3b, +Li). The protein whose amount was enhanced by lithium treatment was specifically revealed with anti PEPCase-k antibodies (Fig. 3b, lane 4) and not by incubation with pre-immune serum.

Fig. 2 Effect of lithium treatment of *Sorghum* leaf and leaf disks on C₄-PEPCase. a Excised leaves were supplied overnight with increasing concentrations of LiCl and illuminated (2 h). Leaf disks were vacuum-infiltrated (two cycles of 5 min) with 0.1 M Tris–HCl buffer, pH 8.2 mM NaHCO₃, in the presence of 5, 10 or 20 mM LiCl, and illuminated for 2 h. Proteins were analyzed by SDS-PAGE. The arrow indicates the PEPCase in a Coomassie blue-stained gel. The endogenous PEPCase activity in the corresponding aliquots of desalted extracts (15 μg proteins) is shown below the figure. b Excised leaves were supplied overnight with 50 mM LiCl and illuminated (2 h). Proteins were analyzed by SDS-PAGE, transferred onto nitrocellulose and probed with either polyclonal C₄ PEPCase IgG or with specific C- and N-terminal antibodies. Immunolabeled proteins were detected by a peroxi-

dase assay. c Leaf disks were vacuum-infiltrated (two cycles of 5 min) with 0.1 M Tris–HCl buffer, pH 8.2 mM NaHCO₃, in the presence of 5, 10 or 20 mM LiCl, and illuminated for 2 h. The in vitro PEPCase-k activity was assayed in aliquots (15 μg proteins) of desalted extracts, in the presence or absence of 0.15 U exogenous, purified C₄ PEPCase (from sorghum leaves) and in the presence of 1 mM EGTA. Phosphorylated proteins were analyzed by SDS-PAGE. R autoradiography, S Coomassie blue-stained gel. Arrows indicate the PEPCase. d Excised leaves were supplied overnight with increasing concentrations of LiCl and illuminated (2 h). The apparent phosphorylation state of PEPCase was estimated in protein extracts by the malate test (IC₅₀ for l-malate, mM)
Fig. 3 Immunohostoration of Sorghum leaf PEPCase-k. a Western blot analysis of PEPCase-k from darkened (lane 2) or illuminated (2 h) (lane 3) leaves. Immunodetection was performed as described in Materials and methods. b Western blot analysis of PEPCase-k from control (−Li) or lithium-treated (+Li) plants. Leaves from control (lane 2) or Li-treated plants (1 week; 10 mM LiCl) (lanes 3 and 4) were illuminated for 2 h. Soluble protein fractions were incubated overnight with anti CAM PEPCase-k antibodies (1) (lanes 2 and 4) or with a preimmune serum (pre-I) (lane 3) as a control of the specificity of the immunodetection. MW molecular mass markers (values in kDa) (lanes 1)

(Fig. 3b, lane 3). In-gel kinase assay had been previously reported in García-Mauriño et al. (2003). The main kinase activity enhanced by lithium treatment corresponded to a 35–37 kDa protein. Therefore, the increase in PEPCase-k activity could be accounted for by an increase in the corresponding polypeptide in light and LiCl-treated sorghum leaves. This is the first successful attempt to detect the kinase protein and its modulation by light and salt in plants.

The time course of the light up-regulation of the PEPCase-k activity showed a very rapid increase in this enzyme's activity, which was already detectable after 15 min of illumination and appreciably enhanced by 10 mM LiCl (Fig. 4). However, in marked contrast, LiCl was found to inhibit PEPCase-k activity in the reconstituted assay (Fig. 5). Thus, in vivo, the salt would exert an opposite effect on the kinase, increasing its tissue content while decreasing its catalytic activity.

Specificity of the short-term LiCl effect on PEPCase-k accumulation

Excised leaves were fed overnight with LiCl (10 mM) and then illuminated for 2 h. The PEPCase-k activity was estimated in the desalted protein extract. In vitro reconstituted assays showed a large LiCl- and light-dependent increase in C4 PEPCase phosphorylation that was almost completely blocked by the N-terminal PEPCase antibody (Fig. 6a). This and the above-mentioned results clearly establish the 35 kDa protein as the salt-enhanced PEPCase-k. Cycloheximide (CHX) treatment abolished the light-dependent up-regulation of PEPCase-k of LiCl-treated plants (Fig. 6b). CHX treatment also prevented the effect of overnight feeding of control leaves with LiCl preceding illumination (not shown).

The effect of various salts was subsequently tested on the process. In leaf disks, LiCl was as efficient in promoting PEPCase-k activity as in the whole plant or excised leaves (Fig. 7a). When CsCl (10 mM), KCl (172 mM) or NaCl (172 mM) were added to the disks, no or little effect was detected on PEPCase-k activity levels (Fig. 7a, b). We have already reported that NaCl
Effects of lithium on IP$_3$ levels

The light-transduction cascade leading to up-regulate the PEPCase-k involves the phosphoinositide pathway, e.g., activation of PI-PLC and the transient accumulation of the transient accumulation of the second messenger IP$_3$ (Giglioli-Guivarch et al. 1996; Consol et al. 2000). A documented effect of Li is to block plant monophosphatases thereby altering the phosphoinositide pathway and connected signaling processes (Gillaspy et al. 1995). In fact we have found that a light-induced increase in the cascade second messenger IP$_3$ still occurred, and was even higher in the disks incubated for 30 min in the presence of this cation than in control disks (Fig. 8a). This result was consistent with an increased PEPCase-k response and was interpreted as resulting from the transient accumulation of IP$_3$ in the presence of blocked monophosphatases. Inositol monophosphatases are required not only for breakdown of inositol trisphosphate, but also for de novo inositol synthesis from glucose-6-phosphate. Following this short-term effect, the expected end result of inhibition of inositol monophosphatases is the blocking of inositol recycling to membranes and the consequent depletion of phosphoinositide-specific phospholipase C (PI-PLC) substrate (Loewus and Loewus 1983). Indeed the IP$_3$ level was noticeably decreased in LiCl-treated disks 1 h after the onset of illumination, and came down to the value of darkness after 2 h. Meanwhile, in the absence of lithium the IP$_3$ level was kept high (Fig. 8b).

Light and LiCl effects on PEPCase-k mRNA in sorghum leaf disks

It has been reported that PEPCase-k up-regulation is primarily at the level of translatable mRNA in maize leaves (Hartwell et al. 1996). In good agreement with this observation RT-PCR experiments showed that the expression of sorghum PPCK (cDNA AF399915) is strongly up-regulated by light (1 h) in leaf disks (Fig. 9b). The transcript level was moderately increased by lithium over the control during a short-time treatment (15 min of light); in the presence of the PI-PLC inhibitor U73122 the response was markedly reduced (Fig. 9a). However, extending the duration of the treatment (1 h of light) led to notably reduce the transcript level in LiCl treated disks with respect to control disks (Fig 9b). Collectively these and above-mentioned results demonstrate that lithium impacts on the phosphoinositide pathway and PI-PLC signaling via a two-step effect: allowing the signal to go through on a short timescale and blocking it thereafter.
LiCl effect on PEPCase-k turnover

Despite the decreased degree of PPCK expression described above (after 1 h of light), high levels of PEPCase-k protein (Fig. 3b) and activity (Fig. 4) were detected in LiCl treated plants/leaf disks after 2 h of light, and this was seen to further increase during the following days (García-Mauriño et al. 2003). This paradoxical observation could be explained by a modification of PEPCase-k turnover as a consequence of lithium treatment.

The protein synthesis inhibitor CHX blocks the rise of PEPCase-k activity in response to light (Jiao et al. 1991; Giglioli-Givarc’h et al. 1996) and LiCl (Fig. 6). We first illuminated excised leaves to increase their kinase content; subsequent addition of CHX led to an expected, almost complete loss of PEPCase-k activity in continuous light, as judged in reconstituted phosphorylation assays. However, this was not observed when LiCl was added in combination with CHX.
(Fig. 10). This result supports the hypothesis that the salt has a dual effect on PEPCase-k accumulation; it blocks the production of kinase transcripts, as shown above, but concomitantly maintains the pre-existing enzyme, presumably via a negative effect on its degradation process.

Discussion

Various convergent data (molecular, physiological, and pharmacological) have led to the conclusion that the light-dependent up-regulation of PEPCase-k activity is due to the de novo synthesis and accumulation of this enzyme in the leaves of C₄ and C₃ plants (Echevarría et al. 1990; Li et al. 1996; Hartwell et al. 1996, 1999). Notably, the corresponding transcripts rapidly increased during a dark to light transition and the subsequent rise in PEPCase-k activity was blocked by the protein synthesis inhibitor CHX (Jiao et al. 1991; Giglioli-Giavar’s et al. 1996). However, to date, the determination of PEPCase-k protein amounts have not been assessed due to the very low abundance of this enzyme in plants. The immunodetection of FLAG-tagged Flaveria trinervia PEPCase-k using an anti-FLAG antibody has been already reported; however this experiment concerned a transiently expressed enzyme in maize protoplasts (Agetsuma et al. 2005). For instance, the maize leaf enzyme has been extensively purified and an extremely low content, close to 5 μg kg⁻¹ FW, was reported (Saże et al. 2001). This amount should be even lower in C₃ species. Interestingly, it has been shown that maize leaf PEPCase-k is subject to a redox activation in vitro (Saże et al. 2001; Tsuehida et al. 2001). This could contribute to the gain in activity of a pre-existing protein kinase, although the occurrence of such a process has not been validated in vivo. The results in this paper show the first successful attempt to immunodetect the PEPCase-k protein from sorghum leaves and its modulation by light and salt in planta. In particular, it is clearly shown that the Li-dependent increase in PEPCase-k activity can be attributed to an increase in protein amount.

LiCl caused PEPCase amounts to decrease in illuminated sorghum leaves. In contrast, PEPCase-k amount and capacity (in vitro activity of the extracted enzyme) where found to be enhanced while in vitro the salt was a potent inhibitor of this enzyme activity. Accordingly, LiCl treatment decreased the degree of PEPCase phosphorylation in illuminated leaves (as judged by the malate test). This effect was opposite to that of NaCl previously described in (Echevarría et al. 2001). Indeed the addition of NaCl (up to 50 mM) to the phosphorylation assay did not change the in vitro PEPCase-k activity (not shown), thus accounting for this apparent discrepancy. Thus, the LiCl treatment led to paradoxical observation that it exerts both enhancing and reducing effects on the potential for PEPCase phosphorylation. It might be proposed that one response of the plant to the salt would be to minimize damaging effects (e.g., inhibition of the kinase and PEPCase phosphorylation) by enhancing the kinase activity. Alternatively, LiCl might cause the metabolite control of PEPCase-k to be modulated such that the malate (inhibitor)/glucose-6P (antagonizing the malate effect) ratio (Wang and Chollet 1993; Echevarría et al. 1994; Bakrim et al. 1998) is changed in favor of the former. The metabolic status has been reported to cause differences in PEPCase-k activity of leaves in which PEPCase-k mRNA levels were similar (Borland et al. 1999). The activity of PEPCase-k could be decreased by a protein inhibitor (Nimmo et al. 2001). Similarly, a peptide containing the last 19 amino acids of the carboxy terminus of PEPCase has been shown to inhibit the in vitro phosphorylation of sorghum PEPCase (Alvarez et al. 2003).

The PEPCase phosphorylation cascade controlling PEPCase-k synthesis in C₄ (Giglioli-Giavar’s et al. 1996; Coursol et al. 2000), CAM (Bakrim et al. 2001) and C₃ plants (Gousset-Dupont et al. 2005) implies the phosphoinositide cycle. Therefore, the transient accumulation of IP₃ upon LiCl addition could account for the increased PEPCase-k synthesis in treated sorghum leaves. LiCl caused a net increase of 250 pmol IP₃ g⁻¹ fresh weight in our experimental system. Similar changes in IP₃ level have been reported to be of physiological relevance in the response to anoxia of rice roots (Reggiani and Laor 2000), in the response to ABA of Arabidopsis seedlings (Burnette et al. 2003), and in the hypersensitive response of lemon seedlings.
against *Alternaria alternata* (Ortega et al. 2005). In addition, changes in the amplitude of the signal may be of significance apart from its absolute value, and this is of particular relevance in calcium-related signaling (Malho et al. 1998; Plieth et al. 2000; Coelho et al. 2002). Nevertheless fairly small increase in PPCK expression could be measured after short-time period exposure, suggesting the involvement of an additional factor contributing to high PEPCase-k activity.

In both plants and animals, an important effect of lithium is to block inositol-P monophosphatases leading to perturbations in the functioning of the phosphoinositide cycle and related signaling pathways (Majerus 1992; Gillaspy et al. 1995). Altogether, the data gathered in this work identify PEPCase and PEPCase-k as new targets of this cation in plants and further confirm that PEPCase-k synthesis is controlled by an IP$_3$-mediated signal transduction pathway. In illuminated, LiCl-treated leaves high (15 min of light) and low (1 h of light) amounts of IP$_3$ are correlated with enhanced and decreased PPCK expression, respectively; consistently the PI-PLC inhibitor U73122 strongly reduced kinase transcript amounts in the short-term exposure to light. This poses the question of how can high levels of PEPCase-k be triggered and sustained for longer periods of time. Triggering the increase in kinase activity by the signalling cascade may be accounted for by the fact that PI-PLC still functions soon after the salt has been given to leaves and leaf disks. However, 2 h after the beginning of illumination, Li treatment lowered IP$_3$ level to the minimum values of darkness. Meanwhile PEPCase-k activity was perceptibly higher with respect to control leaves. Clearly LiCl may affect other steps of the cascade and the results point to the increased stability of the PEPCase-k.

The selective breakdown of pre-existing proteins is critical for most aspects of cellular regulation, including responses to light and stress. One important proteolytic pathway involves the small protein ubiquitin and the 26S proteasome. In this pathway, ubiquitin is attached to proteins destined for degradation which are recognized and catabolized by the proteasome (Smalle and Vierstra 2004). The PEPCase-k has initially been described as a 30/37 or 32/39 kDa polypeptides in plants (Li and Chollet 1993; Wang and Chollet 1993), and recently it was proposed that the higher molecular mass species would be ubiquitinated enzyme (Agetsuma et al. 2005). The molecular feature of PEPCase-k that serves as a signal for ubiquitination, and the identity of the specific ubiquitin ligase (E3 enzyme) that specifically recognizes the PEPCase-k protein remain to be identified. Results in this paper suggest that lithium causes an alteration of the turnover rate of the kinase which preserves the protein synthesized in response to light. They support the hypothesis that the salt exerts a negative effect on the degradation component of the turnover process. Whether lithium perturbs the ubiquitination of the enzyme remains an open question. Thus lithium is a very helpful tool to make plants accumulate relatively great amounts of the scarce PEPCase-k protein.

By interfering with the phosphoinositide cycle the salt has allowed to confirm the operation of phosphoinositide-related signalling pathways in the synthesis of PEPCase-k in sorghum leaves. In addition, the newly reported effect on PEPCase-k degradation makes LiCl treatment a suitable tool to investigate the molecular events implied in PEPCase-k degradation.

Acknowledgments The authors thank R. Chollet for the generous gift of the CAM PEPCase-k antibodies and M. Hodges for carefully reading the manuscript. This research was supported by the Dirección General de Investigación del Ministerio de Ciencia y Tecnología (BMC2001-1566-C03-02) and by the Junta de Andalucía (PAI group CV1298). José A. Monreal was financed by a FPI fellowship from Universidad de Sevilla (Spain). We thank J.M. Vinardell and J. Ollero for scientific advice and technical support.

References

Li B, Zhang XQ, Chollet R (1996) Phosphoenolpyruvate carboxylase kinase in tobacco leaves is activated by light in a similar but not identical way as in maize. Plant Physiol 111:497–505

© Springer
using specific anti-phosphorylation site-antibodies. Photosynth Res 43:283–288

COMENTARIOS

Un primer resultado sorprendente en este trabajo fue el descubrimiento de que el aumento de actividad PEPC-quinasa producido por el tratamiento con LiCl no se traducía en un aumento de la fosforilación de la PEPC: El Li⁺ producía un aumento de la actividad PEPC-quinasa que se detectaba en respuesta a la luz, el cual podía observarse ya a los 15 min de iluminación. Paradójicamente, el aumento de actividad PEPC-quinasa no iba acompañado por el correspondiente aumento de fosforilación de la PEPC, sino por una disminución de ésta. La explicación de este fenómeno se encuentra, al menos en parte, en la inhibición *in vitro* de la fosforilación de la PEPC por parte del Li⁺.

La PEPC-quinasa es una enzima extremadamente escasa, incluso en las plantas C₄ o CAM, por lo que hasta el momento no se había conseguido detectar con métodos inmunológicos en extractos vegetales. Mediante el doble uso de anticuerpos policlonales dirigidos contra la PEPC-quinasa de *Mesembryanthemum*, en primer lugar para inmunoprecipitar y en segundo lugar para detectar la PEPC-quinasa de sorgo, en este trabajo se ha puesto de manifiesto, por primera vez, un aumento en la cantidad de proteína con actividad PEPC-quinasa en respuesta a la luz y en respuesta al tratamiento con LiCl.

Otro aspecto importante de este trabajo es que se consigue establecer, por primera vez, una relación clara entre los niveles de IP₃ (producidos por la PLC) y la expresión del gen *PPCK* de PEPC-quinasa en los discos tratados o no con litio. A muy corto plazo (15 min), el Li⁺ produjo un aumento de IP₃ y una inducción de la expresión de *PPCK*, la cual es bloqueada por el inhibidor de la PLC U-73122 demostrando la implicación de esta enzima en el proceso. A más largo plazo (1h), tanto el contenido en IP₃ como la expresión de *PPCK* fueron menores en los discos tratados con litio.

A las 2h de tratamiento con LiCl, el nivel de IP₃ es tan bajo como el del control en oscuridad, y, sin embargo, se detecta una alta actividad PEPC-quinasa. Este hecho plantea el interrogante de cómo se mantienen los altos niveles de PEPC-quinasa detectados en presencia de Li⁺ durante tratamientos prolongados (horas y días). Una posibilidad que explicaría esos resultados sería la síntesis de la PEPC-quinasa por una vía distinta de la de la PLC (posibilidad que se investiga en el artículo 4); otra posibilidad sería un efecto del Li⁺ sobre la degradación de la PEPC-quinasa. En efecto, cuando el Li⁺ se suministró a hojas pre-iluminadas, que ya habían sintetizado PEPC-
Artículo 2

quinasa, en presencia de CHX para bloquear la subsiguiente síntesis de dicha enzima, se observó que el Li⁺ impedía la desaparición de la PEPC-quinasa. Por tanto, aunque el Li⁺ inicialmente aumenta la transcripción de la PEPC-quinasa, su principal efecto parece ser bloquear la degradación de la proteína a largo plazo.

Las consecuencias más relevantes de este trabajo son:

*Se establece una relación entre los niveles de IP₃ y el nivel de expresión de PPCK.

*Es la primera vez que se consigue la detección por métodos inmunológicos de la PEPC-quinasa en extractos de hojas.

*Se aportan las primeras evidencias dentro de la regulación de la PEPC por fosforilación reversible de que, en determinados contextos fisiológicos, los niveles de PEPC-quinasa vendrían establecidos predominantemente por la regulación de su degradación.

*El tratamiento con LiCl es una herramienta extremadamente útil para estudiar la degradación de la PEPC-quinasa.
ARTÍCULO 3

Effect of Abscisic Acid on phosphoenolpyruvate carboxylase-kinase activity from sorghum leaves.
El cierre estomático, que minimiza las pérdidas de agua, es un fenómeno que se observa a menudo al inicio de la salinidad. Esta respuesta rápida está promovida por el ABA, y existen considerables evidencias de que los niveles de ABA aumentan en condiciones de estrés salino (Nilsen y Orcutt, 1996). Sin embargo, ni la adición de ABA al medio de cultivo, ni la pulverización de las hojas con disoluciones de ABA a concentraciones progresivamente crecientes, reprodujeron los efectos de la salinidad sobre la actividad PEPC-quinasa de hojas de sorgo (Echevarría et al., 2001). No obstante, se observaban discretoaumentos de PEPC-quinasa en respuesta al ABA, sugiriendo que esta hormona podría contribuir de alguna forma a aumentar la actividad PEPC-quinasa en condiciones de estrés salino.

Los resultados presentados en el artículo 2 (Monreal et al., 2007) muestran que existen mecanismos que controlan la degradación de la PEPC-quinasa y que se puede producir un notable aumento de la actividad de esta enzima bloqueando su degradación. Por otro lado, resultados presentados en el artículo 1 (García-Mauriño et al., 2003) muestran que, durante el envejecimiento de las plantas aclimatadas al estrés salino, tanto la PEPC como la PEPC-quinasa son más estables que en plantas controles (García-Mauriño et al., 2003; artículo 1). Este hecho sugiere, por un lado, que ambas enzimas son importantes en la aclimatación al estrés salino, y por otro, que la salinidad podría activar mecanismos que disminuyen la tasa de degradación de dichas enzimas. Varias evidencias sugerían que el ABA podría estar implicado en dichos mecanismos.

En este trabajo se explora el efecto del ABA sobre la PEPC-quinasa mostrándose que el ABA afecta a la degradación de esta enzima. Muy en especial se explora la participación de la vía de la ubiquitina/proteosoma, vía que recientemente ha sido implicada por otros autores (Agetsuma et al., 2005) en la degradación de la PEPC-quinasa.
Title: Effect of Absciscic Acid on phosphoenolpyruvate carboxylase-kinase activity from sorghum leaves

Shortened title: ABA effect on PEPC-k activity

Authors: José Antonio Monreal¹, Ana Belén Feria¹, Jean Vidal², Cristina Echevarría¹, Sofía García-Mauriño¹

Mailing address: J.A. Monreal, monreal@us.es; A.B. Feria, anabelen@us.es; J. Vidal, Jean.Vidal@ibp.u-psud.fr; C. Echevarría, echevarria@us.es ; S. García-Mauriño, sgarma@us.es;

Affiliation:
¹Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012 Seville, Spain
²Institut de Biotechnologie des Plantes, UMR CNRS 8618, Bâtiment 630, Université de Paris-Sud, Centre d’Orsay, Cedex, France

Correspondence to:
Dr. Sofía García-Mauriño
Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012 Seville, Spain
E-mail: sgarma@us.es
Telephone: +34-95-4559924 / +34-95-4557074
Fax: +34-95-4615780 / +34-95-4559945
ABSTRACT

Phosphoenolpyruvate carboxylase-kinase (PEPC-k) is a Ser/Thr protein kinase that modulates phosphoenolpyruvate carboxylase (PEPC), the enzyme that catalyzes the primary fixation of CO₂ in C₄ photosynthesis. PEPC-k activity is mainly regulated by transcription and protein synthesis in C₄, C₃ and CAM plants. We have previously reported that salt stress strongly enhances the PEPC-k activity of sorghum leaves. ABA treatment did not mimic the effect of salt, which was dependent on protein synthesis, but we show in this work that the hormone conversely decreases the rate of PEPC-k disappearance in the presence of the protein synthesis inhibitor cycloheximide. This conclusion was supported by the lack of effect of ABA on PPCK1 and PPCK2 expression in the light. The ubiquitin-proteasome pathway has been involved in PEPC-k cleavage, and some responses to ABA are mediated by regulation of its activity, thus being a good candidate to be implicated in this ABA effect. This is supported by the fact that ABA effect was mimicked by the 26S proteasome inhibitor MG132 and not by protease inhibitors. In addition, ABA caused no change in the protease activity of sorghum leaf extracts that was analyzed after substrate-containing gel electrophoresis. The slower turnover of PEPC-k caused by ABA can be particularly relevant in salt stress, due to high levels of endogenous ABA, increased PEPC-k synthesis, enhanced protein cleavage, and partial independency of PEPC-k synthesis from light.

Key Words: Abscisic Acid; phosphoenolpyruvate carboxylase; phosphoenolpyruvate carboxylase kinase; proteolytic cleavage; ubiquitin-proteasome

INTRODUCTION

Phosphoenolpyruvate carboxylase (PEPC, E.C. 4.1.1.31) catalyzes the β-carboxylation of phosphoenolpyruvate using HCO₃⁻ as substrate in a reaction that yields oxaloacetate and Pi. This enzyme plays a wide range of metabolic roles in higher plants. PEPC catalyzes the initial fixation of atmospheric CO₂ in the photosynthetic carbon metabolism of C₄ and CAM plants (Andreo and others 1987; Chollet and others 1996; Vidal and others 1996; Nimmo 2000). In addition, PEPC carries out anaplerotic
function in non-photosynthetic tissues and in C₃ plants, coordinating C and N metabolisms, and it plays a relevant role along seed development and germination, fruit ripening, guard-cell metabolism during stomata opening, and in legume root nodules metabolism (Chollet and others 1996).

PEPC is reversibly modulated by a phosphorylation process upon day/night transitions in leaves of C₄ and CAM plants. In C₄ plants, the regulatory phosphorylation is a light-dependent process (Echevarría and others 1990; Chollet and others 1996; Echevarría and Vidal 2003); in CAM plants, it takes place during the night, in parallel with the active period of CO₂ fixation (Nimmo 2000, 2003). PEPC is phosphorylated by phosphoenolpyruvate carboxylase-kinase (PEPC-k) and it is dephosphorylated by a 2A-type protein phosphatase (Carter and others 1990). This relatively short term post-translational regulation impacts positively on the functional and regulatory properties of PEPC, i.e. decreased sensitivity to feedback inhibition by L-malate, increased affinity for the allosteric activator glucose-6-phosphate and an increase in Vmax (Nimmo and others 1987; Echevarría and others 1994; Duff and Chollet 1995; Vidal and others 1996). The PEPC-k level in C₄ and CAM leaves is mainly regulated at the level of expression, and the phosphorylation state of PEPC is largely controlled by the activity of PEPC-k (Echevarría and Vidal 2003; Nimmo 2003).

ABA is known to induce the expression of genes that play a prominent role in the establishment of stress tolerance, and there is considerable evidence that ABA levels increase during salinity stress (Nilsen and Orcutt 1996). The PEPC-k activity was strongly enhanced in illuminated leaves of sorghum (a C₄ plant) when the plant was acclimated to increasing amounts of NaCl (Echevarría and others 2001). Both the phosphorylation state of PEPC and the PEPC-k activity were enhanced by salinity. In addition, salinization also increased PEPC-k activity and the phosphorylation state of PEPC in the dark (García-Mauriño and others 2003). The raise in PEPC-k activity appeared to result primarily from the ionic stress rather than from the restriction of water availability. ABA treatment did not mimic the effect of salt treatment, which was dependent on protein synthesis (Echevarría and others 2001), but several experimental evidences suggested that, conversely, ABA could decrease the rate of PEPC-k degradation. This work has been intended to investigate further this effect.
ARTÍCULO 3

MATERIALS AND METHODS

Plant Material and Growth Conditions

Sorghum plants (Sorghum vulgare var. Tamaran, Rhône-Poulenc) were grown at 28°C and 60% relative humidity during the photoperiod (12 h, 350 μmol photons m\(^{-2}\) s\(^{-1}\) PAR) and at 20°C and 70% relative humidity during dark period in hydroponic cultures with nitrate-type nutrient solution (Hewitt 1966). Experiments were carried out with whole leaves or with excised leaf disks. Fully expanded youngest leaves were excised and illuminated (750 μmol photons m\(^{-2}\) s\(^{-1}\)) or kept in the dark for 2 h and used to prepare protein extracts. Disks were punched out with a 1-cm diameter cork borer and floated adaxial side up in plastic dishes. The leaf disks were previously vacuum-infiltrated (two cycles of 5 min) with 0.1 M Tris-HCl buffer, pH 8, 2 mM NaHCO\(_3\), in the presence or absence of 30 μM ABA and/or 10 μM cycloheximide (CHX). The disks were illuminated or kept in the dark, and used to prepare protein extracts.

Enzyme Extraction and Analysis

Protein extracts were obtained by grinding 0.2 g FW of leaf tissue in 1 ml of extraction buffer containing: 0.1 M Tris-HCl pH 7.5, 20% (v/v) glycerol, 1 mM EDTA, 10 mM MgCl\(_2\) and 14 mM β-mercaptoethanol. The homogenate was centrifuged at 15000 g for 2 min and the supernatant was filtered through Sephadex G-25 equilibrated with the extraction buffer without β-mercaptoethanol.

Determination of PEPC activity, malate test, in vitro phosphorylation assay, in situ \(^{32}\)P labeling and immunoprecipitation, and SDS-PAGE were carried out as described elsewhere (Echevarría and others 1990; Osuna and others 1996, 1999). The in vitro PEPC-k activity of sorghum leaves and leaf disks was measured in the presence of 1 mM EGTA and 0.15 U of purified C\(_4\) PEPC. An enzyme unit is defined as the amount of PEPC that catalyzes the carboxylation of 1 μmol of phosphoenolpyruvate min\(^{-1}\) at pH 8, 30°C.
Semi-quantitative and quantitative RT-PCR experiments

Reverse transcription was performed with 1 μg purified total RNA from leaves of *Sorghum vulgare*, 1 μl ImProm-II™ Reverse Transcriptase (Promega) and associated buffer, 0.5 mM dNTP, 6 mM MgCl₂, 20 U recombinant RNasin® ribonuclease inhibitor and 0.5 μg oligo(dT)$_{15}$ according to the manufacturer’s instructions. Subsequent semi-quantitative RT-PCR experiments (*PPCK1*, locus DQ386731; *PPCK2*, locus AF399915) were performed in a 20 μL final volume containing 2 μl of the reverse transcription product for *PPCK1* or 1 μl for *PPCK2*, 10 μM of the primers (*SbPPCK1* forward 5’-GTAACACGAGAAGGTGGA-3’ and *SbPPCK1* reverse 5’-GTCAATCCATGGGTGA-3’; *SbPPCK2* forward 5’-ATACCATACCAGAGAAGGA-3’ and *SbPPCK2* reverse 5’-CTAGGTAAAGAGCATCCCA-3’) and 1 U Taq polymerase (Biotools). The reactions were cycled in a thermocycler with a 5 min denaturation step at 95°C followed by 35 cycles (*PPCK1*) or 25 cycles (*PPCK2*) of 95°C for 30 s, 48°C for 30 s and 72°C for 50 s and a final extension step at 72°C for 5 min. The amplified fragments were analysed by electrophoresis in a 1% agarose gel by electrophoresis in TAE buffer, stained with ethidium bromide and visualized with a UV transilluminator (260 nm). The fragments amplified were excised from the agarose gel and purified using agarose gel DNA extraction kit® (Roche) following the manufacturer’s instructions, and sequenced (Newbiotechnic S.A., Seville, Spain).

For the 18S rRNA (locus SRGRRE04), the specifics primers were: forward, 5’-GGCTCGAAGAGCAGATCAGATACC-3’; reverse, 5’-TCGCGATCGTTATGGTT-3’. PCR was performed as follows: one round at 95°C for 1 min; 25 cycles: 95°C for 30 s, 59°C for 30 s, 72°C for 45 s; and a final step at 72°C for 1 min. The amplified fragment (50 bp) was analysed by electrophoresis in a 2% agarose gel in TAE buffer, stained with ethidium bromide and visualized.

Quantitative RT-PCR experiments were performed in a 20 μL final volume containing 1 μl of the cDNA both for *PPCK1* or *PPCK2*, 15 μM of the primers (*SbPPCK1UTR* forward 5’-TTCTGCAATCGTCAATGAA-3’ and *SbPPCK1UTR* reverse 5’-GCTGAA GCCTGAAGCTGAAC-3’; and for *PPCK2* the same that above) and 10 μl of FastStart SYBR Green Master Mix (Roche). PCR was conducted on the
Protease activity after substrate-containing gel electrophoresis (zymography)

Zymogram gels were used to test for proteolytic activity in sorghum leaves extracts (Figure 7). Assays for protease activity after electrophoresis were carried out at pH 4.0 (Figure 7A) and 6.5 (Figure 7B). The highest activity was measured at pH 6.5 (neutral proteases), visualized as a broad clear band (Figure 7B). No changes in proteolytic activity caused by ABA were detected. Decreasing the quantity of protein loaded in gel from 30 to 3 µg (serial dilutions) diminished protease activity at the same degree in all the conditions tested.

ABA changed protease activity of barley seed extracts, which was clearly noticeable after 6 days of imbibition in the presence or absence of 40 µM ABA (Figure 8). ABA increased the activity of acidic and neutral protease activity which was down regulated by CHX (arrow in Figures 8A and 8B, respectively). More interesting, ABA decreased the activity of two acid proteases whose activity was detected in the presence of CHX (arrowheads in Figure 8B) and, therefore already present in dry seeds.

The results in this work allow concluding that ABA modulates PEPC-k activity by decreasing the rate of its degradation, an effect which is mimicked by the proteasome inhibitor MG132 and not by conventional protease inhibitors. The effect of MG132 on PEPC-k activity together with the recent report by Agetsuma and others (2005) strongly supports that PEPC-k is mainly degraded via ubiquitin-proteasome pathway.

DISCUSSION

The PEPC-k is a small Ser/Thr protein kinase of about 260 amino acid residues with the characteristic protein-kinase subdomains but without the regulatory sites, such as phosphorylation sites or Ca²⁺-binding domains, which are found in other protein kinases. It is mainly regulated by transcription and protein synthesis in C₄, C₃ and in CAM plants, although recently several other factors (pH, a protein inhibitor, thiol-disulfide exchange) have been reported to modulate its activity. PEPC-k synthesis is regulated in C₄ leaves by illumination/darkness, in CAM leaves by a circadian oscillator, in C₃ leaves by light and N supply, and in legume root nodules by photosynthate supply from the shoots (Echevarría and Vidal 2003; Nimmo 2003).
The light-dependent phosphorylation of C₄ PEPC involves a complex transduction cascade that leads to PEPC-k synthesis. The signaling elements include cytosolic pH alkalization, phospholipase C activation and production of inositol-1,4,5-trisphosphate, calcium mobilization from vacuoles, and a Ca²⁺-dependent protein kinase with characteristics of the mammalian protein kinase C (Giglioli-Guivarc’h and others 1996; Coursol and others 2000, Osuna and others 2004). The pathway was blocked in sorghum leaf (Bakrim and others 1992; Jiao and Chollet 1992) and in C₄ mesophyll protoplasts from Digitaria sanguinalis (Giglioli-Guivarc’h and others 1996) by the photosynthetic electron transport inhibitor DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) and by the ATP synthesis inhibitor gramicidin, suggesting that the production of ATP and/or NADPH is required for the activation of the transduction pathway.

ABA has been reported to enhance PEPC and PEPC-k activity in several systems. Exogenous application of ABA can stimulate CAM induction in various CAM species (Ting 1981; Taybi and others 1995). Pre-treatment with CHX inhibited phosphoenolpyruvate carboxylase transcript accumulation in response to ABA application, suggesting that protein synthesis is required for CAM induction signaling events (Taybi and Cushman 2002). ABA treatment increased PEPC activity and salt stress tolerance of the C₄ plant Sorghum bicolor (Amzallag and others 1990), but ABA supply, although moderately enhancing PEPC-k activity, did not mimic the marked stimulatory effect of salt stress (Echevarría and others 2001). In addition, the enhancement of PEPC-k activity in salinized plants was dependent on protein synthesis and blocked by CHX, both in light (Echevarría and others 2001) and in the dark (García-Mauriño and others 2003). In opposition ABA effect on PEPC-k activity reported in this paper seems to be related to the catabolic half of protein turnover by the following reasons: a) ABA increased PEPC-k activity (Figure 3) and the phosphorylation state of PEPC (Table 3) in the dark when the hormone was added immediately after illumination (and corresponding light-induced PEPC-k synthesis). On the contrary, ABA supply was without effect at the end of the dark period (Table 2). b) ABA increased PEPC-k activity (Figures 4 and 5) and the phosphorylation state of PEPC (Table 3) in the light when photosynthesis-dependent PEPC-k synthesis was allowed by NaHCO₃ supply (Figure 4) or by illumination before ABA treatment (Figure
5), but ABA had not effect when supplied before the synthesis of PEPC-k (Figure 1). c) Provided that previous PEPC-k synthesis had taken place, ABA increased the PEPC-k activity measured when protein synthesis was subsequently blocked by CHX treatment (Figures 4 and 5). d) ABA did not enhance the level of PPCK1 and PPCK2 transcripts in the light (Figure 6).

ABA delayed PEPC-k disappearance and the effect was independent on protein synthesis. The simplest explanation is to assume that ABA was diminishing the activity of protease(s) involved in PEPC-k cleavage. In sorghum leaves, the situation is complicated by the fact that how PEPC-K protein turns over rapidly is poorly understood. The bulk of existent data relays on control of PEPC-k synthesis, and little is known about the mechanism that underlies its fast turnover and its control. PEPC-k protein might be cleaved by vacuolar proteases, by the ubiquitin/26S proteasome cytosolic pathway, or marked by monoubiquitination to be proteolysed by the firsts. Very recently, Izui’s group has reported ubiquitin-proteasome mediated degradation of the C4 PEPC-k of *Flaveria trinervia* transiently expressed in maize protoplasts (Agetsuma and others 2005). This was the first report to show the involvement of the ubiquitin-proteasome pathway in PEPC-k degradation, which was blocked by the 26S proteasome inhibitor MG132. Here we show that MG132 mimicked the effect of ABA on *in vivo* PEPC-k activity of sorghum leaves, strongly suggesting that a) the C4 PEPC-k of sorghum leaves is cleaved by the cytosolic ubiquitin-proteasome pathway, and b) ABA increases PEPC-k activity by regulating this pathway. We have recently reported a non-physiological enhancement of PEPC-k activity that can be attributed to decreased degradation, which is caused by LiCl treatment of sorghum leaves (Monreal and others 2007).

ABA did not change protease activity of sorghum leaves extracts nor did protease inhibitor mimic the effect of ABA on PEPC-k activity. Conversely ABA did change protease activity of germinating barley seeds extracts. A slow-turnover form of PEPC-K has been characterized in cereal seeds during germination which is formed during maturation of the seed (Osuna and others 1996, 1999). ABA fed exogenously to imbibing seeds markedly enhanced PEPC-k activity, and this effect was increased in the presence of CHX (Feria AB, Cochereau L, Alvarez R, Vidal J, García-Mauriño S, Echevarría C. Regulation of phosphoenolpyruvate carboxylase phosphorylation by
metabolites and ABA during development and germination of barley seeds. Unpublished). Results in this work show that two acidic protease activities were down regulated by ABA and not by CHX in barley seeds. Several acid proteases (Cys and Asp proteases) are known to accumulate in aleurone layers of dry barley seeds (Sarkikinen and others 1992; Wrobel and others 1992). ABA and GAs have antagonistic effects on some of these proteases activity that are mediated by changes of pH: the pH of secondary vacuoles was lower in aleurone protoplasts incubated in gibberellic acid than in those incubated in abscisic acid (Swanson and others 1998). Although results in this work do not point towards a vacuolar protease-mediated degradation of PEPC-k, the situation could be different in cereal seeds. If this late possibility is confirmed, ABA would be decreasing PEPC-k turnover acting on ubiquitin-proteasome pathway in leaves of C_4 plants and on vacuolar protease activity in cereals seeds. At present it remains as an open question.

The slower turnover of PEPC-k due to ABA could have physiological relevance in situations in which PEPC-k synthesis is greatly enhanced and endogenous ABA levels are high, such as salinity stress (Echevarría and others 2001). Although the enhancement of PEPC-k activity is dependent on protein synthesis, ABA could be contributing to maintain high levels of the protein by slowing its proteolytic cleavage, both in the light and in the dark. Salt stress induces and accelerates senescence (Santos and others 2001). During aging of salt-stressed plants, both the PEPC and PEPC-k were found to be more stable than in control plants (García-Mauriño and others 2003). ABA could be preserving PEPC-k activity in this situation characterized by a high rate of protein turnover. In addition, by slowing the turnover of the PEPC-k synthesized in the light, ABA could be contributing to maintain high levels of PEPC-k activity in salinized sorghum leaves during the dark period; this has been proposed to allow the use of respiratory CO_2 to preserve a positive carbon balance in conditions of severely reduced photosynthesis (García-Mauriño and others 2003). Partial independence from light of PEPC-k synthesis under salt stress minimizes the antagonism between the opposite effects of ABA on the light induction of the PEPC-k and on the degradation of the kinase.
ACKNOWLEDGEMENTS

This research was supported by the Dirección General de Investigación del Ministerio de Ciencia y Tecnología (BMC2001-2366-CO3-02) and by the Junta de Andalucía (PAI group CV1298). José A. Monreal was financed by a FPI fellowship from Universidad de Sevilla (Spain).

REFERENCES

Table 1. Effect of acclimation to increasing ABA concentration on gas-exchange analysis of *Sorghum vulgare* leaves.

<table>
<thead>
<tr>
<th></th>
<th>Net photosynthetic rate (µmol CO₂ m⁻² s⁻¹)</th>
<th>Transpiration (mmol H₂O m⁻² s⁻¹)</th>
<th>Stomatal conductance (mmol m⁻² s⁻¹)</th>
<th>Intercellular CO₂ concentration (µmol CO₂ m⁻² s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>8.82 ± 0.20</td>
<td>1.49 ± 0.13</td>
<td>123.3 ± 9.9</td>
<td>251.7 ± 7.2</td>
</tr>
<tr>
<td>ABA</td>
<td>7.12 ± 0.29</td>
<td>1.04 ± 0.08</td>
<td>83.0 ± 5.8</td>
<td>246.0 ± 17.3</td>
</tr>
<tr>
<td>t test</td>
<td>P = 0.003</td>
<td>P = 0.025</td>
<td>P = 0.012</td>
<td>P = 0.775</td>
</tr>
</tbody>
</table>

Sorghum plants were supplied with increasing concentrations of ABA added to the nutrient solution as follows: one week with 15 µM ABA, one week with 30 µM ABA and three days with 60 µM ABA. Gas exchange measurements were monitored with a LI-6262 CO₂/H₂O analyzer system. Data are means ± SE of measurements of four plants.
Table 2. Effect of ABA, proteasome inhibitor MG132, and protease inhibitors on the phosphorylation state of PEPC.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Control</th>
<th>ABA</th>
<th>MG132</th>
<th>ABA+MG132</th>
<th>PI</th>
<th>ABA+PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>0.71±0.03</td>
<td>0.92±0.10*</td>
<td>0.88±0.07*</td>
<td>1.11±0.19**</td>
<td>0.63±0.04</td>
<td>0.94±0.11*</td>
</tr>
<tr>
<td>Light+dark</td>
<td>0.32±0.02</td>
<td>0.56±0.06**</td>
<td>0.58±0.05**</td>
<td>0.59±0.09**</td>
<td>0.38±0.02</td>
<td>0.60**±0.05</td>
</tr>
</tbody>
</table>

Excised sorghum leaves were fed with 10 mM Tris-ClH pH 8 and illuminated for 30 min. Then, 60 μM ABA, 100 μM MG132, or a mixture of 20 g ml⁻¹ chymostatin and 20 g ml⁻¹ leupeptin (PI), were added, and leaves were kept in the light for 2.5 h. Another set of leaves were kept further 3h in the dark. Malate test was measured in protein extracts, and IC₅₀ means ± SE (mM malic acid) are displayed in the Table (n=3-6 experiments). ANOVA analysis of the two sets (light and light+dark) showed significant differences between treatments. Significant differences with respect to control (t test) are denoted by asterisks (*, P<0.05; **, P<0.01).
Table 3. Quantitative real-time RT-PCR analysis of the relative PPCK1 and PPCK2 transcripts levels in sorghum leaves and leaf disks

<table>
<thead>
<tr>
<th></th>
<th>Leaves</th>
<th>Leaf disks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PPCK1</td>
<td>PPCK2</td>
</tr>
<tr>
<td>Dark</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Light</td>
<td>180±18</td>
<td>20.8±7.4</td>
</tr>
<tr>
<td>Light + ABA</td>
<td>193±26</td>
<td>25.0±9.5</td>
</tr>
</tbody>
</table>

Real-time RT-PCR was used to analyze mRNA levels as described in the Materials and Methods. The relative PPCK1 and PPCK2 transcripts values were calculated based on the normalized 18S rRNA transcript level, which was amplified as a constitutive internal control. Each value represents the expression relative to dark (mean ± SE, three replicates). Other experimental conditions as in Fig. 6.
Figure 1. Effect of ABA on the PEPC-k activity of sorghum leaves.

Excised leaves were fed overnight with or without 60 μM ABA. The leaves were illuminated or kept in the dark for 2 h and the in vitro PEPC-k activity was assayed in aliquots (20 μg proteins) of desalted extracts. The Figure shows the autoradiography of phosphorylated proteins analyzed by SDS-PAGE. The arrow indicates the PEPC.
Figure 2. Effect of ABA, NaCl and DCMU on the light induction of PEPC-k activity of sorghum leaf disks. Leaf disks were vacuum-infiltrated with 0.1 M Tris-HCl buffer, pH 8, 2 mM HNaCO3, in the presence or absence of 30 µM ABA, 172 mM NaCl, or 0.1 mM DCMU, and illuminated for 2h. The in vitro PEPC-k activity was assayed in aliquots (8 µg proteins) of desalted extracts, in the presence of 0.15 U exogenous purified C4 PEPC and 1 mM EGTA. Phosphorylated proteins were analyzed by SDS-PAGE and autoradiography. The arrow indicates the PEPC.
Figure 3. ABA delays the disappearance of PEPC-k activity of sorghum leaf disks in the dark. Leaf disks were vacuum-infiltrated with 0.1 M Tris-HCl buffer, pH 8, 2 mM HNaCO3 and illuminated for 1h. Then, 30 μM ABA or 10 μM CHX was added to the infiltration mixture, and disks were kept in the dark for 1 h. The in vitro PEPC-k activity was assayed in aliquots (8 μg proteins) of desalted extracts, in the presence of 0.15 U exogenous purified C4 PEPC and 1 mM EGTA. Phosphorylated proteins were analyzed by SDS-PAGE and autoradiography. The arrow indicates the PEPC.
Figure 4. ABA delays the disappearance of PEPC-k activity of sorghum leaf disks in the light in the presence of the protein synthesis inhibitor cycloheximide. A. Leaf disks were vacuum-infiltrated in the presence or absence of 30 μM ABA, and illuminated for 1 h. Then, 10 μM CHX was added to the infiltration mixture when indicated, and disks were kept in the light for 1 h. B. Leaf disks were vacuum-infiltrated and illuminated for 30 min. Then, 30 μM ABA or 10 μM CHX was added to the infiltration mixture, and disks were kept in the light for 1 h. The \textit{in vitro} PEPC-k activity was assayed in aliquots (8 μg proteins) of desalted extracts, in the presence of 0.15 U exogenous purified C4 PEPC and 1 mM EGTA. Phosphorylated proteins were analyzed by SDS-PAGE and autoradiography. The arrow indicates the PEPC.
Figure 5. ABA and the proteasome inhibitor MG132 delay the disappearance of PEPC-k activity of sorghum leaves in the light in the presence of the protein synthesis inhibitor cycloheximide. A. Excised sorghum leaves were illuminated for 30 min, then fed with 60 μM ABA and/or 20 μM CHX, and kept in light for 3.5 h. B. Excised sorghum leaves were illuminated for 30 min, then fed with 200 μM MG 132 and/or 20 μM cycloheximide (CHX), and kept in light for 3.5 h. The in vitro PEPC-k activity was assayed in aliquots (10 μg proteins) of desalted extracts, in the presence of 0.2 U exogenous purified C4 PEPC and 1 mM EGTA. Phosphorylated proteins were analyzed by SDS-PAGE and autoradiography. The arrow indicates the PEPC.
Figure 6. ABA does not enhance PPCK transcript level in the light. A. Leaf disks were vacuum-infiltrated in the presence or absence of 30 μM ABA and illuminated for 1h or kept at dark. B. Sorghum plants hydroponically grown were supplied with 60 μM ABA, added to the culture medium, for 4 days. Excised leaves from control and ABA-treated plants were illuminated for 30 min or kept at dark. RT-PCR analysis of sorghum PPCK1 and PPCK2 mRNA was performed as indicated in the Materials and Methods. To minimize RNA quantification errors, 18S rRNA was used as endogenous control. M, molecular size marker.
Figure 7. Analysis of protease activity in sorghum leaves. Excised leaves were illuminated in the presence or absence of 60 μM ABA for 3h (L), or illuminated for 3 h and then darkened for 3h (L+D). Aliquots from extracts (10 μg protein) were subjected to substrate-containing gel electrophoresis. A. Protease activity was assayed at pH 4. B. Protease activity was assayed at pH 6.5.
Figure 8. Analysis of protease activity in barley seeds. Barley seeds were allowed to imbibe for 6 days, in the presence or absence of 40 μM ABA. Aliquots from extracts (25 μg protein) were subjected to substrate-containing gel electrophoresis. A. Protease activity was assayed at pH 4. B. Protease activity was assayed at pH 6.5.
COMENTARIOS

La síntesis de la PEPC-quinasa en hojas de planta C₄ se inicia en respuesta a la luz en un proceso que cursa a través de la fotosíntesis C₄. Por lo tanto, el cierre estomático provocado por la aplicación puntual del ABA a discos foliares podría estar enmascarando un posible efecto de la hormona sobre la actividad PEPC-quinasa. Una forma de suprimir el efecto del ABA sobre la fotosíntesis fue infiltrar discos foliares con NaHCO₃ (el sustrato de la PEPC), suprimiendo así la necesidad de CO₂ atmosférico para el funcionamiento de la fotosíntesis C₄. Empleando este método se observó que el ABA aumenta la actividad de la PEPC-quinasa. Este aumento de PEPC-quinasa se observó también cuando el ABA se suministró en presencia de CHX, que inhibe la síntesis de la enzima, o mediante transferencia de los discos a oscuridad. De forma análoga, cuando se suministró ABA a hojas preiluminadas (y que, por tanto, ya habían sintetizado PEPC-quinasa), la hormona provocó un aumento de la actividad PEPC-quinasa, aún en presencia de CHX. Estos datos indican que el ABA disminuye la velocidad de degradación de la PEPC-quinasa. Una confirmación de que el efecto del ABA no se ejerce a través de la síntesis de la PEPC-quinasa se obtuvo del análisis de la expresión de PPCK1 y PPCK2, dos genes que codifican PEPC-quinasa en hojas de sorgo (Shenton et al., 2006). El ABA no aumentó de forma significativa la expresión de dichos genes, ni en oscuridad ni en luz, tanto en discos infiltrados al vacío como al suministrar ABA a plantas completas.

No se conoce bien el proceso mediante el cual se degrada la PEPC-quinasa, aunque recientemente se ha demostrado la implicación de la vía de la ubiquitina-proteosoma en la degradación de la PEPC-quinasa de Flaveria trinervia expresada en protoplastos de maíz (Agetsuma et al., 2005). El MG132 es un inhibidor de dicha vía. Los efectos del MG132 en hojas de sorgo reprodujeron los del ABA sobre la actividad PEPC-quinasa, y se observaron en la luz en presencia de CHX. La relevancia fisiológica del tratamiento con MG132 y ABA se puso de manifiesto analizando el grado de fosforilación de la PEPC mediante el test malato, que mide la disminución de la sensibilidad al malónico como consecuencia de la fosforilación (Echevarría et al., 1994). Se observó que el ABA y el MG132 aumentaron la IC₅₀ para el malónico, tanto en luz como en la consecuente oscuridad. Por el contrario, no tuvieron dicho efecto inhibidores de proteasas convencionales. En relación con esta última observación, no se observaron cambios en la actividad proteasa de hojas de sorgo en respuesta al ABA.
En conjunto, estos resultados muestran que el ABA disminuye la velocidad de la degradación de la PEPC-quinasa. Es el primer caso descrito de una regulación de la actividad PEPC-quinasa por una señal fisiológica que no implica un control de la síntesis de la proteína. Además, el efecto del ABA parece estar relacionado con el control de la vía de la ubiquitina-proteosoma, que nuestros resultados señalan como la vía implicada en la degradación de la PEPC-quinasa en las hojas de sorgo. Probablemente, por este mecanismo, el ABA contribuye al mantenimiento de los altos niveles de PEPC-quinasa que se observan en salinidad.

Relevancia de los resultados:
*Es la primera vez que se describe la regulación de la actividad PEPC-quinasa por una señal fisiológica (hormona) que implica un mecanismo distinto del control de la síntesis, aportando una mayor versatilidad en la regulación de la PEPC por fosforilación reversible en los diferentes contextos fisiológicos en los que esta enzima está implicada.
ARTÍCULO 4

Involvement of PI-Phospholipase C, Phospholipase D and extracellular calcium in the light up-regulation of sorghum PEPC-kinase in control and salt stress conditions.
Los resultados hasta ahora presentados demostraban que el componente iónico del estrés salino ocasionaba un aumento de la actividad de la PEPC-quinasa inducida por la luz, y que causaba la síntesis de dicha enzima en oscuridad (García-Mauriño et al., 2003; artículo 1). Este último hecho refleja un cambio drástico en el control de la síntesis de la PEPC-quinasa, ya que en hojas de plantas C₄ ésta es dependiente de la luz. Como paso previo a la identificación de elementos de la cadena de señalización que opera en la salinidad, en el trabajo que se presenta a continuación se estudió si la ruta de señalización descrita en protoplastos de Digitaria era operativa en hojas, y si la mayor complejidad del sistema (hojas completas versus protoplastos de células del mesófilo) implicaba la participación de elementos adicionales.

Los resultados derivados del tratamiento con LiCl (Monreal et al., 2007; artículo 2), a la vez que confirmaban la participación de la señalización por la vía de la PLC en la síntesis de la PEPC-quinasa, sugerían la posible implicación de otra vía distinta. Puesto que se ha descrito que la salinidad activa tanto la PLC como la PLD (Meijer y Munnik, 2003), un segundo objetivo de este trabajo fue investigar la participación de la PLD en la síntesis de la PEPC-quinasa.

Por último, se han descrito al menos dos genes que codifican PEPC-quinasa en hojas de sorgo (Shenton et al., 2006). Un tercer objetivo de este trabajo fue analizar la posible expresión diferencial de ambos genes en respuesta a la luz y a la salinidad, así como investigar posibles diferencias en la señalización que activa la expresión de cada uno de ellos.
Title: Involvement of PI-Phospholipase C, Phospholipase D and extracellular calcium in the light up-regulation of sorghum PEPC-kinase in control and salt stress conditions.

Running title: Control of PEPC-k synthesis by PLC, PLD and calcium

Authors: José Antonio Monreal¹, Francisco Javier López-Baena², Christa Testerink³, Teun Munnik³, Jean Vidal⁴, Cristina Echevarría¹, Sofía García-Mauriño¹

Affiliation:
¹Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012 Seville, Spain
²Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012 Seville, Spain
³Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, the Netherlands
⁴Institut de Biotechnologie des Plantes, UMR CNRS 8618, Bâtiment 630, Université de Paris-Sud, Centre d’Orsay, Cedex, France

Correspondence to:
Dr. Sofía García-Mauriño
Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012 Seville, Spain
E-mail: sgarma@us.es
Telephone: +34-95-4559924 / +34-95-4557074
Fax: +34-95-4615780 / +34-95-4559945

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: José Antonio Monreal (monreal@us.es)
ABSTRACT

The C₄ phosphoenolpyruvate carboxylase (PEPC) is regulated by light-induced phosphorylation by phosphoenolpyruvate carboxylase kinase (PEPC-k). The transduction cascade initiated by light in mesophyll protoplasts of *Digitaria sanguinalis* involves PI-PLC, the phosphoinositide pathway and a Ca²⁺ dependent step. The present study has been intended to investigate whether the same components are involved in PEPC-k synthesis in *Sorghum* leaf disks, both in standard and salt stress conditions. In all the situations studied, PEPC-k synthesis was dependent on protein synthesis and photosynthetic electron transport, as previously reported in protoplasts. On the contrary, inhibitors of calcium release from intracellular stores (TMB-8 and verapamil), which reduced up regulation of PEPC-k in protoplasts, were ineffective in leaf disks. Maximum inhibition was reached with the combination of EGTA and TMB-8, or verapamil, thus suggesting the involvement of both extracellular and intracellular calcium in the response. The PI-PLC inhibitor U 73122 partially blocked the increase in PEPC-k activity in leaf disks from control and NaCl stressed plants. Treatment with the PLD inhibitor n-butanol and TLC analysis of ³²P labelled phospholipids indicated PLD activation in response to light and the participation of PLD signaling in the regulation of PEPC-k synthesis in control and salt-treated plants. The CDPK activity analyzed is activated by calcium and by PA; moreover, it is up-regulated by light and lithium, two factors which increase PEPC-k activity. The CDPK inhibitor W7 is able to block the light up-regulation of PEPC-k, pointing to a situation of this signaling element afterwards of the confluence of PLC and PLD signaling. Analysis of *PPCK1* and 2 expressions suggested that either PLC or PLD activation is enough to trigger PEPC-k synthesis in response to light. The main effect of salt stress was to induce *PPCK1* and *PPCK2* expression in the dark. In control and LiCl plants, application of PLC and PLD inhibitors resulted in a marked reduction of the expression of *PPCK1* and *PPCK2* genes. However, in dark- and light-adapted leaves from salt-treated plants, the inhibitors only induced a partial reduction of this expression, suggesting that PEPC-k synthesis is partially constitutive in these plants. These results also pointed to an activation of PLC and/or PLD signaling pathway by a signal independent of light as a consequence of salt-stress.
INTRODUCTION

Phosphoenolpyruvate carboxylase-kinase (PEPC-k) is a Ser/Thr protein kinase that modulates phosphoenolpyruvate carboxylase (PEPC), the enzyme that catalyzes the primary fixation of CO₂ in C₄ photosynthesis. PEPC-k activity is mainly regulated by transcription and protein synthesis in CAM, C₄ and C₃ plants (Carter et al., 1991; Jiao et al., 1991; Li et al., 1996; Hartwell et al., 1999a), although recently several other factors (pH, thiol-disulfide exchange, a protein inhibitor) have been reported to modulate its activity (Saze et al., 2001, Nimmo et al., 2001). In C₄ plants, the regulatory phosphorylation is a light-dependent process (Echevarría et al., 1990; Chollet et al., 1996; Echevarría and Vidal, 2003). The signaling pathway initiated by light in mesophyll protoplasts of Digitaria sanguinalis involves a complex transduction cascade that leads to PEPC-k synthesis. The signaling elements include cytosolic pH alkalization, phosphoinositide-specific phospholipase C (PI-PLC; EC 3.1.4.11.) activation, production of inositol-1,4,5-trisphosphate (IP₃), calcium mobilization from vacuoles, and a Ca²⁺-dependent protein kinase with characteristics of the mammalian protein kinase C (Giglioli-Guivarc’h et al., 1996; Coursol et al., 2000, Osuna et al, 2004). The involvement of PI-PLC in PEPC-k synthesis has been demonstrated in C₄ (Giglioli-Guivarc’h et al., 1996; Coursol et al., 2000); CAM (Bakrim et al., 2001) and C₃ plants (Gousset-Dupont et al., 2005).

In previous work we have shown that several salts, including NaCl and LiCl, impact much on the PEPC-k content of sorghum leaves (Echevarría et al., 2001; García-Mauriño et al., 2003). In addition, LiCl treatment caused the transient accumulation of IP₃, a cascade component controlling the kinase content in leaves, and this fact could account for the observed enhancement of PEPC-k activity and amount of protein (Monreal et al., 2007). Nevertheless fairly small increase in PPCK expression could be measured after short-time lithium exposure, suggesting the involvement of an additional factor contributing to high PEPC-k activity, which was shown to be an alteration of the turnover rate of the kinase which preserved the protein synthesized in response to light. Meanwhile, longer LiCl treatment caused IP₃ depletion, and a decreased, but yet measurable, PPCK expression. This prompted us to investigate the operation of a signalling pathway, in addition to PI-PLC activation, modulating the PPCK response to light.
Phospholipase D (PLD; EC 3.1.4.4.) catalyzes the hydrolysis of structural phospholipids at the terminal phosphate diester bond, leading to the formation of phosphatidic acid (PA) and a free head group. Salinity stimulates both PI-PLC (Drøbak and Watkins, 2000) and PLD (Munnik et al., 2000) activities. A possible point of cross-talk and integration of the two signalling pathways is the calcium-dependent protein kinase (CDPK) which has been proposed to be the calcium-dependent step of the cascade that up-regulates PEPC-k in response to light (Osuna et al., 2004). Interestingly, PA has been shown to activate a plant CDPK from carrot (Farmer and Choi, 1999).

Plants contain a small family of PPCK genes with different tissue expression patterns (Fontaine et al., 2002; Marsh et al., 2003; Xu et al. 2003; Sullivan et al., 2004). Until lately, only one PPCK gene had been identified in C₄ species (Flaveria trinervia; Tsuchida et al., 2001). Very recently, two different genes encoding PEPC-k have been shown to be expressed in sorghum leaves (Shenton et al., 2006). PPCK1 transcript level was enhanced by light, meanwhile CHX increased PPCK2 expression. The maize orthologs were selectively expressed in mesophyll cells (ZmPPCK1) and bundle sheath cells (ZmPPCK2). Previous work performed with sorghum mesophyll cell protoplasts would probably reflect mainly changes in PPCK1-type PEPC-k activity. On the contrary, leaf or leaf disks extracts will contain a mix of the PEPC-ks present in sorghum leaf. This fact makes essential to analyze PPCK1 and PPCK2 expression in order to clarify the relative contribution of each type of protein to the overall PEPC-k activity.

The aims of this study were: a) to explore the operation of the signaling pathway, previously elucidated in mesophyll protoplasts, in the more complex system constituted by leaves or leaf disks; b) to analyze the contribution of PLD activation to the up-regulation of PPCK genes expression and PEPC-activity in response to light and salts; c) to investigate a cross-talk between PI-PLC and PLD signaling at the level of the CDPK activity up-regulated by light, which mediates PEPC-k synthesis; d) to elucidate the relative contribution of type 1 and type 2 PEPC-k to the kinase activity up-regulated by light and salt stress.
RESULTS

Implication of photosynthetic activity, PI-PLC and calcium in the PEPC-k activity induced by light

Light is the early signal that triggers PEPC-k synthesis in C₄ plants. The pathway was blocked in sorghum leaf (Bakrim et al., 1992; Jiao and Chollet, 1992) and in C₄ mesophyll protoplasts from *Digitaria sanguinalis* (Giglioli-Guivarc’h et al., 1996) by the photosynthetic electron transport inhibitor DCMU (3-(3,4-dichlorophenyl)-1,1-dimethyleurea) and by the ATP synthesis inhibitor gramicidin, suggesting that the production of ATP and/or NADPH is required for the activation of the transduction pathway. DCMU effectively blocked light-induced PEPC-K synthesis in leaf disks from 172 mM NaCl treated (Fig. 1). Thus, the same primary signal transduction pathway, which is dependent on photosynthetic electron transport, seems to be operative in salt-stressed and in control plants.

The involvement of PI-PLC in the light dependent transduction pathway leading to the phosphorylation of PEPC in *Digitaria sanguinalis* protoplasts has been investigated with the pharmacological agent U 73122, a potent inhibitor of PI-PLC (Coursol et al., 2000). This compound marked decreased the up-regulation of the kinase of disks from control and NaCl-treated plants (Fig. 2A). Nevertheless, kinetic studies (Fig. 2B) indicated that the degree of inhibition caused by U 73122 decreased with time.

Calcium channel blockers TMB-8 and verapamil inhibited the light-induced upregulation of PEPC-k in protoplasts from *Digitaria sanguinalis* (Giglioli-Guivarc’h et al., 1996). This has been interpreted as a signal of the involvement of intracellular calcium in the signaling pathway. Nevertheless, the two compounds caused little inhibition when assayed in sorghum leaf disks (Fig. 3). To assess the involvement of extracellular calcium, leaf disks were incubated with the calcium chelator EGTA, which caused a marked decrease of PEPC-k activity. Maximum inhibition was reached when EGTA was combined with TMB-8 or verapamil, showing the involvement of both intracellular calcium and extracellular calcium in the up-regulation of PEPC-k in response to light. Similar results were obtained when the disks were punched from NaCl-acclimated plants or from control plants and then vacuum-infiltrated in the presence or the absence of 10 mM LiCl (not shown).
Taken together, these results pointed to the operation of a second signaling pathway, in addition to PI-PLC activation, which leads to PEPC-k activation in response to light. Both signaling pathways are dependent on calcium.

PA and PLD signaling

An experiment was designed to explore differences in second messengers turnover between extracts from illuminated leaves with respect to control leaves kept at dark. Leaf disks were fed overnight with 32P to label phospholipids. The TCL analysis of phospholipids from illuminated control and LiCl-treated disks (Fig. 4A) showed that U 73122 increased the amount of the polar phosphatidylinositol 4,5-bisphosphate (PIP$_2$), which was retained at the origin of the TCL plate, as a consequence of PI-PLC inactivation. This amount was much lower in LiCl-treated disks, according with the expected inhibition of phosphoinositoside recycling (Berridge et al., 1989). Aliquots of the labeled phospholipids from control in Fig. 4A were supplied to crude extracts from leaf disks, solubilised by mild sonication, and analyzed by TLC after 1 h of incubation (Fig. 4B). The extracts from illuminated control and LiCl-treated disks consumed the labeled PIP$_2$ (the substrate of PI-PLC) and phosphatidic acid (PA); meanwhile these two phospholipids remained unused by extracts from disks kept in dark. This data suggest that these two compounds are involved in signal transduction pathways which are triggered by light in sorghum leaves.

PA can be generated from membrane phospholipids following Phospholipase D (PLD) activation (Munnik et al., 1995). PLD hydrolyses structural phospholipids, such as phosphatidylcholine and phosphatidylethanolamine, producing PA and a free-head group (Wang, 2005). Changes in the PA content of sorghum leaf disks in response to light were analyzed in 32P labeled disks from control and NaCl-treated plants. Light increased the PA content of control disks (Fig 5A) from about 4 to 9% of phospholipids (Fig 5C). Likewise light increased PA production in LiCl-treated disks, and in disks from NaCl-treated plants (Fig 6A). The PA content in NaCl-treated plants was higher, both in light and in dark, with respect to control plants.

In the presence of n-butanol, PLD catalyzes the formation of phosphatidyl-butanol; this reaction is specific to PLD and represents an index for the signal-dependent activation of PLD (Munnik, 2001). Light increased phosphatidyl-butanol production by control disks. (Fig 5B and D), showing PLD activation in response to
light. In NaCl-treated plants, in which PA was accumulated at high level in dark, a high quantity of phosphatidyl-butanol could also be measured (Fig 6B), showing that PLD was active in these plants during the dark period.

PLD produces phosphatidyl-butanol by transferring the phosphatidyl group of its substrate to n-butanol instead of water, reducing PA levels and thereby inhibiting PA-dependent responses (Munnik, 2001). Overnight feeding of leaves with butanol decreased the degree of in vivo phosphorylation of PEPC (Fig 7), which can be measured as a decreased sensibility to malic acid inhibition (Echevarría et al., 1994). PA by itself had no effect on PEPC phosphorylation, but when combined with butanol, PA reversed the inhibitory effect of this compound. These results pointed to a link between PLD activation in response to light and the in vivo phosphorylation of PEPC, which is known to be dependent on PEPC-k activity and its synthesis during the light period in C₄ plants (Echevarría et al., 1990; Chollet et al., 1996).

CDPK activity

A Ca²⁺-dependent protein kinase (CDPK) with characteristics of protein kinase C (PKC) has been involved in the synthesis of PEPC-k in the C₄ plant *Digitaria sanguinalis* (Osuna et al., 2004). The activity of this protein kinase can be measured using a commercial kit which relies on the in vitro phosphorylation of a PKC-specific fluorescent, synthetic peptide substrate. The activity of a Ca²⁺-dependent protein kinase can be measured in sorghum leaves, which showed similar characteristics to the *Digitaria* enzyme: the kinase phosphorylated the C1-peptide PKC substrate, its activity was enhanced by calcium and abolished by the calcium chelating agent EGTA, and the enzyme activity was inhibited by the naphthalene sulfonamide inhibitor W7 (Fig 8A). Interestingly, both light and LiCl markedly increased this kinase activity (Fig 8B). The enzyme from *Digitaria sanguinalis* was only modestly, or not at all, activated by several phospholipids that are known activators of mammalian PKCs. PA caused a concentration-dependent enhancement effect on CDPK activity from sorghum leaf (Fig 8C). This effect was observed with and without the supplement of 1 mM CaCl₂ (in addition to the calcium included in the assay kit).

The W7 inhibitor is a blocker of C₄-PEPC phosphorylation in mesophyll cell protoplasts from *Digitaria sanguinalis* (Giglioli-Guivarc’h et al., 1996). This inhibitor decreased the PEPC-k activity of control and LiCl-treated plants (Fig 9).
PPCK1 and PPCK2 expression

A small family of PPCK genes encodes plant PEPC-k enzymes. Two PPCK genes have been reported in sorghum leaves very recently (Shenton et al., 2006). The expression of PPCK1 (DQ386731) and PPCK2 (AF399915) was analyzed in excised leaves from control, LiCl- and NaCl-treated plants (Fig 10). Although in planta only PPCK1 is up-regulated by light (not shown), the expression of both kinase genes becomes light-dependent in excised leaves (Fig 10) or leaf disks (Fig 11). The same effect has been reported for the maize orthologue ZmPPCK2 (Shenton et al 2006). LiCl enhanced only PPCK2 expression in the light, as we have previously reported (Monreal et al., 2007); meanwhile PPCK1 and PPCK2 transcript abundance was found to be high in NaCl-treated plants in the dark, at the same level as in the light (Fig 10).

In the subsequent experiments, PPCK1 and PPCK2 expression was analyzed in leaf disks following different treatments, and the in vitro PEPC-k activity was assayed in samples of the same disks. The involvement of PLC and PLD activation in PEPC-k activity up-regulation by light was investigated by using the PLC inhibitor neomycin (Gabev et al., 1989) and the PLD inhibitor n-butanol (Munnik, 2001). Maximum inhibition of PPCK1 and PPCK2 expression, and of PEPC-k activity, was produced by the combination of both inhibitors in control disks (Fig. 11), pointing to a mixed control by PLC and PLD signal transduction pathways on PEPC-k synthesis in response to light. In LiCl-treated disks n-butanol alone blocked PPCK1 and PPCK2 expression and abolished PEPC-k activity (Fig. 12); thus, PLD activation and signaling seemed to be the major transduction pathway being operative in these conditions.

The level of inhibition produced by neomycin and n-butanol on PPCK1 and PPCK2 expression (analyzed by semi-quantitative RT-PCR) and PEPC-k activity was virtually unnoticeable in leaf disks from NaCl treated plants (Fig 13). A limited inhibition of PEPC-k activity could be ascribed to neomycin, accordingly to the effect of U 73122 shown in Fig 2. The effect of the PLC and PLD inhibitors, neomycin and n-butanol, was analysed further by using quantitative real-time RT-PCR (Fig. 14). The combination of both compounds had a marked effect on PPCK genes level of transcripts in control plants; meanwhile they inhibited only partially PPCK1 and PPCK2 expression in NaCl treated plants, both in the light and in the dark. This result suggested that the alteration produced by the salt treatment had modified the regulation of PPCK genes and they partially turned out to be expressed continuously, without the need of a
light signal and subsequent PLC and/or PLD activation. Nevertheless the level of transcripts of both genes was decreased by inhibitors of PLC and/or PLD activation, again both in light and in the dark. This last result implied that salt had caused an activation of PLC and/or PLD in the dark

DISCUSSION

The PEPC-k is a small Ser/Thr protein kinase of about 260 amino acid residues with the characteristic protein-kinase subdomains but without the regulatory sites, such as phosphorylation sites or Ca\(^{2+}\)-binding domains, which are found in other protein kinases. PEPC-k activity seems to be controlled mainly at the level of PPCK transcript abundance, which responds to a range of signals in different tissues. PEPC-k synthesis is regulated in C\(_4\) leaves by illumination/darkness, in CAM leaves by a circadian oscillator, in C\(_3\) leaves by light and N supply, and in legume root nodules by photosynthetic supply from the shoots (Echevarría and Vidal, 2003; Nimmo, 2003).

An additional degree of complexity to the signaling pathway described in mesophyll protoplasts is evidenced by the involvement of extracellular calcium in the process. Clearly deduced from the TMB-8, verapamil and EGTA effects on PEPC-k activity, it is necessary to block the cytoplasmic calcium rise resulting from the income from both intracellular and extracellular stores to efficiently impede up-regulation of PEPC-k activity. Releasing calcium from intracellular stores is a well-known consequence following PLC activation (Munnik et al., 1998), and the way cytosolic calcium is assumed to rise in mesophyll protoplasts (Giglioli-Guivarc’h et al., 1996; Coursol et al., 2000). It is tempting to attribute to PLD activation the income of extracellular calcium, but there are not experimental evidences to support this assumption. PA functions as a calcium ionophore in animal cells (Salmon and Honeyman; 1980; Putney et al., 1980; Harris et al., 1981), but direct evidence for a similar role in plants is lacking. All plant PLCs (Rebecchi and Pentyala, 2000) and most plant PLDs (Wang, 2001) are activated by calcium. By means of cytosolic calcium rise, PLC activation could lead to PLD activation, and, if it is assumed that PA leads to the opening of calcium channels, PLD activation would also lead to PLC activation. A light signal is the primary event that leads to PLC activation and PEPC-k synthesis in C\(_4\) mesophyll protoplasts (Giglioli-Guivarc’h et al., 1996), and we show in this work that light increases PLD activity and PA utilization in sorghum leaf disks. Thus is possible
to imagine both signaling pathway being switched on by light, and the existence of a positive interaction between them. This may be the reason why it is necessary to block both signaling pathways to switch off PEPC-k activity, implying that PLC activation can supply for the lack of PLD activation, and PLD activation for the need of PLC activation. PLC and PLD are also confluent at the level of PA generation.

PA is a minor lipid (1-2% of total phospholipids) in eukaryotic cells. Most of it is involved in the biosynthesis of structural phospho- and glycolipids in the endoplasmic reticulum and plastids, where it is made by acylating glycerol 3-phosphate and lyso-PA. In addition to this well-known structural function, the role of PA as a second messenger has recently acquired great relevance (Munnik, 2001). PA can be generated by PLD in the plasma membrane when it is activated by a signal, such as hormone binding to specific receptors, pathogen elicitor and multiple stress-related signals (Testerink and Munnik, 2005; Wang, 2005). Although it is the natural product of PLD, the accumulation of PA is not a reliable marker for PLD activation. PA can be produced also by alternative pathways (Brindley, 1984), including diacylglycerol phosphorylation catalyzed by diacylglycerol kinase. PI-PLC activation leads to the formation of the second messengers IP$_3$ and DAG; the second is phosphorylated by DAG kinase to produce PA.

The second messenger calcium and PA connect by regulating the activity of a CDPK that is thought to be involved in PEPC-k synthesis (Osuna et al., 2004). A CDPK from carrot has been included between PA targets (Farmer and Choi, 1999). The CDPK activity analyzed in this work is activated by calcium and by PA; moreover, it is up-regulated by light and lithium, two factors which increase PEPC-k activity. The CDPK inhibitor W7 (Hidaka et al., 1981) is able to block the light up-regulation of PEPC-k, pointing to a situation of this signaling element afterwards of the confluence of PLC and PLD signaling.

Analysis of $PPCK1$ and $PPCK2$ expression shows that both PLC- and PLD-dependent signaling pathways need to be blocked in order to suppress the response to light. This result suggest that activation any of the two pathways is enough to trigger PEPC-k synthesis. In addition, both pathways are activated in response to light with independence of which specific gene ($PPCK1$ or $PPCK2$) is transcribed. Lithium enhanced mainly $PPCK2$ expression; this result establishes a link between PLC activation, increased IP$_3$ level and enhanced $PPCK2$ expression at short term, as previously reported (Monreal et al 2007). As expected from inositol depletion as a
consequence of lithium inhibition of inositol monophosphatases, sustained PEPC-k synthesis seems to be dependent on PLD activation, thus being completely blocked by n-butanol.

Salinity changed the pattern of expression of both genes. A considerable level of PPCK1 and PPCK2 transcripts could be measured in the presence of both neomycin and butanol in the light, pointing to a partial autonomy of gene expression from PLC and PLD activation. The most striking finding concerning NaCl-treated plants was the fact that the two kinase genes were expressed in the dark, and also this expression was only incompletely blocked by PLC and PLD inhibitors. Thus PPCK gene expression had become to a same extent constitutive, as a consequence of the salt treatment, and partially independent from the light and the signalling pathways triggered by illumination in the leaves of C₄ plants. Moreover, PLC and/or PLD signalling pathways turned out to be activated in the dark. This result was in concordance with the higher levels of phosphatidyl butanol measured in salt-treated plants in the dark. The signal derived from salt treatment which triggered PLC- and/or PLD-dependent PPCK genes expression in the dark keeps to be identified.

METHODS

Plant Material and Growth Conditions

Sorghum plants (Sorghum vulgare var. Tamaran, Rhône-Poulenc, Seville, Spain) were grown hydroponically at 28°C and 60% relative humidity during the photoperiod (12 h, 350 μmol photons m⁻² s⁻¹ PAR) and at 20°C and 70% relative humidity during dark period. Plants were supplied with nitrate-type nutrient solution. They were acclimated to salt by increasing weekly NaCl concentration (43, 86, 172 mM final concentration) in the culture medium. LiCl treatment was performed by addition of the salt (10 mM) to the culture medium.

Experiments were carried out with whole leaves or with excised leaf disks. Fully expanded youngest leaves were excised and illuminated (750 μmol photons PAR m⁻² s⁻¹) or kept in the dark for 2 h, and used to prepare enzyme extracts. Disks were punched with a 1-cm diameter cork borer and floated adaxial side up on plastic dishes. The leaf disks were previously vacuum-infiltrated (two cycles of 5 min) with 0.1 M
Tris-HCl buffer, pH 8, 2 mM HNaCO₃. The disks were illuminated or kept at dark, and used to prepare enzyme extracts.

Enzyme Extraction and Analysis

Protein extracts were obtained by grinding 0.2 g FW of leaf tissue in 1 ml of extraction buffer containing: 0.1 M Tris-HCl pH 7.5, 20% (v/v) glycerol, 1 mM EDTA, 10 mM MgCl₂ and 14 mM β-mercaptoethanol. The homogenate was centrifuged at 15000 g for 2 min and the supernatant was filtered through Sephadex G-25 equilibrated with the extraction buffer without mercaptoethanol.

Determination of PEPC activity, malate test, in vitro phosphorylation assay, in situ ³²P labeling and immunoprecipitation, and SDS-PAGE were as already described (Echevarría et al., 1990). The in vitro PEPC-k activity of sorghum leaves and leaf disks was measured in the presence of 1 mM EGTA and 0.15 U of purified C₄ PEPC. An enzyme unit is defined as the amount of PEPC that catalyzes the carboxylation of 1 µmol of phosphoenolpyruvate min⁻¹ at pH 8, 30°C.

Assay of CDPK activity

The CDPK-type protein kinase activity was assayed as previously described in Osuna et al. (2004). In summary, 0.2 g of leaves were chopped and ground thoroughly in a mortar with washed sand and 1 ml of buffer A (20 mM Hapes-KOH pH 7.4, 5% (v/v) glycerol, 10 mM EGTA, 2 mM EDTA, 14 mM β-mercaptoethanol, 1 mM phenylmethylsulfonyl fluoride, 1.8 mM benzamidin, 9 µM bestatin, 20 µM chymostatin, 5 µM E-64, 20 µM leupeptina, and 0.1 µg ml⁻¹ okadaic acid). The homogenate was centrifuged at 20,000g for 15 min and proteins were precipitated by addition of (NH₄)₂SO₄ to 60% saturation. Proteins were sedimented by centrifugation at 20,000g for 10 min, the pellet resuspended in 100 µl buffer B (buffer A lacking EGTA and EDTA), filtered through Sephadex G25 equilibrated with the same buffer, and used as desalted protein extract. The CDPK activity was assayed using the non-radioactive PepTag assay, according to the manufacturer’s (Promega) instructions. Assays (25 µl) were carried out in 20 mM Hapes-KOH pH 7.4, 1.3 mM CaCl₂, 1 mM DTT, 10 mM MgCl₂, 1 mM ATP, 1 mM phenylmethylsulfonyl fluoride, 5 µM E-64, 20 µM leupeptina, 1 µg ml⁻¹ microcystin-LR, 0.1 µg ml⁻¹ okadaic acid, 38 µM PepTag C1-
Artículo 4

Peptide (P-L-S-R-T-L-S-V-A-A-K), and an aliquot of the desalted protein extract form leaves (20 μg protein). The phosphorylation reaction was performed for 30 min at 30 °C and stopped by heating at 95 °C for 10 min. The phosphorylated-C1-peptides were separated from the non-phosphorylated ones by electrophoresis on a 0.8% agarosa gel at 100 V for 15 min and visualized with a UV transilluminator (260 nm).

Protein Quantification

Protein amounts were determined by the method of Bradford (1976), using BSA as standard.

Lipid Labelling, Extraction and Analysis

Individual leaf disks were labeled overnight with 10 μCi 32P orthophosphate in 0.05% MES-KOH pH 5.8. After treatments, reactions were stopped with 5% perchloric acid and vortexed 10 min. Leaf disks were then transferred to a 0.4 ml solution containing CHCl$_3$:methanol:HCl (50:100:1) and vortexed 10 min. To separate the different phases, 0.2 ml of 0.9% w/v NaCl and 0.4 ml CHCl$_3$ were added, and the disks were vortexed briefly. The lower phase (CHCl$_3$) was taken and a solution CHCl$_3$:methanol:HCl 1M (3:48:47) was added, and vortexed briefly. The lower phase (CHCl$_3$) was transferred to new tubes and dried in a heated vacuum centrifuge. Dried lipids were dissolved in CHCl$_3$, spotted on a silica TLC plate, and placed in a glass tank containing the running solution. In the experiments shown in Figure 4, lipids were extracted with hexane:isopropanol (3:2), and nonlipids removed with an aqueous sodium sulfate (6.7%), as described by Hara and Radin (1978).

For thin-layer chromatography (TLC) analyses, samples applied to silica TCL plates were then developed in the organic upper phase of CHCl$_3$:methanol:25% NH$_3$:water (90:70:4:16). Lipid spots were revealed with iodine vapour and identified by co-migration with unlabelled lipid standards.

In vivo Phospholipase D activity was assayed by measuring phosphatydil butanol formation. Leaf disks were given a 30 min 0.5% v/v n-butanol pretreatment before illumination. Lipids were extracted as previously indicated. 32P-labeled phosphatydilbutanol was separated from phosphatidic acid and the rest of the

RNA extraction

Total RNA was extracted from 100 mg of frozen, powdered leaves by the addition of Trizol (1 mL) and centrifugation for 10 min, 12000g, 4°C. Chloroform (200μL) was added to the supernatant and after centrifugation for 15 min, 12000g, 4°C, RNA was precipitated with 0.5 mL isopropanol (10 min at room temperature), and recovered by centrifugation for 10 min, 12000g, 4°C. The pellet was washed with 70% ethanol, dried and the RNA was dissolved in 20 μL sterile water. RNA amounts were estimated in a Qubit™ Fluorometer (Invitrogen).

RT-PCR experiments

Semi-quantitative and quantitative RT-PCR experiments

Reverse transcription was performed with 1 μg purified total RNA from leaves of *Sorghum vulgare*, 1 μl ImProm-II™ Reverse Transcriptase (Promega) and associated buffer, 0.5 mM dNTP, 6 mM MgCl₂, 20 U recombinant RNasin® ribonuclease inhibitor and 0.5 μg oligo(dt)15 according to the manufacturer’s instructions. Subsequent semi-quantitative RT-PCR experiments (*PPCK1*, locus DQ386731; *PPCK2*, locus AF399915) were performed in a 20 μL final volume containing 1 μl of the reverse transcription product, 10 μM of the specific primers (*SbPPCK1 UTR* forward 5’- TTCTGCCAATCGTCAATGAA -3’ and *SbPPCK1 UTR* reverse 5’- GCTGAA GCCTGAAGCTGAAC -3’; *SbPPCK2* forward 5’- ATACCATAACCAGCAGAGGA-3’ and *SbPPCK2* reverse 5’- CTAGGTAAAGAGCAGCATCCCA-3’) and 1 U Taq polymerase (Biotools). The reactions were cycled in a thermocycler with a 5 min denaturation step at 95°C followed by 35 cycles (*PPCK1*) or 25 cycles (*PPCK2*) of 95°C for 30 s, 48°C for 30 s and 72°C for 50 s and a final extension step at 72°C for 5 min. The amplified fragments were analysed by electrophoresis in a 1% agarose gel by electrophoresis in TAE buffer, stained with ethidium bromide and visualized with a UV transilluminator (260 nm). The fragments amplified were excised from the agarose gel
and purified using agarose gel DNA extraction kit® (Roche) following the manufacturer’s instructions, and sequenced (Newbiotechnic S.A., Seville, Spain).

For the 18S rRNA (locus SRGRRE04), the specific primers were: forward, 5’-GGCTCGAAGACGATCAGATACC-3’; reverse, 5’-TCGGCATCGTTATGTTGTT-3’.
PCR was performed as follows: one round at 95°C for 1 min; 25 cycles: 95°C for 30 s, 59°C for 30 s, 72°C for 45 s; and a final step at 72°C for 1 min. The amplified fragment (50 bp) was analysed by electrophoresis in a 2% agarose gel in TAE buffer, stained with ethidium bromide and visualized.

Quantitative RT-PCR experiments were performed in a 20 μL final volume containing 1 μl of the cDNA both for PPCK1 or PPCK2, 15 μM of the specific primers described above, and 10 μl of FastStart SYBR Green Master Mix (Roche). PCR was conducted on the MiniOpticon™ Real-Time PCR Detection System (Biorad), and the threshold cycles (Cₜ) were determined using Opticon Monitor™ analysis software for all treatments. To normalize the values obtained, 18S RNA was used as internal control in each sample, using the primers described above.

ACKNOWLEDGEMENTS

This research was supported by the Junta de Andalucía (PAI group CVI298). José A. Monreal was in receipt of a FPI fellowship from Universidad de Sevilla (Spain). We thank Dr. Juan Sánchez (Instituto de la grasa, CSIC, Sevilla) and Bas van Shooten (Swammerdam Institute for Life Sciences, Section of Plant Physiology, University of Amsterdam), for their valuable help in TCL analysis.

REFERENCES

Fig. 1. Effect of DCMU on the PEPC-k activity of sorghum leaf disks. Leaf disks were vacuum-infiltrated with 0.1 M Tris-HCl buffer, pH 8, 2 mM HNaCO₃, in the presence or absence of 0.1 mM DCMU, and illuminated for 2h. The in vitro PEPC-k activity was assayed in aliquots (15 μg proteins) of desalted extracts, in the presence of 0.2 U exogenous purified C₄ PEPC and 1 mM EGTA. Phosphorylated proteins were analyzed by SDS-PAGE and autoradiography. The arrow indicates the PEPC.
Fig. 2. Effect of the PI-PLC inhibitor U-73122 on the PEPC-k activity of sorghum leaf disks. Leaf disks from control and NaCl-treated plants were vacuum-infiltrated with 0.1 M Tris-HCl buffer, pH 8, 2 mM HNaCO₃, in the presence or absence of 40 μM U-73122, and illuminated. The in vitro PEPC-k activity was assayed in aliquots (8 μg proteins) of desalted extracts, in the presence of 0.15 U exogenous purified C₄ PEPC and 1 mM EGTA. Phosphorylated proteins were analyzed by SDS-PAGE and autoradiography. A Leaf disks were illuminated for 2 h. Phosphorylated proteins were quantified by phosphoimaging (Fujix BAS 1000, Fuji, Tokyo). Data are means ± SE of 4-6 independent measurements. B Time-course of PEPC-k activity in response to light. The arrows indicate the PEPC.
Fig. 3. Effect of calcium channel blockers and EGTA on the PEPC-k activity of sorghum leaf disks. Leaf disks from control and NaCl-treated plants were vacuum-infiltrated with 0.1 M Tris-HCl buffer, pH 8, 2 mM HNaCO₃, in the presence or absence of 1 mM TMB-8, 1 mM verapamil and 10 mM EGTA, and illuminated for 2h in the presence or absence of 10 mM LiCl. The in vitro PEPC-k activity was assayed in aliquots (10 μg proteins) of desalted extracts, in the presence of 0.15 U exogenous purified C₄ PEPC and 1 mM EGTA. Phosphorylated proteins were analyzed by SDS-PAGE and autoradiography. The arrows indicate the PEPC.
Fig. 4. Utilization of PIP₂ and PA by sorghum leaf extracts. **A** Leaf disks were vacuum-infiltrated with 0.1 M Tris-HCl buffer, pH 8, 2 mM HNaCO₃, and fed overnight with ³²P (100 μCi, 10 disks). The PI-PLC inhibitor U-73122 was added at 80 μM and, when indicated, LiCl at 10 mM. The figure shows TCL analysis of phospholipids from 40 min illuminated disks. **B** Excised leaves were illuminated (1h), in the presence or absence of 10 mM LiCl, or kept in dark. Crude extracts (100 μl) were supplied with 20 μl aliquots of the labeled phospholipids from control in Fig. 4A. Lipids were solubilised by mild sonication, and analyzed by TLC after 1 h of incubation at 30°C. PC, phosphatidylcholine; PA, phosphatidic acid; PIP₂, phosphatidylinositol bisphosphate.
Fig. 5. Light-induced changes of PLD activity in sorghum leaf disks. Disks from control plants were fed overnight with 32P (10 µCi/disk) and illuminated. When indicated (+but), Leaf disks were given a 30 min 0.5% v/v n-butanol pretreatment before illumination. A Alkaline TLC. B Ethyl acetate TCL. PG, phosphatidylglycerol; PE, phosphatidylethanolamine; PA, phosphatidic acid; PIP, phosphatidylinositol phosphate; PIP$_2$, phosphatidylinositol bisphosphate; PtBut, Phosphatidylbutanol. C Quantification of PA (means ± SE; n=3). D Quantification of PtBut (means ± SE; n=3). PA and PtBut were quantified by using a Phosphorimager.
Fig. 6. Changes in PLD activity in response to salt treatments. Disks from control or NaCl treated plants were fed overnight with 32P (10 µCi/disk), supplied with 0.5% v/v n-butanol, and then illuminated (45 min) or kept at dark. When indicated, disks were illuminated in the presence of 10 mM LiCl. A PA quantification after ethyl acetate TCL analysis. B PtButanol quantification of disks kept at dark. Data are means ± SE (n=3).
Fig. 7. Effect of PA and n-butanol on the phosphorylation state of sorghum PEPC. Excised leaves were fed with 1% n-butanol and/or 2 mM PA (8:0) and illuminated for 3 h. Malate test was measured in protein extracts, and IC$_{50}$ means ± SE (mM malic acid) are displayed in the Figure ($n=3$).
Fig. 8. Characterization of CDPK activity from sorghum leaves. A Excised leaves were illuminated for 3.5h. CDPK activity was assayed in aliquots (20 μg protein) of desalted leaf extracts, in the presence or absence of 2 mM EGTA, 1 mM CaCl_2 and 2 mM W7. B Excised leaves were fed overnight with 10 mM LiCl before illumination. C. CDPK activity was measured in the presence or the absence of 1 mM CaCl_2 and increasing concentration of PA (8:0). NP, non-phosphorylated peptide; P, phosphorylated peptide.
Fig. 9. W7 decreases the PEPC-k activity from sorghum leaves. Excised leaves were fed overnight with 10 mM LiCl and 2 mM W7. Leaves were illuminated for 2h. The in vitro PEPC-k activity was assayed in aliquots (20 μg proteins) of desalted extracts, in the presence of 0.2 U exogenous purified C₄ PEPC and 1 mM EGTA. Phosphorylated proteins were analyzed by SDS-PAGE and autoradiography. The arrow indicates the PEPC.
Fig. 10. Semiquantitative RT-PCR analysis of PPCK genes. Excised leaves from control, 10 mM LiCl-treated plants (4 days) and 172 mM NaCl-treated plants were illuminated for 30 min or kept at dark. Semiquantitative RT-PCR analysis of sorghum PPCK1 and PPCK2 mRNA was performed as indicated in the Materials and Methods. To minimize RNA quantification errors, 18S rRNA was used as endogenous control. M, molecular size marker.
Fig. 11. **PPCK1** and **PPCK2** transcript levels and PEPC-k activity in illuminated control leaf disks. Leaf disks (10 disks) were vacuum-infiltrated with 0.1 M Tris-HCl buffer, pH 8, 2 mM HNaCO₃, in the presence or absence of 1 mM neomycin and 1.5% n-butanol, and illuminated 15 min for semiquantitative RT-PCR experiments (A) and 30 min for PEPC-k activity (B).
Fig. 12. *PPCK1* and *PPCK2* transcript level and PEPC-k activity in illuminated LiCl-treated leaf disks. Leaf disks (10 disks) were vacuum-infiltrated with 0.1 M Tris-HCl buffer, pH 8, 2 mM HNaCO₃, in the presence or absence of 1 mM neomycin and 1.5% n-butanol. 10 mM LiCl was added to the disks before illumination. A. Semiquantitative RT-PCR. B. in vitro PEPC-k activity.
Fig. 13. PPCK1 and PPCK2 transcript level and PEPC-k activity in illuminated NaCl-treated leaf disks. Leaf disks (10 disks) were vacuum-infiltrated with 0.1 M Tris-HCl buffer, pH 8, 2 mM HNaCO₃, in the presence or absence of 1 mM neomycin and 1.5% n-butanol, and illuminated as described in Fig. 11. A. Semiquantitative RT-PCR analysis. B. In vitro PEPC-k activity.
Fig. 14. Quantitative real-time RT-PCR. Leaf disks (10 disks) were vacuum-infiltrated with 0.1 M Tris-HCl buffer, pH 8, 2 mM HNaCO₃, in the presence or absence of 1 mM neomycin and 1.5% n-butanol, and illuminated as described in Fig. 11. Quantitative RT-PCR analysis of sorghum PPCK1 and PPCK2 mRNA levels was performed as indicated in Material and Methods.
COMENTARIOS

En este artículo se analiza la ruta de transducción de señales que conduce a la síntesis de la PEPC-quinasa en hojas y discos foliares de sorgo, tomando como punto de partida la ruta descrita previamente para protoplastos de células del mesófilo de *Digitaria sanguinalis* (Giglioli-Guvarc'h *et al.*, 1996; Coursol *et al.*, 2000). En ese sistema experimental, la luz inicia una vía de señalización que incluye una alcalinización del pH citósólico, estimulación de una fosfolipasa C (PLC) y producción de inositol trifosfato (IP₃), apertura de canales de calcio situados en el tonoplasto, y activación de una quinasa Ca²⁺-dependiente (CDPK). En este sentido, y tal como se describe más adelante, hemos comprobado que la ruta de protoplastos y la que opera en hojas tienen aspectos similares y aspectos diferentes.

En oscuridad, la transcripción de los genes *PPCK1* y *PPCK2* en plantas controles y sometidas a estrés por LiCl, es muy baja, siendo necesaria la luz para detectar unos niveles altos de expresión, tanto en discos infiltrados como en hojas. Sin embargo, en plantas aclimatadas a NaCl se detectan altos niveles de transcrito de ambos genes en ausencia de luz. Es la primera vez que se demuestra que la actividad PEPC-quinasa detectada en estas hojas en oscuridad se debe a la transcripción del gen, tanto de *PPCK1* como de *PPCK2*.

Un aspecto de la mayor complejidad que presentan las células completas con respecto a los protoplastos es la existencia de una pared celular, rica en calcio, y la posibilidad de la entrada de calcio desde el apoplasto a través de canales del plasmalema. En efecto, el El TMB-8 y el verapamil (inhibidores de los canales de calcio en el tonoplasto y el retículo endoplásmico, que bloquean el aumento de actividad PEPC-k en respuesta a la luz en protoplastos de *Digitaria*), tuvieron poco efecto en discos foliares de sorgo, mientras que el quelante de calcio EGTA sí fue efectivo. La máxima inhibición de observó con la combinación de TMB-8 o verapamil con EGTA. Estos resultados muestran por primera vez la implicación del calcio extracelular en el control de la síntesis de la PEPC-quinasa.

En protoplastos de hojas de plantas C₄, la síntesis de la PEPC-quinasa implica la activación de la PLC, y, consecuentemente, la inhibición de esta síntesis con el compuesto U-73122 (inhibidor de la PLC) en respuesta a la luz. Sin embargo, cuando se utilizan hojas de sorgo sólo se observó un efecto parcial de dicho compuesto sobre la actividad PEPC-quinasa, lo que sugería, junto con los resultados del tratamiento con
LiCl, la posibilidad de la participación de una ruta de señalización distinta de aquella en la que participa la PLC. En este trabajo, se muestran por primera vez diversas evidencias que implican una actividad PLD en la ruta de síntesis de la PEPC-quinasa. En ensayos de cromatografía en capa fina (TLC) hemos detectado un aumento en la actividad PLD (medida como formación de fosfatidilbutanol) y síntesis de PA en respuesta a la luz, en plantas control, tratadas con LiCl o aclimatadas a NaCl. Los mayores niveles de ácido fosfatídico se detectaron en salinidad, tanto en luz como en oscuridad, y, en este último caso, también se detectó la mayor producción de fosfatidilbutanol en salinidad. Aunque el suministro de PA a hojas de sorgo no aumentó el grado de fosforilación de la PEPC, dicho compuesto fue capaz de revertir el efecto negativo del n-butanol (inhibidor de la señalización por PLD) sobre dicho proceso. Estos resultados relacionan la activación de la PLD por la luz con la síntesis de la PEPC-quinasa en respuesta a dicha señal.

Un posible punto de interacción entre la vía de la PLC y la vía de la PLD es a nivel de la quinasa calcio-dependiente (CDPK), algunas de ellas con características similares a las PKC de animales (Farmer y Choi, 1999). Esta CDPK (de tipo PKC) representa el eslabón dependiente de calcio en la cadena de acontecimientos implicados en la activación de la síntesis de la PEPC-quinasa (Osuna et al., 2004). La adición de PA y de calcio produjo un aumento de la actividad CDPK dependiente de la concentración. Por tanto, es posible que ambos factores (el calcio que deriva de la activación de la PLC y el PA que deriva de la activación de la PLD) cooperen en la síntesis de la PEPC-quinasa que ocurre en respuesta a la luz. Puesto que el W7, un inhibidor de las CDPKs, disminuyó la actividad PEPC-quinasa detectada en respuesta a la luz, tanto en plantas control como en plantas tratadas con litio, parece probable que la CDPK intervenga en la señalización en un punto aguas abajo de la confluencia de las vías de la PLC y PLD.

La contribución relativa de ambas vías en los diferentes contextos estudiados (oscuridad, LiCl y NaCl) se evaluó empleando inhibidores selectivos de la PLC (neomicina) y de la PLD (n-butanol) y analizando su repercusión sobre la expresión de PPCK1 y PPCK2, y sobre la actividad PEPC-quinasa. En plantas controles, sólo se bloqueó la expresión y la actividad PEPC-quinasa con ambos inhibidores a la vez. Por tanto, parece que ambas vías, de forma independiente, pueden conducir a la síntesis de la PEPC-quinasa. En las plantas tratadas con Li⁺, el máximo efecto inhibidor se obtuvo con n-butanol, indicando que la vía de la PLD es la de mayor relevancia en estas
condiciones. Por el contrario, en plantas aclimatadas a NaCl sólo se observó un efecto parcial de ambos inhibidores, tanto en luz como en oscuridad, lo que sugiere que en estas plantas la síntesis de la PEPC-quinasa ocurre, al menos en parte, de forma constitutiva, lo que concuerda con la independencia de la luz anteriormente mencionada.

Las consecuencias más relevantes de este trabajo son:

*Por primera vez se describe una ruta alternativa a la cursada por la PLC, descrita en protoplastos, para la síntesis de la PEPC-quinasa, y la participación de calcio exógeno, señalización ésta que hasta el momento se creía proveniente en exclusiva de los compartimentos endógenos o intracelulares. La utilización del calcio exógeno y la participación de la ruta de la PLD aumentan enormemente la plasticidad de este mecanismo de regulación, pudiéndose ajustar a los diferentes contextos metabólicos en los que opera.

*Se relaciona la actividad PEPC-quinasa en oscuridad en estrés salino con un cambio de la regulación de la expresión de PPCK1 y PPCK2.

*También, por primera vez, se describe en este trabajo la ruta de transducción de señales que opera para la síntesis de PPCK2 en luz, demostrándose que en ella intervienen los mismos elementos de señalización que conducen a la síntesis de PPCK1, tanto en plantas controles como en salinidad.
DISCUSIÓN GENERAL
Discusión general

El exceso de salinidad en el suelo es una de las principales causas de la disminución de la productividad de las plantas, además de ser un hecho muy común en los cultivos agrícolas debido al riego intenso. Las plantas C_4 se encuentran entre las plantas más productivas y son más resistentes, en general, al estrés salino (Osmond et al., 1982; Adam, 1990) debido, entre otras cosas, a la mayor WUE de estas plantas en comparación con las plantas C_3 (Edwards et al., 2001). Existe numerosa bibliografía que describe un aumento de actividad PEPC en plantas en respuesta al estrés salino (Sankhla y Huber, 1974; Amzallag et al., 1990; Popova et al., 1995). Sin embargo, el efecto de este tipo de estrés abiótico sobre la enzima que fosforila a la PEPC, la PEPC-quinasa, no se había examinado. En este trabajo de tesis se estudia el efecto de la salinidad sobre la PEPC-quinasa a partir de resultados previos de nuestro grupo, y se analizan tanto las características de la PEPC-quinasa que se induce en salinidad como las vías de transducción de señales que operan en su síntesis. Además, se analizan las implicaciones fisiológicas de cambios de esta proteína en la supervivencia de la planta a las condiciones de estrés.

La PEPC (EC 4.1.1.31) es una enzima citosólica que cataliza la β-carboxilación del PEP en presencia de HCO_3^- y Mg^{2+} para producir oxalacetato OAA y Pi (O’Leary, 1982). El OAA es rápidamente convertido en L-Malato por la MDH (Chollet et al., 1996; Izui et al., 2004). En plantas C_4 y CAM, la PEPC realiza la fijación primaria del CO_2 atmosférico que precede a la fijación por la Rubisco. La PEPC también puede actuar aportando intermediarios al ciclo de Krebs (ciclo anaplerótico), en la homeostasis del pH, fijación de nitrógeno en leguminosas, etc (Chollet et al., 1996; Echevarría y Vidal, 2003; Izui et al., 2004). La actividad de la PEPC se regula a distintos niveles, siendo uno de los más importantes su regulación postraduccional mediante fosforilación reversible. La PEPC fosforilada posee una mayor V_{max} a pH subóptimo de 7.3, es menos sensible a su inhibidor alostérico L-Malato, y más sensible a su activador G6P (Echevarría et al., 1994; Duff y Chollet, 1995). La proteína encargada de fosforilar a la PEPC es la PEPC-quinasa, una proteína quinasa de Ser/Thr perteneciente a la familia de las CDPK. A pesar de pertenecer a esta familia, la PEPC-quinasa es independiente de Ca^{2+}, y carece de dominios de regulación. Es la proteína quinasa dependiente de ATP más pequeña que se conoce (32-36 kDa), constando sólo del dominio catalítico (Hartwell et al., 1999; revisado en Hrabak et al., 2003). Además, es una proteína extremadamente escasa. La regulación de la PEPC-quinasa se basa, principalmente, en el control de su síntesis y degradación, poseyendo una tasa de renovación relativamente elevada (unas 2 h) (Jiao et al., 1991a; Hartwell et al., 1996; 1999). En plantas C_4, la PEPC-quinasa se sintetiza en respuesta a la luz (Revisado en Echevarría y Vidal, 2003). Por otro lado, en plantas CAM la síntesis se
produce durante el periodo de oscuridad en respuesta a un oscilador circadiano (Taybi et al., 2004). Por lo tanto, en ambos tipos de plantas, la síntesis de PEPC-quinasa y la consecuente fosforilación de la PEPC coinciden con los periodos activos de fijación fotosintética. La PEPC-quinasa está compuesta por una pequeña familia génica. En sorgo, se han descrito recientemente dos miembros: PPCK1 y PPCK2 (Shenton et al., 2006). En plantas C₄, la ruta de señalización que conduce a la síntesis de la PEPC-quinasa, descrita en protoplastos de células del mesófilo de Digitaria sanguinalis, comienza con la señal luminosa, la cual induce una alcalinización del pH citósólico de la célula del mesófilo (presumiblemente a través de 3-PGA). Posteriormente, se activa una fosfolipasa C (PI-PLC) que hidroliza PIP₂ para sintetizar IP₃, el cual difunde en el citoplasma e induce la salida de Ca²⁺ de las reservas intracelulares. Esta señal de calcio activa una proteína CDPK de tipo PKC, la cual induce la síntesis de la PEPC-quinasa y la fosforilación de la PEPC (Giglioli-Guivarc’h et al., 1996; Coursol et al., 2000; Osuna et al., 2004).

En trabajos previos, nuestro grupo de investigación había descrito un espectacular aumento de actividad PEPC-quinasa en plantas de sorgo sometidas a estrés salino en respuesta a la luz (Echevarría et al., 2001). Las hojas de sorgo de plantas sometidas a estrés salino también muestran una elevada actividad PEPC-quinasa en oscuridad, fenómeno característico de plantas CAM. En este trabajo se ha determinado que la actividad PEPC-quinasa que aumenta en sal en oscuridad posee las mismas características que la sintetizada en respuesta a la luz, es decir, es independiente de calcio, fosforila a la PEPC en la Ser fisiológica del extremo N-terminal y posee un tamaño de unos 35 kDa. Además, esta PEPC-quinasa fosforila a la PEPC de hojas in vivo, detectándose una disminución de la sensibilidad al L-Malato de la PEPC de hojas en oscuridad de plantas aclimatadas a NaCl. El aumento de actividad PEPC-quinasa y de PEPC fosforilada encontrada en estas condiciones de oscuridad se relacionan con niveles altos de L-Malato en las hojas. Este L-Malato es usado por las hojas en la luz, al igual que ocurre en las plantas CAM. Sin embargo, no se detecta fijación neta de CO₂ atmosférico ni apertura estomática en NaCl en oscuridad, por lo que la fuente de C para la fijación realizada por la PEPC debe provenir del reciclaje del CO₂ respiratorio. Este fenómeno de reciclaje es similar al que ocurre en plantas que realizan un metabolismo fotosintético CAM cíclico (Guralnick y Jackson, 2001), por lo que el estrés salino en las plantas de sorgo podría promover un cambio hacia metabolismo mixto C₄-CAM cíclico.

La actividad PEPC-quinasa detectada en oscuridad con NaCl es dependiente de síntesis proteica. Al analizar la expresión de los genes que codifican PEPC-quinasa en sorgo (PPCK1
Discusión general

y PPCK2 (Shenton et al., 2006), se observa que esta elevada actividad en oscuridad se debe, al menos en parte, a la transcripción de los genes PPCK1 y PPCK2.

En este trabajo de tesis es la primera vez que se analiza la expresión diferencial de los genes PPCK1 y PPCK2 en los distintos contextos de estrés.

Es conocido que muchos de los efectos del estrés salino cursan a través de la hormona ABA (Shinozaki y Yamaguchi-Shinozaki, 1997). Quisimos saber si el efecto del NaCl sobre la PEPC-quinasa era reproducido por la hormona. Aunque la aplicación de ABA a hojas o plantas enteras de sorgo no mimetiza el efecto del tratamiento con NaCl (Echevarría et al., 2001), sí que se detecta un aumento moderado de la actividad PEPC-quinasa. Curiosamente, al analizar los niveles de transcriptos de los genes PPCK1 y PPCK2 en respuesta al tratamiento con ABA, no se detectaron cambios en la expresión de dichos genes. La mayoría de trabajos relacionados con el estudio de la regulación de la PEPC-quinasa se han realizado a nivel del estudio de la síntesis de la proteína (Jiao et al., 1991a; Hartwell et al., 1996; 1999), mientras que los aspectos relacionados con la regulación de la degradación han permanecido desconocidos. En este sentido, recientemente se ha descrito la participación de la ruta proteolítica proteosoma/ubiquitina en la degradación de una PEPC-quinasa recombinante de Flaveria trinervia (Agetsuma et al., 2005). Al utilizar un inhibidor específico de este complejo proteolítico (MG132) se consiguen reproducir los efectos del ABA, incluso en presencia de CHX. La mayor actividad PEPC-quinasa detectada se relaciona con una mayor fosforilación de la PEPC in vivo. Es el primer caso descrito de una regulación de la actividad PEPC-quinasa por una señal fisiológica (ABA) que no implica un control de la síntesis de la proteína. Esta inhibición de la degradación de la PEPC-quinasa por parte del ABA, junto con la síntesis de la proteína en oscuridad, pueden ser responsables de los niveles altos de actividad PEPC-quinasa y de PEPC fosforilada detectados en condiciones de salinidad por NaCl. Estos mayores niveles aportan claras ventajas fisiológicas para la planta, entre otras cosas, al aumentar la formación de L-Malato y disminuir la pérdida de CO2 por respiración.

Utilizando LiCl a bajas concentraciones, hemos puesto de manifiesto que es el componente iónico del estrés salino, y no el osmótico, el que induce al aumento de actividad PEPC-quinasa en condiciones de salinidad. Además, hemos utilizado el litio como herramienta extremadamente útil en los estudios de señalización, ya que modifica los niveles de IP3. El litio aumenta drásticamente la actividad PEPC-quinasa. El Li+ es un inhibidor de IMP, enzimas encargadas del reciclaje de inositol a la membrana. En este trabajo hemos determinado que el efecto del litio sobre la PEPC-quinasa es doble: a tiempos cortos de
Discusión general

iluminación (menos de 15 min), el litio aumenta de forma moderada la transcripción del gen PPCK2 por una vía de señalización sensible a U73122 (inhibidor de PLC), mientras que en periodos de iluminación más largos (1 h de luz), el litio disminuye en parte su expresión. Este doble efecto se correlaciona con los niveles de IP$_3$ detectados en ambas condiciones debido al efecto del Li$^+$ sobre las IMP: a tiempos cortos de iluminación, se impide la degradación de IP$_3$ con lo que éste se acumula; pero a largo plazo imposibilita la reposición de PIP$_2$ (sustrato de la PLC) en las membranas, y los niveles de IP$_3$ disminuyen drásticamente. Paradójicamente, a tiempos de iluminación largos se sigue detectando una alta actividad PEPC-quinasa y de cantidad de proteína. Nuestros resultados indican que el efecto del LiCl a largo plazo se localiza sobre la regulación de la degradación de la proteína, proceso inhibido enormemente por esta sal. Gracias al uso del litio, hemos podido establecer una clara conexión entre los niveles de expresión del gen PPCK2 y los de IP$_3$ en la planta. Esta es una prueba muy consistente de la participación de la PLC en la expresión de ese gen de PEPC-quinasa. Además, el litio puede ser una herramienta muy útil para estudiar los elementos que intervienen en la regulación de la degradación de la PEPC-quinasa, proceso hasta ahora poco conocido.

Otro aspecto de la regulación de la PEPC-quinasa que se analiza en profundidad en este trabajo de tesis es la cadena de transducción de señales que conduce a la síntesis de esta proteína, tanto en condiciones control como de salinidad. Esta ruta de señalización fue descrita por primera vez utilizando protoplastos de células del mesófilo (Giglioli-Guivarc’h et al., 1996; Coursol et al., 2000). El sistema experimental de hojas y discos foliares utilizados en este trabajo de tesis aporta mayor complejidad al sistema de protoplastos previamente utilizado. Esta mayor complejidad queda constatada con la participación de nuevos elementos que operan en la ruta de señalización para la síntesis de la PEPC-quinasa en hojas. Además del calcio interno procedente de las reservas intracelulares, hemos puesto en evidencia que en la hoja también participa el calcio externo, abundante en las paredes celulares, aumentando enormemente la versatilidad del sistema. Otra aportación novedosa de este trabajo es la intervención de otra ruta fosfolipídica a parte de la PLC: la PLD. Ambas rutas se activan en hojas en respuesta a la luz, de forma secuencial, independiente o conjunta, produciéndose los mensajeros secundarios Ca$^{2+}$ y PA. Estos mensajeros activan las proteínas CDPK de tipo PKC, que inducen la transcripción de los genes de la proteína PEPC-quinasa. Un esquema final de la ruta propuesta que operaría en respuesta a la luz en hojas de plantas controles se muestra en la Fig. 7.
Figura 7. Nuevas posibilidades en la señalización que conduce a la síntesis de la PEPC-quinasa y a la fosforilación de la PEPC, que incluye la participación del calcio exógeno ya la ruta de la PLD. El aumento del pH citósólico (1) activa una fosfolipasa PLC (2), la cual hidroliza PIP₂ para formar IP₃ y DAG. El IP₃ difunde en el citoplasma e induce la apertura de canales de Ca²⁺ del tonoplasto (3). Además, se produce una apertura de canales de Ca²⁺ del plasmalema y entrada de éste desde el apoplasma. Este Ca²⁺ también podría activar la fosfolipasa PLC. De forma secuencial o independiente a la activación de la PLC, se activa una fosfolipasa PLD (4) que hidroliza fosfolípidos de membrana como PC para producir PA. El Ca²⁺ y el PA activan una proteína CDPK de tipo PKC (5), que induce la transcripción de los genes que codifican PEPC-quinasa (6). Como consecuencia, se produce la fosforilación de la PEPC cambiando sus propiedades cinéticas (Propuesto en Vidal et al., 2007).

Al analizar la expresión diferencial de los genes descritos que codifican PEPC-quinasa, se observó que en estas plantas controles intervienen las vías de la PLC y PLD en respuesta a la luz, siendo necesario inhibir ambas rutas para conseguir una disminución drástica de la expresión. Esto se debe a que, tanto el PA como el Ca²⁺ pueden originarse por las dos rutas. En el caso de la PLC, el aumento de Ca²⁺ es consecuencia de la apertura de canales sensibles a IP₃, y el PA de la fosforilación del DAG (Meijer y Munnik, 2003). Por su parte, la PLD forma directamente PA, el cual puede inducir la producción de ROS. Existen trabajos que describen una apertura de canales de Ca²⁺ derivado de la producción de ROS (Zhang et al., 2005), por lo que esto podría estar ocurriendo en nuestro sistema. En oscuridad, cesa la activación de las fosfolipasas y la proteína PEPC-quinasa es degradada.

En el caso de las plantas tratadas con litio, el funcionamiento de la ruta depende del tiempo de iluminación. A tiempos cortos de iluminación, el Li⁺ induce mayores niveles de IP₃ y se sintetiza más cantidad de PEPC-quinasa vía PLC. A tiempos largos, debido a la disminución de PIP₂ en las membranas, la activación de la transcripción cursa casi de forma
Discusión general

exclusiva por la PLD. Esta síntesis, unida a la disminución de la degradación, originan niveles de PEPC-quinasa superiores en estas plantas en comparación con plantas controles.

En el caso del estrés salino se produce transcripción de los genes PPCK1 y PPCK2 tanto en respuesta a la luz como en oscuridad. Además, esta transcripción sólo se inhibe de forma parcial al bloquear las rutas de la PLC y PLD. Por lo tanto, en condiciones de salinidad por NaCl, la síntesis de la PEPC-quinasa es un proceso en parte constitutivo, y hay una señal en oscuridad que reemplaza a la luz y que activa a la PLC y/o PLD. Además de la transcripción de los genes en luz y oscuridad, en condiciones de estrés por NaCl aumentan los niveles de ABA endógenos en la planta, que inhiben la degradación de la proteína. Como consecuencia de estos dos fenómenos, síntesis tanto en luz como en oscuridad y mayores niveles de ABA, la actividad PEPC-quinasa de estas plantas es muy superior a la detectada en plantas controles. Este aumento de actividad PEPC-quinasa en plantas aclimatadas a estrés con NaCl, y la consecuente fosforilación de la PEPC tanto en luz como en oscuridad, pueden capacitar a la planta para sobrevivir en condiciones donde la fotosíntesis está severamente afectada. En primer lugar, un mejor funcionamiento de la ruta C₄ posibilita una mayor economía del carbono. La fosforilación en oscuridad posibilita la recaptura y reciclaje del CO₂ respiratorio, detectándose altos niveles de L-Malato en las hojas en oscuridad, que es utilizado posteriormente por la hoja en luz, en un metabolismo con características de C₄ y CAM cíclico. La síntesis de L-Malato también puede servir para mantener el balance de cargas, ya que su síntesis aporta H⁺ y su degradación OH⁻ (Martinoia y Rentsch, 1994). Precisamente por ello, la síntesis de L-Malato también puede aportar H⁺ para el funcionamiento de las bombas protónicas. Por último, debido a que el L-Malato es un intermediario del ciclo de Krebs, sirve de suministro de esqueletos carbonados para la síntesis de diferentes compuestos, como por ejemplo, osmolitos compatibles como la prolina. Todas estas posibles funciones de la PEPC pueden ayudar a la planta a sobrevivir en ambientes salinos.
CONCLUSIONES
1. El aumento de actividad PEPC-quinasa que causa el estrés salino es debido al componente iónico de dicho estrés.

2. El aumento de actividad PEPC-quinasa que se produce en oscuridad en respuesta a salinidad es consecuencia de síntesis proteica, y se traduce en un aumento de fosforilación de la PEPC y en un aumento de síntesis de málico en oscuridad a partir del CO₂ respiratorio. Dicho málico es utilizado durante el siguiente periodo de luz. La salinidad causa en el sorgo la transición a un metabolismo fotosintético mixto C₄-CAM cíclico.

3. El tratamiento con LiCl induce un aumento de actividad PEPC-quinasa como consecuencia de la mayor cantidad de la proteína. El Li⁺ a corto plazo aumenta la expresión de PPCK2, existiendo una relación entre la cantidad de IP₃ que se detecta en respuesta a la luz y al Li⁺ y el nivel de expresión de dicho gen. A más largo plazo, el aumento de actividad PEPC-quinasa que causa el litio se debe, principalmente, a una disminución de la velocidad de degradación de dicha enzima.

4. El ABA disminuye la velocidad de degradación de la PEPC-quinasa tanto en luz como en oscuridad. El efecto del ABA es reproducido por el inhibidor del proteosoma MG 132, pero no por una mezcla de inhibidores de proteasas convencionales. Estos resultados indican que la PEPC-quinasa es degradada por la vía de la ubiquitina/proteosoma en hojas de sorgo, y sugieren que el efecto del ABA se debe a una inhibición de dicha vía. Mediante este mecanismo, el ABA puede contribuir a mantener un alto nivel de actividad PEPC-quinasa en salinidad.

5. En la ruta de transducción de señales que inicia la luz y que conduce a la síntesis de la PEPC-quinasa en discos foliares y hojas de sorgo, además de los elementos descritos para protoplastos del mesófilo de D. sanguinalis, que incluyen la activación de la Fosfolipasa C y la liberación de calcio de los depósitos intracelulares, intervienen la activación de la Fosfolipasa D y el calcio extracelular. Ambas vías (PLC y PLD) podrían confluir a nivel de una proteína quinasa Ca²⁺-dependiente (CDPK), con características similares a la PKC de mamíferos, y cuya actividad aumenta en respuesta al calcio y al Ácido Fosfatídico (el producto de la activación de la PLD). No obstante, cualquiera de las dos vías, de forma independiente, puede conducir a la síntesis de PEPC-quinasa en respuesta a la luz en plantas controles.
Conclusiones

6. La luz aumenta la expresión de dos genes que codifican PEPC-quinasa en hojas de sorgo, PPCK1 y PPCK2. Las vías de señalización implicadas en el control de la expresión son las mismas para ambos genes.

7. La aclimatación de plantas de sorgo a concentraciones crecientes de NaCl causa un cambio en la regulación de la expresión de PPCK1 y PPCK2. A diferencia de lo que ocurre en plantas controles, ambos genes se expresan en oscuridad. Además, la expresión de PPCK1 y PPCK2, tanto en luz como en oscuridad, es parcialmente independiente de PLC y PLD. De esta forma, la expresión de los genes PPCK1 y PPCK2 es, en parte, constitutiva e independiente de la luz y de la ruta de señalización activada por ésta en plantas controles. Por otro lado, debido al tratamiento con NaCl, las rutas de señalización de PLC y/o PLD son activadas en oscuridad, coincidiendo con mayores niveles de fosfatidilputanol y ácido fosfatídico en estas plantas en dichas condiciones.
En este apartado no se recogen las referencias bibliográficas específicas de cada artículo.

Bibliografía

Bibliografia

Bibliografia

Bibliografía

Bibliografía

Bibliografía

210

Bibliografía

Bibliografía

Bibliografia

Bibliografía

Li, B., Chollet, R. (1994). Salt induction and the partial purification/characterization of phosphoenolpyruvate carboxylase protein-serine kinase from an inducible

Bibliografia

monophosphate (PtdIns5P), and its accumulation upon osmotic stress. Biochem J 360, 491-498.

Bibliografía

Bibliografía

Bibliografia

Bibliografia

cyclic AMP-dependent protein kinase diminishes sensitivity to inhibition by malate. FEBS Lett 259, 241-244.

Bibliografia

Bibliografia

Bibliografia

