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Abstract. The newly introduced Kernel P systems offer an unitary and
elegant way of integrating established features of existing P system vari-
ants with new elements with potential value for formal modelling. This
paper presents a case study illustrating the expressive power and ef-
ficiency of kernel P systems on the 3-Col problem. The use of model
checking (in particular of Spin) for formal verification of kernel P sys-
tems is also discussed and illustrated in this case.

1 Introduction

Inspired by the behaviour and structure of the living cell, membrane systems,
also called P systems, have been intensely studied in recent years [12]. Many
variants of P systems have been introduced and investigated in terms of com-
putational power and their capability to solve computationally hard problems
[13]. Furthermore, in the last years, significant progress has been made in using
different P system models to model, simulate and formally verify various systems
[2], including a number of well-known distributed algorithms and problems [11].
In many cases, however, the specifications produced required additional features
or constraints compared to the original definition of the P system variant used;
such additional features added expressiveness to the specification and clarified
complex aspects of the system involved. Although extremely useful for the ac-
tual modelling, the ad-hoc addition of such extra features is bound to have an
adverse effect on the capability of P systems to provide a coherent analysis and
verification framework.

To alleviate this problem, a kernel P system (kP system, for short) has been
recently defined [5]. This is a low level specification language that uses established
features of existing P system variants and also includes some new elements.
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Most importantly, kP systems offer a coherent way of integrating these elements
into the same formalism. In a longer term, it is envisaged that a kP system
simulator will be developed and integrated into the P-lingua platform [4] and
model checking facilities will also be available, thus providing a coherent platform
for system analysis and verification.

Kernel P systems use a graph-like structure (similar to that of tissue P sys-
tems) and rules of two types:

– object processing rules, which transform and move objects across compart-
ments; these include rewriting and communication rules guarded by promot-
ers and inhibitors, but also symport/antiport like rules;

– system structure rules, which change the topology of the system and include
membrane division and dissolution and also creation or removal of vertexes
in the graph.

The execution of a rule is conditioned by a guard, defined in a general manner
using activators and inhibitors. The execution strategy is defined in a more gen-
eral way that in traditional P systems, using context-free languages; this allows
established rule selection strategies, such as maximal parallelism and sequen-
tial modes, but also more complex strategies to be expressed in an unitary and
elegant way.

This paper illustrates the modelling power of the newly proposed kP system
language. For this purpose, it considers a well known NP-complete problem, the
3-colouring (3-Col) problem. A kP system that models this problem is compared
with a tissue P system model with cell division available in the literature [3].
The comparison shows that the kP system is more efficient in terms of time
complexity and number of rules used, while requiring the same space resources
(number of cells). The kP system is also implemented in Spin and a number of
interesting properties are extracted and formally verified.

The paper is structured as follows. Section 2 introduces the main elements of
kP systems. The modelling of the 3-Col problem is discussed in Section 3. The
next two sections are concerned with the formal verification of the kP system
model: Section 4 presents the Spin implementation while Section 5 identifies a
number of useful properties and discusses their verification using LTL. Finally,
conclusions are drawn and future work is outlined in Section 6.

2 Background: kP Systems

This section presents the kP system formalism as defined in [5].

Definition 1. Given a finite set, A, called alphabet, of elements, called objects,
and a finite set, L, of elements, called labels, a compartment is a tuple C =
(l, w0, R

σ), where l ∈ L is the label of the compartment, w0 is the initial multiset
over A and Rσ denotes the DNA code of C, which comprises the set of rules,
denoted R, applied in this compartment and a regular expression, σ, over Lab(R),
the labels of the rules of R.
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The format and the types of rules used by kP systems will be given later, in
Section 2.1.

Definition 2. A kernel P system of degree n is a tuple

kΠ = (A,L, IO, µ,C1, . . . , Cn, i0),

where A and L are, as in Definition 1, the alphabet and the set of labels,
respectively; IO is a multiset of objects from A, called environment; µ defines the
membrane structure, which is an undirected graph, (V,E), where V are vertices,
V ⊆ L (the nodes are labels of these compartments), and E edges; C1, . . . , Cn
are the n compartments of the system - each compartment is specified according
to Definition 1; the labels of the compartments are from L and initial multisets
are over A; io is the output compartment where the result is obtained.

2.1 kP System Rules

Before proceeding we introduce the notation used. We consider multisets over A∪
Ā, where A and Ā are interpreted as promoters and inhibitors, respectively;
Ā = {ā|a ∈ A}. For a multiset w over A ∪ Ā and an element a from the same
set we denote by |w|a the number of a′s occurring in w. We also consider the
set of well-known relational operators Rel = {<,≤,=, 6=,≥, >}. For a multiset
w = an1

1 . . . ank

k , aj ∈ A ∪ Ā, 1 ≤ j ≤ k, and αj ∈ Rel, 1 ≤ j ≤ k, we introduce
the following notation w′ = α1a

n1
1 . . . αka

nk

k ; aj is not necessarily unique in w or
w′; w′ is called multiset over A ∪ Ā with relational operators over Rel.

Each rule r has the form r {g}, denoting that r is applicable when g is
evaluated to true. The guards are constructed according to the following criteria
(let g be a guard and pr a predicate over the set of guards):

– g = ε means pr(ε) is always true, i.e., no condition is associated with the
rule r; this guard is almost always ignored from the syntax of the rule;

– g is a multiset over A ∪ Ā with relational operators over Rel, i.e., g =
α1a

n1
1 . . . αka

nk

k , then pr(w) is true iff for z, the current multiset of Ci, we
have, for every 1 ≤ j ≤ k, either (i) if aj ∈ A then |z|aj αj nj holds, or (ii)
if aj ∈ Ā, i.e., aj = ā, a ∈ A, then |z|aj αj nj does not hold;

– g = w1| . . . |wp, i.e., g is a finite disjunction of multisets over A ∪ Ā with
relational operators over Rel, then pr(w1| . . . |wp) is true iff there exists j,
1 ≤ j ≤ p, such that pr(wj) is true.

We denote by FE(A ∪ Ā), from Finite regular Expressions over A ∪ Ā with
relational operators, the set of expressions defined above. When a compound
guard, cg, referring to compartments li and lj is used, its generic format is
cg = li.g1 op lj .g2, where g1, g2 are finite expressions referring to compartments
li and lj , respectively; then, obviously, pr(cg) = pr(g1) op pr(g2), op ∈ {&, |},
where & stands for and and | for or, meaning that either both guards are true
or at least one is true. Simpler forms, where one of the operands is missing, are
also allowed as well as cg = ε. A compound guard defines a Boolean condition
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defined across the two compartments.

A rule can have one the following types:

– (a) rewriting and communication rule: x→ y {g},
where x ∈ A+, y ∈ A∗, g ∈ FE(A∪ Ā); the right hand side, y, has the form
y = (a1, t1) . . . (ah, th), where aj ∈ A and tj ∈ L, 1 ≤ j ≤ h, is an object and
a target, i.e., the label of a compartment, respectively; the target, tj , must be
either the label of the current compartment, li, (more often ignored) or of an
existing neighbour of it ((li, tj) ∈ E) or an unspecified one, ∗; otherwise the
rule is not applicable; if a target, tj , refers to a label that appears more than
once then one of the involved compartments will be non-deterministically
chosen; if tj is ∗ then the object aj is sent to a neighbouring compartment
arbitrarily chosen;

– (b) input-output rule, is a form of symport/antiport rule: (x/y) {g},
where x, y ∈ A∗, g ∈ FE(A∪ Ā); x from the current region, li, is sent to the
environment and y from the environment is brought into the current region;

– (c) system structure rules; the following types are considered:
• (c1) membrane division rule: []li → []li1 . . . []lih {g},

where g ∈ FE(A ∪ Ā); the compartment li will be replaced by h com-
partments obtained from li, i.e., the content of them will coincide with
that of li; their labels are li1 , . . . , lih , respectively; all the links of li are
inherited by each of the newly created compartments;

• (c2) membrane dissolution rule: []li → λ {g};
the compartment li will be destroyed together with its links;

• (c3) link creation rule: []li ; []lj → []li − []lj {cg};
the current compartment, li, is linked to lj and if more than one lj
exists then one of them will be non-deterministically picked up; cg, called
compound guard, describes an expression li.g1 op lj .g2 as defined above;

• (c4) link destruction rule: []li − []lj → []li ; []lj {cg};
is the opposite of link creation and means that compartments li, lj are
disconnected; as usual, when more than a link, (li, lj) ∈ E, exists then
only one is considered by this rule; cg is a compound guard.

Further details and examples of kP system computations can be found in [5].

2.2 Regular Expressions and their Interpretation for kP Systems

In kP systems the rule execution strategy is described using regular expressions
over the sets of labels of rules.

First consider the set of labels of the rules from the set R in a given compart-
ment, denoted by Lab(R). The set of regular expressions over this set is denoted
by REG(Lab(R)). A regular expression σ ∈ REG(Lab(R)) is interpreted as
follows:

– σ = ε means no rule from the current compartment will be executed;
– σ = r, r ∈ Lab(R), means the rule r is executed;
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– σ = αβ means first are executed rules designed by α and then those in β,
where α, β ⊆ Lab(R);

– σ = α|β means either the rules designed by α or those by β are executed,
α, β ⊆ Lab(R); often we use the notation defining sets where | is replaced
by ,;

– σ = γ∗ means rules designed by γ are executed in a maximal parallel way,
γ ⊆ Lab(R).

The use of regular expressions allows the usual behaviour of P systems -
requiring the rewriting and communication, and input-output rules to be applied
in a maximal parallel way and structural rules (e.g. membrane division and
dissolution, creation and destruction of links) to be executed one per membrane
- as well as other alternative or additional features to be expressed in a consistent
and elegant manner [5]. For example, for a one-compartment kP system with
object processing rules R1 and structural rules R2 the maximal parallelism mode
can be expressed by R∗1R2. Furthermore, if a certain order relationship on the
object processing rules exists, e.g. r1, r2 > r3, r4 (i.e. when weak priority is
applied, the first two rules are executed first, if possible, then the next two), this
can be described by {r1, r2}∗ {r3, r4}∗. Considering a hyperdag P system [11],
having two rules:

1. r1 : x→min y
2. r2 : x′ →max y

′

meaning that r1 is executed before r2, such that r1 is applied only once, while
r2 is applied in a maximal way, the corresponding regular expression for a kP
system with this type of execution strategy is: {r1}1{r2}∗. Further details are
given in [5].

3 3-Col Problem Specified with kP Systems

In order to illustrate the modelling power of kP systems we consider the 3-Col
problem [3]. In general, the k-colouring problem is formulated as follows: given
an undirected graph G = (V,E), decide whether or not G is k-colourable; that
is, if there exists a k-colouring of G for which every edge {u, v} ∈ E the colours
of u and v are different.

As shown in [3], the 3-colouring problem can be solved in linear time by a
recognizer tissue P system with cell division and symport/antiport rules [3]. In
what follows, we present a kP system model of the same problem and compare
the two approaches.

A kP system which solves the 3-Col problem for a graph with n ≥ 2 vertices
is kΠ = (A,L, IO, µ,C1, C2, 0), where

– A = {A1, . . . , An} ∪{Ai,j |1 ≤ i < j ≤ n} ∪{B1, . . . , Bn} ∪{R1, . . . , Rn}
∪{G1, . . . , Gn} ∪{a, S,X, Y, T, yes, no} ∪ {X1, . . . , Xn+3}, where Ai, 1 ≤
i ≤ n, stand for the n vertices, Ai,j , 1 ≤ i < j ≤ n are for all possible edges
between the n vertices, Bi, Ri, Gi, 1 ≤ i ≤ n, are for the three colours, blue,
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red and green, respectively, that can be associated with the n vertices; a is
used only in cell 1; S is a flag, X is used to mark that cell division has been
completed, Y is used after cell division and T, F at the end; yes, no are the
two possible answers - one of them being sent to the environment at the end
of the computation; X1, . . . , Xn+3 are used to count the maximum number
of steps, 2n+ 2, requested for the last possible input from C2;

– L = {1, 2};
– IO is not relevant in this case; at the end one of two possible answers will

be sent out;
– C1 = (1, w1,0, R

σ
1 ), C2 = (2, w2,0, R

σ
2 ), where w1,0 = aX1, w2,0 = A1S code(n),

with code(n) being the multiset of edges of the graph to be coloured;
– µ is given by the graph with edge (1, 2)
– Rσ1 and Rσ2 are given by
• R1 contains only rewriting and communication rules:
∗ Xi → Xi+1, 1 ≤ i ≤ n+ 2; these rules are used for counting the first
n+ 2 steps;
∗ aT → (yes, 0); in the first n + 2 steps, for each solution found, an

object T will be sent from C2 to C1; when one or more T ′s are
received from compartments C2, i.e., there is at least one solution,
then this rule is used to release yes into the environment;
∗ aXn+3 → (no, 0) {≥ T̄}; when no T ’s are received after n+ 3 steps,

a no is sent out into the environment.
• R2 contains
∗ membrane division rules: [Ai]2 → [BiAi+1]2[GiAi+1]2[RiAi+1]2{=
S}, 1 ≤ i ≤ n − 1 and [An]2 → [BnX]2[GnX]2[RnX]2{= S}; these
are applied in n steps and all the possible combinations of colouring
n vertices with three colours are obtained;
∗ rewriting and communication rules
· S → λ{= A1,2 = B1 = B2| = A1,2 = G1 = G2| = A1,2 = R1 =
R2| . . . | = An−1,n = Bn−1 = Bn| = An−1,n = Gn−1 = Gn| =
An−1,n = Rn−1 = Rn} (one rule but with a condition containing
3 ∗n ∗ (n− 1)/2 terms) and X → Y ; the first rule checks, for any
pair 1 ≤ i < j ≤ n, that the colour of i and j is the same and
S is available; if so, S is erased; when S disappears, no further
verifications are performed in the corresponding cell; when all
the verifications are completed, X is transformed into Y by the
second rule X → Y ;
· Y S → (T, 1); this rule is applied in the (n + 2)th step: if S is

available, i.e, there is a solution in the current cell 2, T is sent
to cell 1.

The rule execution strategy for compartment 1 is the well-known maximal
parallelism mode, i.e. the associated regular expression is R∗1. Similarly, the rules
are applied in a maximal parallel manner in compartment 2, with the constraint
that cell division rules may only be applied once per computation step, at the
end of the step. That is, if the cell division rules of compartment 2 are denoted by
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248



R2,1 and the rewriting and communication rules by R2,2, the regular expression
associated with compartment 2 is R∗2,2R2,1.This is possible as long as the symbols
used in division rules are not used by any of the rewriting and communication
rules.

The following table summarizes some comparative data concerning the spec-
ification of the 3-Col problem with the model from [3] using symport/antiport
rules and the one above. This shows that the number of symbols and rules is
significantly reduced in comparison to the tissue P system model. Naturally, to
some extent, the reduction in the number of rules is achieved at the expense
of their complexity: for example, the kP system has one rule with a condition
containing 3 ∗ n ∗ (n− 1)/2 terms, also the cell division rules contain 7 symbols
plus one used by their guard. The actual number of cells labelled 2 produced by
the kP system may in general be (significantly) less than 3n since cell divisions
are only performed when S is available (i.e. when the cell content may lead to
a solution); otherwise, when S is no longer available, the cell division stops, as
illustrated by the example below. On the other hand, in the case of the tissue P
system, 3n cells labelled 2 are always produced.

Consider, for example, the following configurations for n ≥ 4:

– [aX1]1[A1Scode(n)]2 - only the division rule will be applied
– [aX2]1[B1A2Scode(n)]2 - only the division rule will be applied
– [aX3]1[B1B2A3Scode(n)]2 - suppose that A1,2 is in code(n); then S will

disappear at this step (the rewriting rule will be applied) after which the
cell will be divided;

– [aX4]1[B1B2B3A4code(n)]2 - this will no longer evolve as S is no longer
available.

It can be observed that an edge (i, j), 1 ≤ i < j ≤ n, is checked at the
(j + 1)th step. Therefore, at the (j + 1)th, S will disappear from all cells for
which there exists an edge (i, j), 1 ≤ i < j, and i and j a coloured identically;
such cells will no longer divide. Thus, the maximum possible number of cells
will only be attained for graphs in which all edges (if any) are of the form (i, n),
i < n.

Type/Specification Tissue P systems kP systems

Alphabet 6n2 + 12n+ +2m+ 2[log m] + 29 n(n+ 1)/2 + 5n+ 10
Rules 2n & 6n(n+ 1)/2 + 8n+ 2m+ 3[log m] + 25 n & n+ 7

Max number of cells 3n + 1 3n + 1
Number of steps 2n+m+ [log m] + 11 n+ 3

The number of steps for the kP system specification will increase if we con-
sider division rules with no object rewriting features associated with. Indeed, in
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this case the rules [Ai]2 → [BiAi+1]2[GiAi+1]2[RiAi+1]2{= S}, 1 ≤ i ≤ n−1 and
[An]2 → [BnX]2[GnX]2[RnX]2{= S} must be replaced with division rules that
do not use object rewriting. Hence we need some additional cells, three more
types, namely 21, 22, 23 and new rules to replace the membrane above division
rules. The new rules used in the membrane division process are the following:

– membrane division in R2: []2 → []21[]22[]23 {= A1 = S| . . . | = An = S};
whenever an Ai and a S are present in cell 2, this is divided into three cells
of types 21, 22 and 23;

– rewriting rules: Ai → BiAi+1 ∈ R21, 1 ≤ i ≤ n − 1, An → BnX ∈ R21,
Ai → GiAi+1 ∈ R22, 1 ≤ i ≤ n− 1, An → GnX ∈ R22 and Ai → RiAi+1 ∈
R23, 1 ≤ i ≤ n− 1, An → RnX ∈ R23;

– membrane division (in fact a label change): []21 → []2 {= B1 = A2| . . . | =
Bn−1 = An| = Bn = X} ∈ R21; []22 → []2 {= G1 = A2| . . . | = Gn−1 =
An| = Gn = X} ∈ R22; []23 → []2 {= R1 = A2| . . . | = Rn−1 = An| = Rn =
X} ∈ R23; cell 21, 22 and 23 will be relabelled 2 when the guards are true;

In this case, 1 + 3n+ 3 rules will replace the n division rules; the maximum
number of cells will remain the same, i.e., 3n + 1 and the number of steps will
become 2n+ 3 (provided that the rewriting and division rules in cells 21, 22 and
23 are executed in the same step. These values are presented in the table below.

Type/Specification kP systems

Alphabet n(n+ 1)/2 + 4n+ 8
Rules 4 & 4n+ 7

Max number of cells 3n + 1
Max number of steps 2n+ 3

4 Promela Implementation of the kP System

To further demonstrate our solution to the 3-Col problem using kP systems,
we will implement, execute and formally verify the proposed model in the Spin
verification tool [1]. Originally designed for verifying communications protocols,
Spin is particularly suited for modelling concurrent and distributed systems that
are based upon interleaving of atomic instructions. Systems are described in a
high level language called Promela (a process meta language). Promela allows
the use of embedded C code as part of the model specifications, facilitating the
verification of high level, implementation dependent properties. It also allows
for a concise specification of logical correctness requirements, including, but not
restricted to requirements expressed in LTL (linear temporal logic). Our goal is
twofold: firstly, we aim to simulate the kP system for several instances of the
problem and secondly, we attempt to verify the correctness of our model by
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asserting the validity of a set of properties/invariants. In this section we address
the implementation of the kP system model defined earlier, into Spin’s Promela.

There are two essential antinomic aspects usually considered when imple-
menting a specification. On the one hand, an implementation must target co-
herence, structural clarity and a granularity that confers a certain flexibility
for potential alterations and/or extensions. On the other hand, the developer is
challenged by the performance requirements, the demand for a reasonably fast
and efficient execution. The importance of the latter is particularly augmented
in the context of NP complete problems. There is an evident trade-off between
the level of abstraction and an optimal representation given by exploiting the
particularities of the problem. Additionally, we must take into consideration the
issue of property specification in our implementation; that is, we must be able to
relate to variables denoting P system elements (i.e. membranes, objects, links).

In accordance with these considerations, we set our primary focus on the
development of a model specific implementation, taking into account particular-
ities such as the existence of only two types of membranes, the absence of link
creation/destruction rules, the absence of a composite execution strategy, the
use of indexed object symbols.

The Spin model checker was successfully used on various other case studies
employing membrane systems [8, 7, 10]. We can identify certain (re-usable) pat-
terns of correspondence between P system features and Promela statements and
instruction blocks. For example, the guarded parallel rewriting of P systems can
be translated using Promela’s non-deterministic conditional statements (i.e if,
do); the projection of a membrane to a Promela data type definition. However,
our approach differs from existing implementations due to the direct mapping
of a membrane’s set of rules (the instruction set) to an individual process in
Promela. Spin executes processes asynchronously (the programs are interleaved
behind the scene, simulating a parallel execution) which makes it a natural
support for membrane rules. Hence, we have an expandable set of membrane
instances which store a multiset of objects - the program data; and a finite set of
instructions encapsulated in independent processes - the parallel instruction set.
Each process will run for each membrane instance it is associated with, perform-
ing rewriting and communication but also creating new instances (membrane
division). In order to distinguish a computational step in a P system and pre-
vent a rather chaotic process execution, an auxiliary process is introduced as a
coordinator: for each step the Scheduler process will launch each set of instruc-
tions on the instances and will block until all processes have completed (for all
membrane instances). The scheduler plays the role of a clock which synchronises
execution into steps. This task is repeated until the environment is flagged with
either ”yes” or ”no”, signalling the computation has halted and a result was
generated, or until it reaches a maximum number of steps specified by the user.
The input is also defined through a global parameter - the number of vertices
and an initial configuration of Aij objects which denote the edges of the graph.

In Table 1 we illustrate the mapping of kP system features to Promela ele-
ments. Figure 1 describes the algorithm devised for this kP system solution in
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(commented) pseudo-code. A code sample for each of the P system’s distinctive
components is also provided in the Appendix.

kP system component Element in Promela Sample

Membrane type Data type definition Fig. 2
Membrane instances Instances of defined type (organised in an array) Fig. 3

Objects Variables/arrays of variables of type int Fig. 2
Rules (instruction set) Promela processes Fig. 4

Table 1. Mapping of kP system features to Promela elements

5 Formal Verification with Spin

In this section we describe the formal verification of some kP systems properties,
by extending the approach introduced in [6] for P systems with static structure.
This approach was initially used in conjunction with the NuSMV model checker
and further developed in [8, 10] for verification of static P systems with the Spin
model checker, later adapted in [7, 9] for P systems with active membranes and
tissue P systems, respectively.

The main idea behind this formal verification is the transformation of the P
system into an associated Kripke structure, for which expected properties are
defined. The equivalence between these properties, expressed in terms of P sys-
tem and the corresponding Kripke structure is formally proved in [6]. However,
the executable model of a P or kP system written in Promela is normally imple-
mented as a sequence of transitions (as described in Section 4) and consequently
additional (intermediary) states are introduced into the model.

One important assumption is that the intermediary states do not form infi-
nite loops and consequently every possible (infinite) path in the Promela model
will contain infinitely often states corresponding to the kP system configura-
tions. This request ensures that every path in the kP system has at least one
corresponding path in the Promela model and vice versa.

The properties to be verified in the kP system must be reformulated as equiv-
alent formulas for the associated Promela model. In Table 2 we summarize the
transformations of different types of LTL formulas for the Promela specification.
The first set of rows describe the transformations of basic LTL formulas, involv-
ing temporal logic operators such as Globally (G), Until (U), neXt (X), Finally
(F), Release (R), for which the equivalent Promela transformations have been
formally proved in [8]. The second set of formulas from Table 2 can be easily
derived using the basic LTL operators, for which the transformations are previ-
ously defined. In corresponding LTL Promela specifications, pInS represents a
flag which is true in the original (non-intermediary) states of the kP system. For
example, a property such as ‘Eventually, there is YES in the environment’, will
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/* Array of instances for membranes of type Compartment1 */

Compartment1 c1Cells[ ];

/* Array of instances for membranes of type Compartment2 */

Compartment2 c2Cells[ ];

int stepCount = 0;

while(environment is empty AND stepCount < MaxNumberOfSteps) {

foreach(membraneInstance m in c1Cells) {

/* Execute process1 which contains all rules

defined for a membrane of type "Compartment1"

*/

run process1(m);

}

foreach(membraneInstance m in c2Cells) {

/* Execute process2 which contains all rules

defined for a membrane of type "Compartment2"

*/

run process2(m);

}

/* Wait until all processes complete

i.e. when all applicable rules were executed.

*/

wait();

/* Computational step complete */

stepCount++;

}

Fig. 1. Pseudo code illustrating the kP system model implementation into Promela
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Property LTL specification

G p [ ] ( p || !pInS )

F p < > ( p && pInS )

pU q (p || !pInS) U (q && pInS)

X p X ( !pInS U ( p && pInS))

pR q ( p && pInS ) V ( q || !pInS )

G (p→ q) [ ] ( !p || q || !pInS )

G (p→ F q) [ ] ((p -> < >(q && pInS)) || !pInS )

G (p→ Xq) [] (!p || X(!pInS U (q && pInS)) || !pInS))

Table 2. Reformulating the P system properties for the Promela implementation

become, for the Promela model, <> (environment.yes == 1 && pInS), i.e.
we expect the number of yes objects in the environment to become 1 only for
configurations corresponding to the kP system, but not for all the intermediary
states.

In the following we present some properties of the kP system which were
verified:

– ltl solYes { ((environment.yes == 0 && environment.no == 0) ||

!pInS) U (environment.yes == 1 && environment.no == 0 && pInS)}

is a property stating that the number of yes and no objects in the environ-
ment is zero until a yes is sent to the environment.

– ltl solNo { ((environment.yes == 0 && environment.no == 0) ||

!pInS) U (environment.yes == 0 && environment.no == 1 && pInS)}

is a property stating that the number of yes and no objects in the environ-
ment is zero until a no is sent to the environment. This property, checked for
a 3-Col model having the number of vertices n = 3 and consequently hav-
ing solution was falsified by the model checker and a counterexample was
received.

– ltl g1 {[] (!(c1Cells[0].a == 1 && c1Cells[0].T >= 1) ||

X(!pInS U ((environment.yes == 1) && pInS)) || !pInS) }

states that: globally, if in the membrane labelled with 1 there are present
the objects a, T , then, in the next state of the kP system, an yes object will
be sent to the environment.

– ltl g2 {[] (!(schedulerStep == stepIndex &&

((c2Cells[c2CellIdx].B[vtx1] && c2Cells[c2CellIdx].B[vtx2]) ||

(c2Cells[c2CellIdx].G[vtx1] && c2Cells[c2CellIdx].G[vtx2]) ||

(c2Cells[c2CellIdx].R[vtx1] && c2Cells[c2CellIdx].R[vtx2]) )

&& c2Cells[c2CellIdx].Aij[vtx1*N + vtx2]) ||

X(!pInS U (c2Cells[c2CellIdx].S == 0 && pInS)) || !pInS) }

expresses that: if at the computation step given by c2CellIdx, in a certain
membrane with the label 2, given by the index c2CellIdx, there exists an
edge between (vtx1, vtx2), and the two vertices are both coloured in blue,
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green or red, then, in the next kP system configuration, the S symbol from
this membrane will disappear.

The properties expressed before were checked for several kP systems, having
different graph structures, which implied obtaining different results for these
formulas, true or false plus a corresponding counterexample. For higher values
of n the kP system simulation is realised in a few seconds, but the property
verification faces the well-known ‘state explosion problem’.

6 Conclusions

Kernel P systems offer an unitary and elegant way of integrating established
features of existing P system variants with new elements, valuable for formal
modelling. This paper presents a case study illustrating the expressive power
and efficiency of kernel P systems on the 3-Col problem. It presents a kP system
that models the problem and compares it with a tissue P system model available
in the literature; the comparison proves the efficiency and expressiveness of kP
systems. The paper also makes a first step towards formal verification of kP
systems: the kP system model for the 3-Col problem is implemented in Promela
and a number of rules for converting a kP system into a Promela implementation
are identified. Furthermore, using this implementation, a number of interesting
properties are formally verified using Spin.

In future work we will continue to asses the modelling power and efficiency
of kP systems in other case studies. Another priority is the development of a
platform for simulation and formal verification of kP systems.
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Appendix

/* Membrane type and object definition */

typedef Compartment2 {

int A[N] = 0;

int Aij[NN] = 0;

int B[N] = 0;

int G[N] = 0;

int R[N] = 0;

int X = 0;

int S = 0;

int Y = 0;

int isDisolved;

int isComputing;

}

Fig. 2. Sample of membrane type and object specification

M1 instM1[MAX_M1_COUNT]; /* global array of membrane instances */

Fig. 3. Sample of membrane instances global array
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proctype M1Rules(int instIndex) {

instM1[instIndex].isComputing = true;

/* rewriting rules */

/* non-deterministic rules application */

do

:: instM1[instIndex].A && instM1[instIndex].B &&

instM1[instIndex].D >= 1 -> /* guard */

instM1[instIndex].A--; instM1[instIndex].B--;

instM1[instIndex].D++;

:: c1Cells[cellIndex].A && c1Cells[cellIndex].C &&

instM1[instIndex].D < 2 -> /* guard */

instM1[instIndex].A--; instM1[instIndex].C--;

:: else -> break;

od;

/* communication rules */

if

:: instM1[instIndex].A && instM1[instIndex].B ->

instM1[instIndex].A--; instM1[instIndex].B--;

/* outgoing symbols are stored global buffers */

/* until the end of the current step */

goingToM2.S++;

:: else -> skip;

fi;

/* membrane division rules */

if

:: instM1[instIndex].D == 3 -> /* guard */

d_step {

/* copyCell(srcM1,destM1): inline macro defined in Promela */

copyCell(instM1[instIndex], instM1[totalM1Count]);

totalM1Count++;

copyCell(instM1[instIndex], instM1[totalM1Count]);

totalM1Count++;

}

instM1[instIndex].isDisolved = true;

:: else -> skip;

fi;

instM1[instIndex].isComputing = false;

}

Fig. 4. Sample of Promela encoding for the following set of rules: AB → D{≥ D},
AC → λ{< D2}, AB → (S, 2), []1 → []11[]12{= D3}
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