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Existence of a sequence satisfying Cioranescu-Murat

conditions in homogenization of

Dirichlet problems in perforated domains

J. CASADO-DÍAZ

Riassunto: In un lavoro del 1982, D. Cioranescu e F. Murat hanno considerato
il problema soddisfatto dal limite u di una successione un di soluzioni di

{
−∆un = f in Ωn,

un = 0 su ∂Ωn,

dove Ωn è una successione di insiemi aperti che sono contenuti in un fissato insieme
aperto limitato Ω. Tale studio richiede di imporre numerose ipotesi sulla successione
Ωn. I risultati di D. Cioranescu e F. Murat sono stati estesi in seguito da N. Labani e
C. Picard al caso del p-Laplaciano. Nel presente lavoro, noi dimostriamo che le ipotesi
su Ωn possono essere ridotte a un’unica ipotesi, la seguente: esiste una successione
zn ∈ W 1,p(Ω) che vale zero su Ω \ Ωn e che converge a 1 debolmente in W 1,p(Ω).

Il problema di omogeneizzazione nel caso generale in cui non si fa alcuna ipo-
tesi sulla successione Ωn è stato risolto da G. Dal Maso e U. Mosco con metodi di
Γ-convergenza e recentemente G. Dal Maso e A. Garroni hanno risolto il problema
generale con metodi prossimi a quelli usati da D. Cioranescu e F. Murat.

Abstract: In a paper of 1982, D. Cioranescu and F. Murat considered the problem
satisfied by the limit u of the sequence un solution of

{
−∆un = f in Ωn,

un = 0 on ∂Ωn,

where Ωn is a sequence of open sets which are contained in a fixed bounded open set Ω.
In order to make this, they imposed several hypotheses about the sequence Ωn. Their
results were later extended to the p-Laplacian operator by N. Labani and C. Picard. In
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the present paper, we prove that these hypotheses may be reduced to the following one:
There exists a sequence zn ∈ W 1,p(Ω) which is zero in Ω \ Ωn and which converges
weakly to 1 in W 1,p(Ω).

Indeed, G. Dal Maso and U. Mosco have solved the above homogenization prob-
lem in the general case in which we do not make any hypothesis about Ωn using Γ-
convergence methods and recently, G. Dal Maso and A. Garroni have also solved this
general problem by a method close to the one used by D. Cioranescu and F. Murat.

– Introduction

The contents of this paper is concerned with the study of the homog-

enization problem

(0.1)

{
−∆pun = f in D′(Ωn),

un ∈ W 1,p
0 (Ωn),

where Ωn denotes a sequence of open sets contained in a fixed bounded

open set Ω ⊂ IRN , p is a given number with 1 < p < +∞, f is an element

of W −1,p′
(Ω) and ∆p is the p-lapacian operator defined by

−∆pu = − div |∇ u|p−2∇ u.

The solutions un of (0.1) are bounded in W 1,p
0 (Ω) (we identify un with

its extension by zero to Ω \ Ωn) and so, there exists a subsequence which

converges weakly to a function u in W 1,p
0 (Ω). The homogenization prob-

lem is to find the equation satisfied by the function u and also, to give

an approximate representation of the gradient of un in the strong topol-

ogy of Lp(Ω) using the function u and some explicit auxiliary functions

(corrector problem).

In the case p = 2, this homogenization problem has been solved by D.

Cioranescu and F. Murat in [6] (see also [15]) assuming the following

hypotheses about the sequence Ωn:
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There exists a sequence of functions wn and a distribution µ satisfying

wn ∈ H1(Ω),(H1)

wn = 0 in Ω \ Ωn,(H2)

wn ⇀ 1 in H1(Ω),(H3)

µ ∈ W −1,∞(Ω),(H4)





for any sequence vn and any v satisfying

vn ⇀ v in H1(Ω), vn = 0 in Ω \ Ωn,

and for any ϕ ∈ D(Ω), we have
∫

Ω

∇ wn ∇ (ϕvn) → 〈µ, ϕv〉.

(H5)

It was then proved in [15] that hypothesis (H4) can be weakened in µ ∈
H−1(Ω). These hypotheses are justified in [6] by several examples, the

most typical case being when Ωn is obtained by removing from Ω the

union of closed balls of radius ε
N

N−2
n centered at the centers of cubes of size

εn which cover IRN periodically. With these assumptions, D. Cioranescu

and F. Murat prove that the limit u of the sequence un satisfies

(0.2)

{
−∆u + µu = f in D′(Ω),

u ∈ H1
0 (Ω).

Moreover, they prove that when u belongs to W 1,∞(Ω), un − wnu con-

verges strongly to zero in H1
0 (Ω). Their method has been generalized by

N. Labani and C. Picard to the case of the p-Laplacian in [16].

The goal of the present paper is to prove the existence of a sequence

wn and of a distribution µ satisfying properties similar to (H1),. . . , (H5)

for the p-Laplacian, starting from the only assumption that the wn satisfy

(H1), (H2), (H3) (with H1(Ω) replaced by W 1,p(Ω), see Theorem 2.1).

In this case, µ is no more in W −1,∞(Ω) but only in the set of bounded

nonnegative measures vanishing on the sets of p-capacity zero.

We will also generalize the results obtained in [6] to this new context.

In particular we obtain an improvement of the corrector result given in



390 J. CASADO-DÍAZ [4]

[6], proving that it is enough to have u ∈ W 1,p
0 (Ω) ∩ L∞(Ω) in order to

have the strong convergence of un − wnu in W 1,p
0 (Ω) (see Theorem 4.1).

The method we use here can be extended to the case of general quasi-

linear problems, but for our purpose it is enough to study the p-laplacian,

because in the general case we will obtain better results reasoning by

comparison. This will be carried out in [3] and [4], where we will use the

results obtained in the present paper to solve on the other hand general

monotone problems, and on the other one quasi-linear problems with

a perturbation term, which is quadratic with respect to the gradient,

respectively.

Hypothesis (H1), (H2), (H3) mean that Ω \ Ωn are small enough. In

the limit, Ωn fills the whole of Ω. Indeed, the general problem in which

we do not assume any hypothesis about the sequence Ωn has been solved

by G. Dal Maso and U. Mosco ([9], [10]) in the linear case and by

G. Dal Maso and A. Defranceschi [7] in the monotone case, using

Γ-convergence methods. To use Γ−convergence, the problem has to be

written as a minimization problem, which is not always possible for a

general quasi-linear problem. Also there is no corrector result in these

papers, while this is essential for us, in order to apply the comparison

method which allows us to study more general equations. On the other

hand, G. Dal Maso and A. Garroni [8] have recently used a different

argument to study the linear case without any hypotheses about Ωn. This

argument, which is close to the one used in [6] (the main difference lies in

the definition of the function wn), does not need symmetry assumptions

and gives a corrector result. The method used in [8] has been extended by

G. Dal Maso and F. Murat [11], [12] to the case of monotone operators

assuming a homogenity hypothesis for the operator. Using the corrector

result which appears in [8] or [11], [12] and the comparison method we

are able to solve in [5] the case of general monotone systems without

homogeneity hypothesis, and without any hypothesis on the open sets.

1 – Preliminaries and notation

Throughout the present paper:

- Ω denotes a bounded open set contained in IRN .

- Lp(Ω, dµ), 1 ≤ p < +∞, denotes the space of functions with power p

integrable in Ω with respect to the measure µ.
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- L∞(Ω, dµ) denotes the space of functions essentialy bounded in Ω with

respect to the measure µ.

- If the measure µ is the Lebesgue measure we abbreviate the notation

using Lp(Ω) or L∞(Ω).

- For 1 ≤ p ≤ +∞ we denote p′ the conjugate exponent of p defined by
1
p

+ 1
p′ = 1.

- D(Ω) denotes the space of infinitely derivable functions with compact

support contained in Ω. The dual space of D(Ω) is the space of distribu-

tions which will be denoted by D′(Ω).

- W 1,p(Ω) denotes the usual Sobolev space of functions of Lp(Ω) with

distributional derivatives in Lp(Ω).

- W 1,p
0 (Ω) denotes the closure of D(Ω) in W 1,p(Ω). For 1 ≤ p < +∞, the

dual space of W 1,p
0 (Ω) will be denoted by W −1,p′

(Ω)

- ∇ denotes the gradient operator.

- div denotes the divergence operator.

- ∆p denotes the p-Laplacian operator, i.e. ∆p u = div |∇ u|p−2∇ u.

- χS denotes the characteristic function of the set S, i.e. χS(x) = 1 if

x ∈ S, χS(x) = 0 if x -∈ S.

- Mb(Ω) denotes the space of bounded Borel measures in Ω.

- cap(S) denotes the p-capacity of the set S ⊂ Ω with respect to Ω (p will

be specified by the context), which is defined in the following way:

If S is a compact set, the capacity of S is defined by

cap(S) = inf
{∫

Ω

|∇ ϕ|p : ϕ ∈ D(Ω), ϕ ≥ χS

}
.

If S is an open set, the capacity of S is defined by

cap(S) = sup
{
cap(K) : K ⊂ S, K compact

}
.

If S is an arbitrary set, the capacity of S is defined by

cap(S) = inf
{
cap(G) : S ⊂ G ⊂ Ω, G open

}
.

It is well known (see e.g. [14], [13], [19]) that a function of W 1,p(Ω) has

a representative which is defined quasi-everywhere, i.e. except on a set

of zero p-capacity. In the whole of the present paper we will select this

representative for any function u ∈ W 1,p(Ω).



392 J. CASADO-DÍAZ [6]

- Mp
b(Ω) denotes the set of nonnegative bounded Borel measures van-

ishing on the sets of zero capacity. By the above mentioned result, the

functions of W 1,p(Ω) are µ-measurable for µ ∈ Mp
b(Ω). We have

(1.1) W 1,p(Ω)∩L∞(Ω) ↪→L∞(Ω, dµ) ↪→Lq(Ω, dµ) for any 1 ≤ q < +∞,

where the last inclusion holds since µ belongs to Mb(Ω).

- For r ≥ 0, Tr : IR 4→ IR is the truncation function definded by

Tr(s) =





r if s ≥ r

s if −r ≤ s ≤ r

−r if s ≤ −r,

while Rr : IR 4→ IR is the function defined by

Rr(s) =





0 if |s| ≤ r

2
2

r
|s| − 1 if

r

2
≤ |s| ≤ r

1 if |s| ≥ r.

The following properties of the function ξ ∈ IRN 4→ |ξ|p−2ξ ∈ IRN

will be often used:

For any ξ, η ∈ IRN , we have for p ≥ 2

(|ξ|p−2ξ − |η|p−2η)(ξ − η) ≥ 22−p|ξ − η|p,(1.2)

∣∣|ξ|p−2ξ − |η|p−2η
∣∣ ≤ (p − 1)

(|ξ|p−2 + |η|p−2
)|ξ − η|(1.3)

and for 1 ≤ p ≤ 2

(|ξ|p−2ξ − |η|p−2η)(ξ − η) ≥ (p − 1)
|ξ − η|2

|ξ|2−p + |η|2−p
,(1.4)

∣∣|ξ|p−2ξ − |η|p−2η
∣∣ ≤ 22−p|ξ − η|p−1.(1.5)
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Inequality (1.4) will be used in the following form: given u, v ∈
W 1,p(Ω), 1 < p < 2, then

(1.6)

∫

Ω

|∇ (u − v)|p ≤

≤ 1

(p − 1)
p
2

∫

Ω

[
(|∇ u|p−2∇ u − |∇ v|p−2∇ v)(∇ u − ∇ v)

] p
2 ·

· [|∇ u|2−p + |∇ v|2−p
] p

2 ≤

≤ 2p−1

(p − 1)
p
2

[∫

Ω

(|∇ u|p−2∇ u − |∇ v|p−2∇ v)(∇ u − ∇ v)

] p
2

·

·
[∫

Ω

(|∇ u|p + |∇ v|p)
] 2−p

2

.

2 – The main result and its proof

Let us consider a fixed bounded open set Ω ⊂ IRN and a sequence of

open sets Ωn contained in Ω.

In the whole of the present paper, the functions of W 1,p
0 (Ωn) will be

always extended by zero outside of Ωn and therefore considered defined

as in the whole of Ω.

Theorem 2.1 establishes the existence of a sequence satisfying prop-

erties analogous to those of the sequence wn defined in [6].

Theorem 2.1. Assume that there exists a sequence zn ∈ W 1,p(Ω),

with zn = 0 in Ω\Ωn, which converges weakly in W 1,p(Ω) (1 < p < ∞) to

a function z. Assume also that there exists a constant ρ > 0 with z ≥ ρ

quasi-everywhere in Ω. Then, there exists a subsequence of n (which will

still denoted by n to simplify the notation), a sequence of functions wn

and a measure µ satisfying

wn ∈ W 1,p(Ω),(P1)

wn = 0 in Ω \ Ωn,(P2)

0 ≤ wn ≤ 1,(P3)

wn ⇀ 1 weakly in W 1,p(Ω) and strongly in W 1,q(Ω), 1 ≤ q < p,(P4)
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µ ∈ Mp
b(Ω),(P5)

{
for any ϕ ∈ W 1,p

0 (Ω) ∩ L∞(Ω) we have

∫
Ω |∇ wn|pϕ → ∫

Ω ϕ dµ,
(P6)





for any vn ∈ W 1,p
0 (Ωn) and for any v ∈ W 1,p

0 (Ω) such that

vn ⇀ v in W 1,p
0 (Ω), we have

v ∈ L1(Ω, dµ) and

∫

Ω

|∇ wn|p−2 ∇ wn ∇ vn →
∫

Ω

v dµ.

(P7)





for any vn ∈ W 1,p(Ω), such that vn = 0 in Ω \ Ωn and

vn ⇀ 0 in W 1,p(Ω), we have
∫

Ω

|∇ wn|p−2∇ wn ∇ vn → 0.

(P8)

Moreover, if the properties (P1), (P2), . . . ,(P8) hold true for the same

subsequence n and for some ŵn and µ̂, then we have

{
µ̂ = µ

ŵn − wn → 0 in W 1,p(Ω) strongly.

Remark 2.1. It will be proved below that in Property (P7), v actu-

ally belongs to Lp(Ω, dµ), (see Theorem 3.1).

Remark 2.2. The sequence wn will provide us a corrector for the

homogenization problem

{
−∆p un = f in D′(Ωn),

un ∈ W 1,p
0 (Ωn).

Remark that the behaviour of wn is similar to of a sequence w̃n which

satisfies (µ does not belong in general to W −1,p′
(Ω) and therefore such

that w̃n does not exist in general)





w̃n ∈ W 1,p(Ωn), w̃n = 0 in Ω \ Ωn,

−∆p w̃n = µ in D′(Ωn),

w̃n ⇀ 1 in W 1,p(Ω).
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Compare this one with the homogenization problem

{
−div (An ∇ un) = f in D′(Ω),

un ∈ H1
0 (Ω)

where An ∈ L∞(Ω)N×N are such that there exist α, β > 0 with αI ≤
An ≤ βI in the sense of the matrices. The idea of L. Tartar (see [18])

to construct a corrector for this problem is to consider for any i with

1 ≤ i ≤ N a sequence wi
n such that





wi
n ∈ H1(Ω),

−div (An ∇ wi
n) = − div (A0 ∇ xi) = −div (A0 ei) in D′(Ω),

wi
n ⇀ xi in H1(Ω),

where A0 will be the H-limit of An.

Proof of Theorem 2.1. The proof of Theorem 2.1 will be divided

in nine steps.

Step 1: Definition of the subsequence n, of the sequence wn and of

µ; the subsequence wn satisfies (P1), (P2) and (P3).

Proof. Define

A =
{{vn} : vn ∈ W 1,p(Ω) : vn = 0 in Ω \ Ωn, vn ⇀ 1 in W 1,p(Ω)

}
,

α = inf

{
lim inf

n→∞

∫

Ω

|∇ vn|p : {vn} ∈ A
}

.

The set A is not empty since the sequence vn =
T+

ρ (zn)

ρ
belongs to A.

For any k ∈ IN, consider a sequence {vk
n} ∈ A such that

lim inf
n→∞

∫

Ω

|∇ vk
n|p < α +

1

k
.

Defining ṽk
n as ṽk

n = T+
1 (vk

n), we have that {ṽk
n} ∈ A, 0 ≤ ṽk

n ≤ 1, and

lim inf
n→∞

∫

Ω

|∇ ṽk
n|p ≤ lim inf

n→∞

∫

Ω

|∇ vk
n|p < α +

1

k
.

Rellich-Kondrachov’s compactness and Lebesgue’s dominated con-

vergence theorems imply that the embedding W 1,p(Ω)∩L∞(Ω) ↪→ Lq(Ω)
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(1 ≤ q < +∞) is compact (even if no smoothness is assumed on ∂Ω).

Thus ṽk
n converges strongly to 1 in Lp(Ω) as n tends to infinity, for k

fixed. It is then possible to define a subsequence nk of n, which is in-

creasing and tends to infinity, such that





∫

Ω

|∇ ṽk
nk

|p < α +
2

k
,

‖ ṽk
nk

− 1 ‖Lp(Ω)<
1

k
.

The subsequence nk is the sequence which appears in Theorem 2.1.

For the sake of simplicity, we will from now on denote it by n. We also

define wn as wn = wnk
= ṽk

nk
.

The sequence wn converges weakly to 1 in W 1,p(Ω) and so satisfies

(P1), (P2) and (P3). Extracting if necessary a further subsequence we

can also assume the existence of a bounded nonnegative Radon measure

µ such that |∇ wn|p converges to µ in the weak-∗ sense of Mb(Ω).

Step 2: The sequence wn satisfies (P8).

Proof. Define the functional F : W 1,p(Ω) 4→ IR by

F (u) =

∫

Ω

|∇ u|p.

This functional is Fréchet differentiable with continuous derivative

F ′(u)v = p

∫

Ω

|∇ u|p−2∇ u ∇ v, ∀ v ∈ W 1,p(Ω).

Let vn ∈ W 1,p(Ω) be a sequence which converges weakly to zero in

W 1,p(Ω) and such that vn = 0 in Ω\Ωn. For any λ > 0, by definition of α

and of wn, we have lim infn→∞ F (wn+λvn) ≥ α while limn→∞ F (wn) = α.

We deduce that

(2.1) lim inf
n→∞

F (wn + λvn) − F (wn)

λ
≥ 0, ∀λ > 0.

Lagrange’s theorem implies that there exists some θλ
n ∈ (0, 1) such that

F (wn + λvn) − F (wn)

λ
= F ′(wn + θλ

nλvn)vn.
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Using the uniform continuity (1.3) or (1.5) of F ′ on the bounded sets, we

have

F ′(wn + θλ
nλvn)vn = F ′(wn)vn + rn(λ),

where

|rn(λ)| ≤
{

C(|λ|p−1 + |λ|) if p ≥ 2,

C|λ|p−1 if 1 ≤ p ≤ 2
.

This implies that

lim inf
n→∞

F ′(wn)vn ≥ 0.

Since the sequence −vn satisfies the same conditions as vn, we also have

lim sup
n→∞

F ′(wn)vn = − lim inf
n→∞

F ′(wn)(−vn) ≤ 0.

Therefore F ′(wn)vn tends to 0, which is (P8).

A more general result is the following:

Step 3: Let vk
n ∈ W 1,p(Ω), such that vk

n = 0 in Ω \ Ωn and vk
n

converges weakly to zero in W 1,p(Ω) when n and k tend to infinity, i.e.

lim
n,k→∞

∫

Ω

vk
nϕ = lim

n,k→∞

∫

Ω

∇ vk
n∇ ϕ = 0, ∀ϕ ∈ W 1,p′

(Ω).

Then

(2.2) lim
n,k→∞

∫

Ω

|∇ wn|p−2∇ wn ∇ vk
n = 0.

Proof. This follows from Step 2 and from the following easy result:

Lemma 2.1. For any sequence hn,k ∈ IR, with two indices, and any

l ∈ IR the following assertions are equivalent:

i) The double limit limn,k→∞ hn,k exists and lim
n,k→∞

hn,k = l.

ii) For any sequence kn ∈ IN which converges to infinity, we have

lim
n→∞

hn,kn = l.
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Step 4: The sequence wn satisfies (P4).

Proof. We already know that wn converges to 1 weakly in W 1,p(Ω)

and, using Rellich-Kondrachov’s compactness theorem, strongly in Lq(Ω),

for any q with 1 ≤ q < p (even if no smoothness is assumed on ∂Ω). By

Egorov’s theorem, wn converges almost uniformly (at least for a subse-

quence). Hence, for any δ > 0 there exists a set Aδ ⊂ Ω such that the

Lebesgue measure of Ω \ Aδ is less than δ and such that wn converges

uniformly to 1 in Aδ. For k ∈ IN, define vk
n = ( 1

k
+ T 1

k
(wn − 1)), which

belongs to W 1,p
0 (Ω), is zero in Ω \ Ωn and converges weakly to zero in

W 1,p(Ω) when n, k tends to infinity (use Lemma 2.1). By Step 3, we have

∣∣∣
∫

|wn−1|< 1
k

|∇ wn|p
∣∣∣ =

∣∣∣
∫

Ω

|∇ wn|p−2∇ wn∇ vk
n

∣∣∣ ≤ η,

for every n ≥ n0(η), k ≥ k0(η). Thus

lim
k→∞

lim sup
n→∞

∫

|wn−1|< 1
k

|∇ wn|p = 0.

But, for n large enough, Aδ ⊂ {x : |wn(x)−1| < 1
k
}, and hence we obtain

∫

Aδ

|∇ wn|p → 0, ∀ δ > 0.

Therefore, ∇ wn converges pointwise to zero (at least for a subsequence)

and because ∇ wn converges weakly in Lp(Ω)N , we obtain the strong

convergence in Lq(Ω)N , for any q, with 1 ≤ q < p, hence (P4).

Step 5: Property (P5) is satisfied.

Proof. We will prove that for any Borel set A ⊂ Ω of zero capacity,

we have µ(A) = 0. By standard properties of Radon measures, it is

enough to see that µ(K) = 0 for every compact set K of zero capacity.

When K ⊂ Ω is a compact set with zero capacity, for any k ∈ IN,

there exists ϕk ∈ D(Ω) such that

ϕk ≥ χK , 0 ≤ ϕk ≤ 1, ‖ ϕk ‖
W

1,p
0

(Ω)
≤ 1

k
.
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From Step 3 applied to the sequence vk
n = wnϕk, we obtain that for any

η > 0

∣∣∣
∫

Ω

|∇ wn|pϕk +

∫

Ω

wn|∇ wn|p−2∇ wn∇ ϕk

∣∣∣ ≤ η, ∀n ≥ n0(η), k ≥ k0(η).

Since

∣∣∣
∫

Ω

wn|∇ wn|p−2∇ wn∇ ϕk

∣∣∣ ≤‖ ∇ wn ‖p−1
Lp(Ω)‖ ∇ ϕk ‖Lp(Ω)≤

C

k
,

we have ∫

Ω

|∇ wn|pϕk ≤ 2η, ∀n ≥ n0(η), k ≥ k1(η),

which by the weak-∗ convergence of |∇ wn|p to µ in the sense of measures

implies ∫

Ω

ϕk dµ ≤ 2η, ∀k ≥ k1(η).

Since ϕk ≥ χK this yields

µ(K) ≤ 2η, ∀η > 0.

Step 6: Property (P6) is satisfied.

Proof. Let ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω). It is well known (see e.g. [13],

[19]) that there exists a sequence of functions ϕk satisfying

ϕk ∈D(Ω), ϕk is bounded in L∞(Ω), ϕk →ϕ in W 1,p
0 (Ω) and µ-a.e. in Ω.

Hence, from Lebesgue’s dominated convergence theorem we have ϕ ∈
L∞(Ω, dµ) (which is already known by (1.1)) and ϕk converges strongly

to ϕ in L1(Ω, dµ). Thus

∣∣∣∣
∫

Ω

|∇ wn|pϕ −
∫

Ω

ϕ dµ

∣∣∣∣ ≤
∫

Ω

|∇ wn|p|ϕ − ϕk|+

+

∣∣∣∣
∫

Ω

|∇ wn|pϕk −
∫

Ω

ϕk dµ

∣∣∣∣ +

∫

Ω

|ϕk − ϕ| dµ,
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By the weak-∗ convergence of |∇ wn|p to µ in Mb(Ω), we obtain for k

fixed

lim sup
n→∞

∣∣∣
∫

Ω

|∇ wn|pϕ −
∫

Ω

ϕ dµ
∣∣∣ ≤ lim sup

n→∞

∫

Ω

|∇ wn|p|ϕk − ϕ|+

+

∫

Ω

|ϕ − ϕk| dµ.

Taking now the limit in k we find

lim sup
n→∞

∣∣∣
∫

Ω

|∇ wn|pϕ −
∫

Ω

ϕ dµ
∣∣∣ ≤ lim sup

k→∞
lim sup

n→∞

∫

Ω

|∇ wn|p|ϕk − ϕ|.

Therefore, in order to prove (P6) we need only to show that the limit

in the second member is zero. Step 3 applied to the sequence vk
n =

wn|ϕk − ϕ|, gives

lim
k→∞

lim sup
n→∞

∣∣∣
∫

Ω

|∇ wn|p|ϕk − ϕ| +

∫

Ω

wn|∇ wn|p−2∇ wn∇ (|ϕk − ϕ|)
∣∣∣ = 0.

But since

∣∣∣
∫

Ω

wn|∇ wn|p−2∇wn∇(|ϕk −ϕ|)
∣∣∣ ≤

( ∫

Ω

|∇wn|p
) p−1

p
( ∫

Ω

|∇(|ϕk −ϕ|)|p
) 1

p

and ϕk tends strongly to ϕ in W 1,p
0 (Ω), we have that

lim
k→∞

lim sup
n→∞

∣∣∣
∫

Ω

wn|∇ wn|p−2∇ wn∇ (|ϕk − ϕ|)
∣∣∣ = 0

and therefore

lim
k→∞

lim sup
n→∞

∣∣∣
∫

Ω

|∇ wn|p|ϕk − ϕ|
∣∣∣ = 0.

Step 7: In this step, we will prove (P7) when v is supposed to belong

also to L∞(Ω). More precisely, let vn and v satisfying





vn ∈ W 1,p
0 (Ωn),

v ∈ W 1,p
0 (Ω) ∩ L∞(Ω),

vn ⇀ v in W 1,p
0 (Ω).
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Then

(2.3)

∫

Ω

|∇ wn|p−2 ∇ wn ∇ vn →
∫

Ω

v dµ.

Proof. We have

vn − wnv ⇀ 0 in W 1,p
0 (Ω),

vn − wnv ∈ W 1,p
0 (Ωn),

and so, from (P8) (proved in Step 2) we obtain

∫

Ω

|∇ wn|p−2 ∇ wn ∇ (vn − wnv) → 0,

or developping

(2.4)

∫

Ω

|∇wn|p−2∇wn∇vn −
∫

Ω

|∇wn|pv −
∫

Ω

wn|∇wn|p−2∇wn∇v → 0.

In the third integral, the integrand is pointwise convergent to zero and

equi-integrable, so it converges to zero strongly in L1(Ω). Property (P6)

(proved in Step 6), implies (2.3).

Step 8: Proof of (P7). Let us now prove that if vn ∈ W 1,p
0 (Ωn)

converges weakly in W 1,p
0 (Ω) to v, then

(2.5) v ∈ L1(Ω, dµ) and

∫

Ω

|∇ wn|p−2 ∇ wn ∇ vn →
∫

Ω

ϕv dµ,

which will complete the proof of (P7).

Proof. Using the decomposition vn = (vn)+ − (vn)−, it is sufficient

to prove the result (2.5) for vn ≥ 0.

Defining vk
n by vn = Tk(vn) + vk

n we have

∣∣∣
∫

Ω

|∇ wn|p−2 ∇ wn ∇ vn −
∫

Ω

Tk(v) dµ
∣∣∣ ≤

∣∣∣
∫

Ω

|∇ wn|p−2 ∇ wn∇ vk
n

∣∣∣+

+
∣∣∣
∫

Ω

|∇ wn|p−2 ∇ wn ∇ Tk(vn) −
∫

Ω

Tk(v) dµ
∣∣∣.
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By Step 7, the second term of the right-hand side tends to zero as n tends

to infinity for k fixed, while by Step 3 the first term tends to zero when

n and k tend to infinity. This proves that

(2.6) lim
k→∞

lim sup
n→∞

∣∣∣
∫

Ω

|∇ wn|p−2∇ wn ∇ vn −
∫

Ω

Tk(v) dµ
∣∣∣ = 0,

which implies that
∫
Ω Tk(v) dµ is bounded independently of k. Hence,

from the Beppo Levi’s monotone convergence theorem, v ∈ L1(Ω, dµ)

and Tk(v) converges strongly to v in L1(Ω, dµ).

To prove (2.5) it is now enough to write

lim sup
n→∞

∣∣∣
∫

Ω

|∇ wn|p−2∇ wn ∇ vn −
∫

Ω

v dµ
∣∣∣ ≤ lim

k→∞

∫

Ω

|v − Tk(v)| dµ+

+ lim
k→∞

lim sup
n→∞

∣∣∣
∫

Ω

|∇ wn|p−2 ∇ wn ∇ vn −
∫

Ω

Tk(v) dµ
∣∣∣

which is zero.

Step 9: Uniqueness.

Proof. Let ŵn be another sequence which together with some µ̂

satisfies properties (P1), (P2),. . . , (P8). Using Property (P8) with vn =

wn − ŵn, we have

∫

Ω

(|∇ wn|p−2 ∇ wn − |∇ ŵn|p−2 ∇ ŵn)(∇ wn − ∇ ŵn) → 0.

Inequality (1.2) or (1.6) then gives the strong convergence to zero of wn −
ŵn in W 1,p(Ω). On the other hand by (P6) and this strong convergence,

for any function ϕ ∈ D(Ω), we have

∫

Ω

ϕ dµ̂ = lim
n→∞

∫

Ω

|∇ ŵn|pϕ = lim
n→∞

∫

Ω

|∇ wn|pϕ =

∫

Ω

ϕ dµ,

i.e. µ = µ̂.
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3 – Semicontinuity

We will now improve the result already obtained in (P7) and to prove

that every function v ∈ W 1,p
0 (Ω) which is the weak limit in W 1,p

0 (Ω) of

a sequence vn ∈ W 1,p
0 (Ωn) belongs to Lp(Ω, dµ). We will also obtain a

semicontinuity result for the energy.

Theorem 3.1. Consider a sequence vn ∈ W 1,p
0 (Ωn) which converges

weakly in W 1,p
0 (Ω) to a function v. Then

(3.1) v ∈ Lp(Ω, dµ) and lim inf
n→∞

∫

Ω

|∇ vn|p ≥
∫

Ω

|∇ v|p +

∫

Ω

|v|pdµ.

Remark 3.1 Theorem 3.1 can be deduced in a straightforward way

from the Γ-convergence result given in [7], where the result is actually

stronger because no hypothesis on the sequence Ωn is imposed there. This

general result can also be obtained by a method close to the present one

(see [5]) which also allows one to obtain the corrector result of Theorem

4.1 in a framework where no hypothesis is imposed on the sequence Ωn.

Remark 3.2 A consequence of Theorem 3.1 is that for a given v ∈
W 1,p

0 (Ω) which is not zero µ-almost everywhere there does not exist any

sequence vn ∈ W 1,p
0 (Ωn) which converges strongly in W 1,p

0 (Ω) to v.

Proof. As for Theorem 2.1, the proof of Theorem 3.1 will be divided

in several steps which are interesting in themselves and which establish

in particular that for z ∈ W 1,p(Ω) ∩ L∞(Ω), the sequence wnz satisfies

properties similar to those of wn.

Step 1: If z ∈ W 1,p
0 (Ω) ∩ L∞(Ω), then we have

(3.2)

∫

Ω

|∇ (wnz)|p →
∫

Ω

|∇ z|p +

∫

Ω

|z|p dµ.

Proof. Write

(3.3)

∫

Ω

|∇ (wnz)|p =

∫

Ω

|z ∇ wn + wn∇ z|p =

=

∫

Ω

[|z ∇ wn + wn∇ z|p − |z ∇ wn|p] +

∫

Ω

|z ∇ wn|p.
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In the first integral of the right-hand side of (3.3) by Lagrange’s theorem

we have

∣∣|z ∇ wn + wn∇ z|p − |z ∇ wn|p
∣∣ ≤

≤ p
[|z ∇ wn + wn ∇ z|p−1 + |z ∇ wn|p−1

] |wn ∇ z|.

Note that the right-hand side is equi-integrable. Therefore the left hand

side, which converges almost everywhere, converges strongly in L1(Ω) to

|∇ z|p.
For the second integral of the right-hand side of (3.3), we use (P6),

obtaining that ∫

Ω

|z|p|∇ wn|p →
∫

Ω

|z|p dµ.

This completes the proof of (3.2).

Step 2: Consider a sequence vn ∈ W 1,p
0 (Ωn) which converges weakly

in W 1,p
0 (Ω) to a function v. Then for any function ϕ ∈ W 1,p(Ω)∩L∞(Ω),

we have

(3.4)

∫

Ω

ϕ|∇ wn|p−2∇ wn ∇ vn →
∫

Ω

vϕ dµ.

Proof. Suppose first that vn is also bounded in L∞(Ω). Then, us-

ing (P7), Rellich-Kondrachov’s compactness theorem and the pointwise

convergence of ∇ wn, we have

(3.5)





lim
n→∞

∫

Ω

ϕ|∇ wn|p−2∇ wn ∇ vn = lim
n→∞

∫

Ω

|∇ wn|p−2∇ wn ∇ (vnϕ)

− lim
n→∞

∫

Ω

vn|∇ wn|p−2∇ wn ∇ ϕ =

∫

Ω

vϕ dµ.

In the general case, (vn is not in L∞(Ω)), by the above proved, we

have that
∫

Ω

ϕ|∇ wn|p−2∇ wn ∇ Tk(vn) →
∫

Ω

Tk(v)ϕ dµ, ∀ k ∈ IN

and then, by the Lebesgue’s dominated convergence theorem, we get

lim
k→∞

lim
n→∞

∫

Ω

ϕ|∇ wn|p−2∇ wn ∇ Tk(vn) =

∫

Ω

vϕ dµ.
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To finish the proof of (3.4) it is then enough to prove that

lim
k→∞

lim
n→∞

∫

Ω

ϕ|∇ wn|p−2∇ wn ∇ (vn − Tk(vn)) = 0

or, using Hölder’s inequality and that ϕ ∈ L∞(Ω), that

(3.6) lim
k→∞

lim
n→∞

∫

|vn|≥k

|∇ wn|p = 0.

Applying (2.2) with vk
n = wnRk(vn), we obtain

(3.7) lim
n,k→∞

( ∫

Ω

|∇wn|pRk(vn) +

∫

Ω

wnR′
k(vn)|∇wn|p−2∇wn ∇ vn

)
= 0.

But

∣∣∣
∫

Ω

wnR′
k(vn)|∇ wn|p−2∇ wn ∇ vn

∣∣∣ ≤ 2

k

∣∣∣
∫

k≥|vn|≥k/2

|∇ wn|p−2∇ wn ∇ vn

∣∣∣,

which, using that wn and vn are bounded in W 1,p
0 (Ω), implies

lim
n,k→∞

∫

Ω

R′
k(vn)|∇ wn|p−2∇ wn ∇ vn = 0

and therefore, by (3.7) we have

lim
k→∞

lim sup
n→∞

∫

Ω

|∇ wn|pRk(vn) = 0.

which gives (3.6), by Rk(vn) ≥ χ{|vn|≥k}.

Step 3: Let z ∈ W 1,p(Ω) ∩ L∞(Ω). Then for any sequence vn ∈
W 1,p

0 (Ωn) which converges weakly in W 1,p
0 (Ω) to a function v, we have

(3.8)

∫

Ω

|∇(wnz)|p−2∇(wnz)∇vn →
∫

Ω

|∇z|p−2∇z∇v +

∫

Ω

|z|p−2zvdµ.

Proof. As in Step 1, it is easy to see, using (1.3) or (1.5), that

|∇ (wnz)|p−2∇ (wnz) − |z ∇ wn|p−2z∇ wn
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is equi-integrable in Lp′
(Ω) and converges pointwise to |∇ z|p−2∇ z, and

thus converges strongly in Lp′
(Ω)N to |∇ z|p−2∇ z. Therefore

lim
n→∞

∫

Ω

|∇ (wnz)|p−2∇ (wnz)∇ vn =

=

∫

Ω

|∇ z|p−2∇ z ∇ v + lim
n→∞

∫

Ω

|z|p−2z|∇ wn|p−2∇ wn ∇vn.

To obtain (3.8) it is enough to use Step 2 with ϕ = |z|p−2z.

Step 4: Proof of (3.1).

Using the convexity inequality

|ξ|p ≥ |η|p + p|η|p−2η(ξ − η), ∀ ξ, η ∈ IRN ,

we have for k ∈ IN
∫

Ω

|∇ vn|p ≥
∫

Ω

|∇ (wnTk(v))|p+

+ p

∫

Ω

|∇ (wnTk(v))|p−2∇ (
wnTk(v)

)(∇ vn − ∇ (wnTk(v))
)
.

Using (3.2) and (3.8) (with z = Tk(v)) and then
{ |∇ Tk(v)|p−2∇ Tk(v)(∇ v − ∇ Tk(v)) = 0 a.e. in Ω

|Tk(v)|p−2Tk(v)(v − Tk(v)) ≥ 0 µ-a.e. in Ω

we obtain

lim inf
n→∞

∫

Ω

|∇ vn|p ≥
∫

Ω

|∇ Tk(v)|p +

∫

Ω

|Tk(v)|p dµ+

+ p

∫

Ω

|∇ Tk(v)|p−2∇ Tk(v)(∇ v − ∇ Tk(v))+

+ p

∫

Ω

|Tk(v)|p−2Tk(v)(v − Tk(v)) dµ ≥

≥
∫

Ω

|∇ Tk(v)|p +

∫

Ω

|Tk(v)|p dµ.

The Beppo Levi’s monotone convergence theorem then implies that v

belongs to Lp(Ω, dµ) and that Tk(v) converges in Lp(Ω, dµ) to v. Using

also the convergence of Tk(v) to v in W 1,p
0 (Ω) we obtain (3.1).
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4 – Corrector

In the case where the lim inf in (3.1) is actually a limit, and where the

inequality is actually an equality, we have the following corrector result,

which provides an approximate representation of the gradient of vn in the

strong topology of Lp(Ω)N .

Theorem 4.1. Consider a sequence vn ∈ W 1,p
0 (Ωn) which converges

weakly in W 1,p
0 (Ω) to a function v. Assume that

(4.1) lim
n→∞

∫

Ω

|∇ vn|p =

∫

Ω

|∇ v|p +

∫

Ω

|v|pdµ.

Then we have

(4.2) lim
k→∞

lim sup
n→∞

∫

Ω

|∇ (vn − wnTk(v))|p = 0.

Remark 4.1 In particular, when v ∈ W 1,p(Ω)∩L∞(Ω), (4.2) implies

that

vn − wnv → 0 in W 1,p
0 (Ω).

Proof.

Step 1. In this step we do not use hypothesis (4.1). We will prove

that

(4.3) lim sup
k→∞

lim sup
n→∞

∫

Ω

|∇ vn|p−2∇ vn

(∇ vn − ∇ (wnTk(v))
)

= 0

implies that (4.2) holds true.

Indeed, If p ≥ 2, by (1.2), (3.8) (see Step 4 in the proof of Theorem

3.1) and using that Tk(v) converges strongly to v in W 1,p(Ω)∩Lp(Ω, dµ),

we have

(4.4)





lim sup
k→∞

lim sup
n→∞

∫

Ω

|∇ vn − ∇ (wnTk(v))|p ≤

≤ 2p−2
[
lim sup

k→∞
lim sup

n→∞

∫

Ω

|∇ vn|p−2∇ vn

(∇ vn − ∇ (wnTk(v))
)−

−lim
k→∞

lim
n→∞

∫

Ω

|∇(wnTk(v))|p−2∇(wnTk(v))
(∇vn−∇ (wnTk(v))

)]
=

= 2p−2 lim sup
k→∞

lim sup
n→∞

∫

Ω

|∇ vn|p−2∇ vn(∇ vn − ∇ (wnTk(v)))
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If 1 < p < 2, we use (1.6) which gives

lim sup
k→∞

lim sup
n→∞

∫

Ω

|∇ (vn − wnTk(v))|p ≤ 2p−1

(p − 1)
p
2

[
lim sup

k→∞
lim sup

n→∞

∫

Ω

(|∇vn|p−2∇vn−|∇(wnTk(v))|p−2∇(wnTk(v))
)(∇vn−∇(wnTk(v))

)] p
2 ·

·
[
lim sup

k→∞
lim sup

n→∞

∫

Ω

(|∇ vn|p + |∇ (wnTk(v))|p)
] 2−p

2
.

By (3.2) and the strong convergence of Tk(v) to v in W 1,p
0 (Ω)∩Lp(Ω, dµ)

we have

lim sup
k→∞

lim sup
n→∞

∫

Ω

|∇ (wnTk(v))|p =

∫

Ω

|∇ v|p +

∫

Ω

|v|p dµ < +∞ .

Applying then (3.8) as in (4.4), we get

(4.5)





lim sup
k→∞

lim sup
n→∞

∫

Ω

|∇ (vn − wnTk(u))|p ≤

≤ C

[
lim sup

k→∞
lim sup

n→∞

∫

Ω

|∇ vn|p−2∇ vn

(∇ vn − ∇ (wnTk(v))
)] p

2

.

In both case 2 ≤ p < +∞ and 1 < p < 2, we have proved that (4.3)

implies (4.2).

Step 2. Define

B =
{{zn} : zn ∈ W 1,p

0 (Ωn) : zn ⇀ v in W 1,p
0 (Ω)

}
,

and note that (4.1) and Theorem 3.1 imply that the sequence vn satisfies

lim
n→∞

∫

Ω

|∇ vn|p = min
{

lim inf
n→∞

∫

Ω

|∇ zn|p : {zn} ∈ B
}
.

Then (see Steps 2 and 3 in the proof of Theorem 2.1) vn satisfies the

following property:

(4.6)





∀ zk
n ∈ W 1,p

0 (Ωn) such that zk
n ⇀0 in W 1,p

0 (Ω) when n, k→∞,

we have

lim
n,k→∞

∫

Ω

|∇ vn|p−2∇ vn∇ zk
n = 0.
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Step 3. In order to prove (4.3), we cannot apply directly (4.6) since

vn − wnTk(v) is not in general bounded in W 1,p
0 (Ω) independently of n

and k. To bypass this difficulty, we write

lim sup
k→∞

lim sup
n→∞

∫

Ω

|∇ vn|p−2∇ vn

(∇ vn − ∇ (wnTk(v))
) ≤

≤ lim sup
k→∞

lim sup
n→∞

∫

Ω

|∇ vn|p−2∇ vn(∇ vn − ∇ Tk(vn))+

+ lim sup
k→∞

lim sup
n→∞

∫

Ω

|∇ vn|p−2∇ vn

(∇ Tk(vn) − ∇ (wnTk(v))
)
.

Now, by (4.6),

lim sup
k→∞

lim sup
n→∞

∫

Ω

|∇ vn|p−2∇ vn(∇ vn − ∇ Tk(vn)) ≤

≤ lim sup
k,n→∞

∫

Ω

|∇ vn|p−2∇ vn(∇ vn − ∇ Tk(vn)) = 0

while for k fixed (4.6) with zk
n independent of k implies

lim sup
n→∞

∫

Ω

|∇ vn|p−2∇ vn

(∇ Tk(vn) − ∇ (wnTk(v))
)

= 0.

This proves (4.3).

5 – Homogenization

As an application of the results established in the previous sections,

let us make a brief study of the homogenization problem for the p-

Laplacian in perforated domains. (This result will be used in [3] and

[4] to obtain similar homogenization results for more general quasi-linear

problems). For a general result without any hypothesis about the se-

quence Ω \ Ωn, see [7], [12].

Theorem 5.1. Consider a sequence Ωn (whose existence is given

in Theorem 2.1) for which there exist wn and µ satisfying (P1), (P2),. . . ,
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(P8). Then the following homogenization result holds: For any f ∈
W −1,p′

(Ω), the solution un of the problem

(5.1)

{ −∆pun = f in D′(Ωn),

un ∈ W 1,p
0 (Ωn),

converges weakly in W 1,p
0 (Ω) to the solution u of the problem

(5.2)

{ −∆pu + |u|p−2uµ = f in D′(Ω),

u ∈ W 1,p
0 (Ω) ∩ Lp(Ω, dµ),

which is equivalent to the variational formulation

(5.3)





u ∈ W 1,p
0 (Ω) ∩ Lp(Ω, dµ),

∫

Ω

|∇ u|p−2∇ u∇ v +

∫

Ω

|u|p−2uv dµ = 〈f, v〉,

∀ v ∈ W 1,p
0 (Ω) ∩ Lp(Ω, dµ).

The sequence un also satisfies

(5.4) lim
n→∞

∫

Ω

|∇ un|p =

∫

Ω

|∇ u|p +

∫

Ω

|u|p dµ

and so the corrector result of Theorem 4.1 applies

(5.5) lim
k→∞

lim sup
n→∞

∫

Ω

|∇ (un − wnTk(u))|p = 0.

Proof. Using un as test function in (5.1) we prove that the sequence

un is bounded in W 1,p
0 (Ω). We thus can extract a subsequence of un which

converges weakly in W 1,p
0 (Ω) to some u. By Theorem 3.1 u belongs to

W 1,p
0 (Ω) ∩ Lp(Ω, dµ). For the sake of simplicity, let us still denote this

subsequence by un. (Indeed, we will prove that u satisfies (5.3), which

has a unique solution, and thus uniqueness will imply the convergence of

the whole sequence un).



[25] Existence of a sequence satisfying Cioranescu-Murat etc. 411

Let us first prove the corrector result (5.5). For this, we use un −
wnTk(u) as test function in (5.1). This gives

lim
k→∞

lim sup
n→∞

∫

Ω

|∇ un|p−2∇ un

(∇ un − ∇ (wnTk(u))
)

=

= lim
k→∞

lim sup
n→∞

〈f, un − wnTk(u)〉 = 0.

This is analogous to (4.3), and by the proof of Step 1 of Theorem 4.1 this

implies (5.5).

Now, for ϕ ∈ D(Ω) we take wnϕ ∈ W 1,p
0 (Ωn) as test function in (5.1).

We obtain ∫

Ω

|∇ un|p−2 ∇ un∇ (wnϕ) = 〈f, wnϕ〉.

The right hand side satisfies

〈f, wnϕ〉 → 〈f, ϕ〉.

On the other hand, using the corrector result (5.5), then (3.8) and then

that Tk(u) converges strongly to u in W 1,p
0 (Ω) ∩ Lp(Ω, dµ), we have

lim
n→∞

∫

Ω

|∇ un|p−2∇ un ∇ (wnϕ) =

= lim
k→∞

lim
n→∞

∫

Ω

|∇ (wnTk(u))|p−2∇ (wnTk(u))∇ (wnϕ) =

=

∫

Ω

|∇ u|p−2∇ u ∇ ϕ +

∫

Ω

|u|p−2u ϕ.

Therefore

(5.6)

∫

Ω

|∇ u|p∇ u ∇ ϕ +

∫

Ω

|u|puϕ dµ = 〈f, ϕ〉, ∀ϕ ∈ D(Ω).

By density, (5.6) holds for any ϕ ∈ W 1,p
0 (Ω) ∩ Lp(Ω, dµ) and so u is the

(unique) solution of (5.3). To obtain (5.4), use (5.5) or more directly,

take un as test function in (5.1).



412 J. CASADO-DÍAZ [26]
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