PHYSICAL REVIEW C, VOLUME 62, 064309

Anharmonic double-phonon excitations in the interacting boson model
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Double-y vibrations in deformed nuclei are analyzed in the context of the interacting boson model. A simple
extension of the original version of the model towards higher-order interactions is required to explain the
observed anharmonicities of nuclear vibrations. The influence of three- and four-body interactions on the
moments of inertia of ground ang bands, and on the relative position of singleand doubley bands is
studied in detail. As an example of a realistic calculation, spectra and transitions of the fightyarmonic
nuclei %Dy, %Er, and'%%Er are interpreted in this approach.

PACS numbgs): 21.60.Fw, 21.60.Ev, 21.10.Re, 27.7@

[. INTRODUCTION scattering experiments must be considered as well. One of
the key properties to disregard a band as a dogtibend is
Vibrational degrees of freedom in atomic nuclei can bethe fact that its members, in first order, cannot be populated
described in terms of phonon excitations that arise fromin single-nucleon transfer reactions. Many example« &f
nuclear shape oscillations. Vibrations of nuclei with ellipsoi- =4" states that are identified as doublexcitations but are
dal symmetry can be of two typd4]: B vibrations which  strongly populated in single-nucleon transfer reactions, can
preserve axial symmetry and give rise to a band Wkth be found in the literature!®®Gd, %Dy, 172vyb, 176.1744f,
=0, andy vibrations which break axial symmetry and yield and °%'%0s. Since the double-phonon character of the
a K=2 band, where is the projection of the angular mo- states in question is in doubt, they are not considered here.
mentum on the axis of symmetry. At the experimental level However, some candidates seem to have a genuine double-
v bands have been identified in many well-deformed nucleiphonon nature. Such is the case wifiDy and 16~ ®gr. In
in contrast, the identification g8 bands is still full of ques- particular, in Ref[7] aK™=4" state in!®*Dy at 2.173 MeV
tions and difficulties. This is mainly because, when the enis found to exhibit all properties of a doubleband. In Refs.
ergy surface has a well-deformed minimumdrbut is rather  [8] and[9] the observation is reported 8f"=0" and K™
flat in y, the 8 band increases in excitation energy and ap-=4"* doublesy states in'Er, at energies of 1.949 and
proaches the energy region where other degrees of freedof029 MeV, respectively. Finally, if®®Er ak "=4" double-
are important. In that case band mixing may occur and ca® excitation is identified at an energy of 2.055 Mg1Q].
give rise to nonpure structures with decay patterns difficult to  One of the most striking features of the observed double-
identify as those of g band[2]. v bands is their high anharmonicity, i.e., the ratio of double-
Since singley excitations are very well established, it is y over singley energy is different from 2 and ranges from
natural to look for doubley vibrations and to develop mod- 2.5 to 2.8. This information is very important since it pro-
els that can deal with such multiphonon excitations. Doublevides a stringent test of nuclear models. The nudféDy
y excitations correspond t&€"=0" and K™=4" bands and 6%1%%r have been interpreted in the context of many
which are the antiparallel and parallel combinations ofdifferent models such as the quasiphonon méti&|12), the
single-y phonons, respectively. The experimental identifica-geometrical mode[13], the multiphonon mode[14], the
tion of two-y states in deformed nuclei is difficult because self-consistent collective-coordinate metHd®,16], and the
their expected excitation energy is around the pairing gagdginteracting boson modé¢IBM) [17,18, and it is now of
and hence they can mix strongly with two-quasiparticle ex-interest to revisit these models in connection with anhar-
citations. However, recent experimental improvements immonic vibrational behavior.
nuclear spectroscopy following Coulomb excitatif8], in- In this paper the simplest version of the interacting boson
elastic neutron scatteringt], and thermal-neutron capture model(IBM) [19] is extended by adding to the usual Hamil-
[5] have made possible the study of highly excited low-spintonian higher-order interactions between the bosons with the
states. Many states have been proposed as possible canglifrpose of creating a framework that accommodates the high
dates of doubley vibrations. There is, however, some con- anharmonicities observed i#f*Dy and 166-*6%r. The struc-
troversy about their interpretation. The author of Ré&f]  ture of the paper is as follows. First, the IBM is reviewed
claims that some of the presumed doullestates can be with special reference to its harmonic character. In Sec. IlI
interpreted as single hexadecapole-phonon excitations. lie inclusion of three-body terms in the Hamiltonian is dis-
fact, to identify the band head of a doubjeband it is not cussed. The introduction of four-body terms is presented in
sufficient to analyze jusB(E2) values; data from single- Sec. IV and some analytic results are pointed out. In Sec. V
nucleon transfer reactiong3-decay studies, and inelastic a detailed study of possible four-body terms is carried out
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(d) bosons[19]. The boson number that corresponds to a
given nucleus equals half the number of valence nucleons
(N=n/2). The rotationally invariant and number-conserving
boson Hamiltonian usually includes up to two-body interac-
tions between the bosons although higher-order terms can be
added in principle. The most general two-body IBM Hamil-
tonian can be written in a multipole expansidr®] as

H:85F15+ Edﬁd+ Kol":\)Tﬁ)‘i‘ K]_I:' |:+K2©'Q+ K3-’|\—3':|\—3

+K4-,I\-4':|\-4, (1)

where ﬁs and ﬁd are thes- and d-boson number operators,
respectively, and

.1 1
PTZEdT~dT—§ST~ST, (2)
L=viodxd)®, ©)
Q=s"d+d"s+ y(d"xd)®, 4
20, 1 2 . -
0,/x Ta=(d"xd)®, (5
FIG. 1. The ratiosR} (as defined in the tektas a function of T,=(dTxd)®. (6)

6, | k for differentl. The Hamiltonian(9) is used withy=—0.5; the
boson number iN=15. T_he da_shed lines give the experimental The symbol “ represents the scalar product; in this paper
values for the corresponding ratios ffEr. the scalar product of two operators with angular momentum

. . kel kel _ M" kel kel

and realistic calculations fotr%Dy and ¢¢¢%r are pre- L is defined asT - Ty =2y(=1)"TumTL-u Where T,y
sented. Finally, in Sec. VI the conclusions of this work areCOrresponds to thi! component of the operatdr, . In the
made. previous equations the operatgg,=(—1)"y,_,, (wherey
refers tos or d) is introduced so that the annihilation opera-
tor verifies the appropriate properties under spatial rotations.

It is nota priori clear to what exten@ and vy vibrations

The IBM describes low-lying collective excitations in are anharmonic in the IBM even if one just considers the
even-even nuclei in terms of monopdi® and quadrupole Hamiltonian(1) with up to two-body interactions. A partial

Il. THE IBM-1 AS A HARMONIC MODEL

3 - - -
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—_ - — Tx0 0i— ¥ k=0 Vit FIG. 2. Experimentala) and calculatedb)
Z B spectrum for'®%Er. The theoretical results are ob-
p= o tained with the Hamiltonian (9) with «
= s =238 keV, y=—0.55, x'=—1.9 keV, and
o 0,=31.3 keV. The boson number ¢=15.
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FIG. 3. The ratioRSU®” (as defined in the texfor the Hamil- FIG. 4. The ratioR3"®” (as defined in the texfor the Hamil-
tonian H =aC,[ SU(3)]+bC3[ SU(3)] with N=5, 10, and 15. tonianH =aC,[ SU(3)]+cC,[ SU(3)]? with N=5, 10, and 15.

analysis of this problem was given in R¢20]. There, the tions and define energy ratios ferphonons only(although
authors find that the IBM in its simplest version is a har-similar definitions can be given fg¢ phonons:

monic model in the limit of infinite boson numbé& and
even for finiteN the model cannot accommodate large an-

harmonicity if one considers up to two-body interactions; Y E«(0;,) Y Ex(4,,)—Ex(4])
only the interplay between ordwo-body terms and higher- Ro= Ex(z;)_ E (27)’ 4= EX(Z;)— Eg(27)" ®)

order interactions can induce, in principle, a sizable anhar-

monicity in the double-phonon excitations. The reason why

one-body terms and two-body interactions cannot create @where , and 4+y are the band heads of the€"=0" and
large anharmonicity can be understood as follows. If on&”=4" doubles bands, respectively, arf, stands for ex-
considers a Hamiltonian with one parameter that controls thejtation energy. This particular definition removes any rota-
ratio of the strength of the one-body energies and the twotional influence.

body interactions,

0 :(1_g)(85ﬁ5+8dﬁd)+§(KOﬁ)TI§+ K1E'|:+ KzQ‘Q IIl. THREE-BODY HAMILTONIANS
A~ A A - Let us consider in the following a Hamiltonian that in-
TaTs Tat kaTaTa), @) cludes a quadrupole term, a rotationd term, and three-

body interactions between tltebosons,

where ¢ ranges from 0 to 1, one finds two “phases” sepa-
rated by a critical valu€. : a first phase where the one-body 1o
term plays the main role¢< ¢.) and a second phase where
the two-body interaction is the driving forc&% £.). The
crucial point is that the separation between the two phases i
very sharp[21] and essentially no interplay between one-
and two-body terms can be found. Since, to a good approxig
mation, the force is either one body or two body but notz
both, harmonic behavior cannot be avoided. W
The inclusion of high-order interactions in a system with &
a high boson number also leads to a harmonic descrlptloni
Only for finite boson number the interplay between one ™
+two-body terms and higher-order interactions can induce
an anharmonicity in the double-phonon excitations that is
comparable to the observed one. These ideas will be used ¢
a guideline in the following sections. 0 ‘
To carry out a quantitative study of anharmonicities, itis  ° 0.001 0.002 6,008 0.004 0.005 0006
convenient to define a ratio between single- and double-
phonon excitation energies. Because the experimental situa- FIG. 5. The ratioR3"® (as defined in the texfor the Hamil-
tion for B excitations is not clear we concentrate pribra-  tonianH=aC,[ SU(3)]+cC,[ SU(3)]? with N=5, 10, and 15.

E. (2
3}
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= o—_ Vo spectrum for'®Er. The theoretical results are ob-
éﬁ tained with the Hamiltonian H=13.442
) ~ ~
< ) —20.84C,[ SU(3)]+9.296x 10" 3C,[ SU(3))? (all
= b — coefficients in ke with y=—/7/2. The boson
5 — 5 — number isN=15.
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3 38—
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A=—xO-O0+x'(-L (9), becomes dominant. Also shown in Fig. 1 are the ratios

R} as observed int®%Er [8,9], R}=2.76 andR}=2.50. Fig-
ure 2 shows the experimental spectrum *8fEr [8,9] and
compares it to the eigenspectrum of Hamilton{@nhwith an
=4 three-body interaction. The parameters are
=238 keV, x=-055, «'=-19 keV. and 6,
=31.3 keVZ with boson numbeN=15. With these values

: . . . the calculated excitation energies of the doubleand heads
Interactions with the samiebut differentk are not indepen- % N
dent but differ by a normalization factor onlg22]. The com- are 1926 kev _and 1972 _keV for the fo andK"=4 )
binations &,1)=(2,0), (0,2, (2,3, (2,4, and(4,6) are cho- levels, respectively, leading to the rati®&=2.82 andR}
sen here. =2.45, in excellent agreement with observation. Note, how-

The Hamiltonian(9) is certainly not the most general one €Ver, that although aly-band heads are well reproduced by

+two-+three-body Hamiltonian that can be considered. Nothe calculation, problems arise for the moments of inertia, in
by, vibratona e which cominates i spherical PSS of e band. i netsectens we wl come back
nuclei is omitted since it is thought of lesser importance in y

the deformed nuclei considered here. And, of all possibléorowde a very poor description of them.
three-body interactiongseventeen terms only those be-
tween thed bosons are retained here since they are the more |v. SU(3) HAMILTONIANS WITH UP TO FOUR-BODY

+> o [(dxdH®xdM®.[(dxd)®xd]O, (9)
kl

where —k=k,, k'=k;. Five independent three-body
d-boson interactions exist which have-0, 2, 3, 4, and 6.

efficient terms to produce anharmonici@3]. INTERACTIONS
For the discussion of the anharmonicitiesyotibrations
we study the behavior of the energy rati@ as a function In the previous section and in R¢R4] a very good de-

of the ratiod, / x. The identification of the states0and 4, scription of double-phonon excitation energy has been ob-
is based on thé3(E2) values for decay into the single- tained, but at expense of spoiling the moments of inertia of
states. In Fig. 1,the influence of the various three-body ground andy bands. These drawbacks seem to be a general
interactions is shown for a typical value pf(y=—0.5) and  feature of three-body Hamiltonians. In this and the following
for N=15 bosons. It is seen thatyavibrational anharmonic  section it is shown that the drawbacks of three-body interac-
behavior is obtained which can be different for th&  tions can be overcome by going to the next order.

=0" andK"=4" bands(e.g., positive for the former while  Since y anharmonicity has been observed exclusively in
negative for the lattgr Care has been taken to plot results well-deformed nuclei, it is appropriate to consider the prob-
only up to values o, that do not drastically alter the char- lem in the SW3) limit of the IBM which is suited to deal
acter of rotational spectrum; beyond these values, the thregvith nuclei in this mass regioh25]. Therefore, in a first
body interaction, being of highest order in the Hamiltonian

Note that the valu#, is 1/3 of that given in Ref24] which has
INote that this figure differs from Fig. 2 in RdR4] in some scale  an error in its definition. The results shown in that paper are correct
factors due to an error in the definition 6f. after a simple rescaling of the parameter.
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TABLE I. Observed and calculate{ E2) values and ratios for  plified by combining terms into a single one, leaving a
1681 in a schematic calculation using an @UHamiltonian. The  Hamiltonian with three coefficients, b, andc,
E2 operator(22) is used witheZ;=(1.97¢ W.u. andy=—0.26.

H=aC,[SU(3)]+bCs[SU(3)]+cC,[SU3) 1% (11)

B(E2) value or ratio

Observed Calculated  with eigenvalues
B(E2;2; —0;)(W.u.) 214+ 107 214 N BT ) = a2+ 124N+ 3N+ 3) 4+ b\ —
B(E2;4; —27)(W.u.) 311+ 10 302 (ORI ) =80 p™ A wFBO=p)
B(E2;2]—0;)(W.u.) 5.5+ 0.4 5.4 X(2N+ p+3)(N+2u+3)+ (N2 + u?
.0t +
B(E2;0},—2]) 3801 (2211 - +Ap+3N+3u)% (12)

B(E2;2,—0;) . . :
No quartic Casimir operator exists for 8)J because the

B(E2;4,,—2,) number of independent Casimir operators equals the number

b
B(E2;2/—0;) 13:04°(09:03) 25 of labels that characterize an irreducible representation. The
Hamiltonian(11) has no rotational terrh? since of primary
%rom Ref.[30]. interest, at this point, is the description of band-head energies
°From Ref.[9]. of single- and doubler excitations. Note that Hamiltonian
From Ref.[8]. (11) is not in normal order, as a consequence, first term con-

tains up to two-body interaction®ne- and two-body sec-
approach, the S@3) limit is used and later, in the next sec- ond term up to three-body interactiofme-, two-, and three-
tion, these results are used as a guidance in more realistiody) and third term up to four-body interactior(®ne-,
calculations. two-, three-, and four-body
Let us consider the following Hamiltonian: The definition of the energy ratio§8) must now be
adapted to incorporate the symmetry labeling of the states. In
the SU3) limit the y band belongs to the SB) representa-
tion (2N—4,2) whereN is the number of bosons. The
+¢,C,[SU(3) 12+ c,NC4[ SU(3) ]+ csN2E,[ SU(3) T, double<y band withK =4 is contained in the (8 —8,4) rep-
resentation; the doublg-band withK=0 is predominantly
(10 contained in the (R—6,0) representation, although an im-
. portant component is in (2—8,4) [20]. In this section the
whereC,[ SU(3)] stands for the Casimir operator of order energy ratiog8) are thus defined as follows:
of SU(3). Note the inclusion of cubic terms for complete-

H=aC,[SU(3)]+b;Cs[SU(3)]+b,NC,[SU(3)]

ness in the SUB) analysis. Since only the spectrum of a  su@Ey_ Ex(2N—-6,0 su@y_ ExX2N-84)
single nucleus is of interest here, the number of bosons can " ° E.(2N—4,2)’ 4 E.(2N—-4,2)°
be fixed in every case and the Hamiltonid®) can be sim- (13
154Dy
@ (b) © (d) (e 2 m
. . 5 ¥ k=0 Y koo
¥ ks 72K=4 Y ks YEA - _ -
5l _ _ 72_K=o Y k=a Y e
g Yo Yo _ FIG. 7. Band heads of groung, 8, double-
- i ngn yK=0, and doubleyK =4 bands of'%Dy. Pan-
- els correspond t¢a) experimental data(b) cal-
culation with Hamiltonian(23) and y= — V712,
_ nge _B (c) calculation with Hamiltonian(23) and y=
E - —0.55,(d) calculation with Hamiltoniar§24) and
o X=- 712, () calculation with Hamiltoniar{24)
1} ] and y=—0.55, and(f) calculation with Hamil-
v v v v ¥ v tonian (9).
§ B
9 9 g g g 9
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166Er
(a) (b) (c) (d) (e) ()
.| _'Y_K=4 72K_=4 'YfA 'Y_K:A _’Yi<=4 'YZ_KA
¥ k=0 - Y_2K=0 72K=o Y ko _ 72K=o
- Yo g
= FIG. 8. Band heads of’*Er. See caption of
s P _ Fig. 7.
e "B
2 B
1}
v Y r 4 v v
; 7
ol 9 g g g g 9
Because no rotational term is included, the ratit® can be 1
compared directly with E¢(8). In the following the effect of b<eNTo" (17)
the different terms in Eq.11) on the degree of anharmonic-
ity (_)f the two-phonon excitation energy is analyzed. The valueb=1/(6N+9) leads to a divergence iRSU(B)y
.(') a<0, b=0, CZO.‘ . ) and around this value anharmonic behavior is found. From
This corresponds to the simplest version of IBM; the energyEq (15) one observes that the behavior of theN(28,4)
ratios become representation is completely harmonic and does not depend
2AN—18 24N — 36 on b. On the other hand, from E@15) one sees that a wide
RSV Y =—— — RV =—— (14)  range of anharmonic ratios is found for theN2 6,0) rep-
IN-6 IN-6 resentation. As an illustration, in Fig. 3 E(L5) is repre-

An almost pure harmoniey-vibrational spectrum is found sented as a function d, for three values oN (5, 10, and
. P . 4 'SP 15). Only positive values ob are plotted because for the
since the energy ratio€l4) are only slightly lower than 2. negative oneRSUC)” decreases smoothly to the asymptotic
o d - | 5
This will be referred to as negative anharmonicity as op alues 1.27, 1.58, and 1.70 fof—=5, 10, and 15, respec-

posed to the positive anharmonicity for energy ratios abov%(ively
> .

' (i) a<0, b0, c=0 The conclusion is that a Hamiltonian with~=0 does not
In this c,ase the,HamiIto.niahll) is a combination of the 2adree with the experimental situation observed in the mass

quadratic and cubic S8) Casimir operators. For given val- '€9ion of well-deformed nuclei, where thek_, state is

ues ofa andb and for a high enough boson number, only the"ighly anharmonic.

three-body part of the Hamiltonian is dominant and a har- (i) @<0, b=0, ¢c#0. _ o

monic spectrum is recovered. For obtaining an anharmonic N this case the Hamiltonia(l1) is a combination of the
spectrum the values of the Hamiltonian parameters are vefguadratic and quadratic-square SUCasimir operators. As
constrained once the number of bosons has been fixed, as t}Jjethe previous case, anharmonicity requires very constrained
following analysis shows. Hamiltonian parameters once the number of bosons is fixed.

Without loss of generality can be fixed taa=—1. The Again, without loss of generality, we fia=—1. The
energy ratios are then energy ratios then read as follows:

_ 2_ 4AN—3)[2c(4N?—BN+9)—1
Rsu<3)y:3 AN+ Db(24N2— 36N+ 27) 19 R§U<3)V=( )[2¢( i ) ], 19
0 (2N—1)(6bN+9b—1) (2N—1)(8cN?+6c—1)
2N-3 2(2N—3)[4c(2N?—3N+9)—1]
SU(3)y_ SUR)y —
R&T=2N—T1 (16 Ry (2N—1)(8cN?+6C—1) (19

To keep the energy of thg excitation positive, the value of To keep the energy of the excitation positive, the value of
b has an upper limit ¢ has the upper limit
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168Er
(a) (b) () (d) (e) (f)
2 2 2 2 2 2
V-4 ¥ kg k4 s ¥« —Y_K g
2 _ 2 72K=0 YZK:O
- Y2K=o 'YZK=o Y k-0 'E"
FIG. 9. Band heads of%%r. See caption of
s _ g Fig. 7.
3 — B
o "B”
i}
T i T T T r
..gu ..E..
oll g g g 9 9
1 x10 4 and 1x 10~ . Both solutions are fairly close and any
C<m- (200 value in between them will correctly describe the anharmo-

nicity of the K=0 andK=4 bands. The value & and the
strength of the rotational term are fixed from the excitation

The valuec=1/(8N2+6) produces a divergence in the two _ . .
energy ratios and in its neighborhood highly anharmonic beSNErgies of the 2 and % levels. After these simple consid-

havior is found. In Figs. 4 and 5 are plotted the ragsy®” erations one arrives at the following Hamiltonian:

andR3V®) | respectively. Again, for negatives valuesamf A=13.44 -0 - 20.84,[SU(3)]+9.296

RSY() goes asymptotically to the values 1.45, 1.69, and ' e '

1.78 forN=5, 10, and 15. respectively, whirR;"®)” goes X 1073C,[SU(3)]?, (21)

to 1.33, 1.59, and 1.71. These negative anharmonicities have

no phenomenological interest. where the coefficients are given in keV. The theoretical and

In this case the expgrlmental situation can be nicely degyperimental spectra are compared in Fig. 6 and a very good
scribed. Bothyy - andyi - 4 states can be accommodated in ggreement is obtained. However, due to the simplicity of the
a anharmonic description. The conclusion is thus that galculation,y andg bands are degenerate in energy which is
Hamiltonian withC,[ SU(3)]?> and C[SU(3)]? terms seems not the case experimentally.
to be a good starting point to treat theanharmonicity in To complete the descriptiorE2 transition probabilities
deformed nuclei. must be computed also. The calculationB{fE2) values in

The description presented here only provides band headhe SU3) limit, as in other situations where degeneracies
and, to recover a rotational structure,L& term must be occur, must be treated with care and an appropriate basis
included. The rotational structure is the same in every banénhust be chosen for states with the same energy. A natural
because in the SB) limit no mixing exists between rota- Way to do this work is to slightly lift the degeneracy of the
tional and vibrational degrees of freedom. In next subsectio®U(3) Hamiltonian. The levels can be split using in the
these results are illustrated with a schematic calculation foHamiltonian a valuey=—1.30 which is very close to its
energies and transition probabilities. SU(3) value. With this SW3) breaking the degeneracy is
lifted in a natural way because th# band is pushed up in
energy, as is observed. One may expect that with this small
change iny the SU3) spectrum will keep its properties. The

Let us consider the case df°Er which is, as already E2 transition operator is
mentioned, one of particular interest because both double-
excitations(with K=0 andK =4) have been identifield,9].

To carry out the schematic calculation, we use the Hamil-
tonian (11) with b=0. The experimental values for the
single and doubles energy ratios areRj=2.76 andR} The value ofy that best reproduces the datayis —0.26.
=2.50 and can be compared directly with the expressionslote thaty in the T(E2) operator and in the Hamiltonian is
(18 and (19 leading two values for—c/a, namely 5 different. The effective charge is fixed to reproduce

A schematic application

T(E2)=egsTd+d s+ y(dTxd)?]. (22)
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10 - 1 10 - Dy 1
8+ 1 8+ 1
N\
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FIG. 10. Total angular momentuth(dimensionlessof the ini- FIG. 12. Same caption as Fig. 10 but calculated results obtained

tial state versug-ray energies foAJ=2 transitions in ground and with the Hamiltonian(24).
v bands, for'®Dy, %%Er, and'%%r. Full lines correspond to ex-

perimental data and long-dashed lines correspond to the calculat%d GENERAL HAMILTONIANS WITH UP TO FOUR-BODY
results obtained with the Hamiltonia@®). The corresponding pa- INTERACTIONS

rameters are given in the text.

A general Hamiltonian with all possible three- and four-
B(E2;2{ —0;): €5=(1.97¢ W.u. In Table | theoretical body terms can, in principle, be constructed but the number
and experimental transition rates involving the ground andf parameters is so high that a study, even a schematic one,
the y bands are compared. of the effect of the different terms on energy spectra and
This simple analysis suggests that a four-body operator oflectromagnetic transitions is impossible. Schematic IBM
the type in Eq.(21) provides a good description of both Hamiltonians have been used for many years and, in particu-
single-, and double bands. In the next section this sche- |ar, the quadrupole-quadrupole interaction has been very suc-
matic analysis is extended to non-&Ysituations. cessful in describing a wide variety of nuclear spectra
[19,25. On the other hand, in the previous section it was
shown that an expansion in terms of Casimir operators,
which are mainly related to quadrupole operators, leads to a
satisfactory description of ground, single- and douple-
G—E exp. gs. - . . . .
s exp.y bands. It is worth noting that such an expansion in terms of

G-©-Sart(7)/2¢9s. | . . .
- 8-Sy y Casimir operators has been successfully used in molecular

eoosy |1 physics where spectroscopic data provide many anharmonic
' ' ' ' ’ ‘ state§26]. This leads us to propose a Hamiltonian as a quad-
rupole expansion that includes up to four-body terms. An

alternative Hamiltonian can be based on an expansion in
terms of pseudo-Casimir operators, which we define here as
operators that become a true Casimir operator only for a

particular choice of one structure parameter. For example,
the C,[ SU(3)] operator is related to the quadrupole operator
through 20-Q+3[2 where Q=s'd+d's+7/2(d"

] xd)@). If the value= \7/2 is changed tq, a new operator

- CZ[SU(3)]X is obtained which we refer to as a pseudo-
. Casimir operator. It is a Casimir operator only fgr=
0 100 200 300 400 500 600 700 * \/7/.2' . . .
E, (JJ-2) (keV) Guided by the results of the previous section, two possible
Hamiltonians that include up to four-body interactions, can
FIG. 11. Same caption as Fig. 10 but calculated results obtaineie proposed, one based on a quadrupole expansion and the
with the Hamiltonian(23). other on a pseudo-Casimir expansion:

oert] b
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—_ o —— FIG. 13. Experimentala) and theoretica(b)
Z o ) spectrum for*®*Dy. The Hamiltoniar(24) is used
= p— with parameters k' =12.18 keV, a=—82.90
= ’ keV, c=0.05150 keV, andgy=—0.55. The bo-
; son number iN=16.
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9 N~ A oA
23 — SVIBEXLXQ(x)) . (26)

Hoc=«'L-L+aC,[SU3)],+bCs[SU(3
Pe 2L SU3) ]y AL SU3) Ly For simplicity and taking into account the analysis done in

+cC,[SU3)]2, (24) 'Egz)pre(\j/i(c;g section, in the following=0 is taken in Egs.
an .

whereQ=Q(x) and A. Double-y band heads

There are three nuclei that have doublé&ands identified

A 2 A 3. ithout ambiguity: 14Dy, %%Er, and %%r [7-10]. In this
=2 . 4 *LZ 2 Wi - guity: Y, y - - :
Cal SUB3)1,=2Q(x)- Q(x) 4= (25 section the band heads of these nuclei are studied using the
3 - . =
(a) (b) 6
40
o
2,
6, —— 0,- 5 —
4 /YZKﬂ 4,
2+ 1 P
o 0 > YZK:A ) ,YZ
- - Tx0 : ke FIG. 14. Experimentala) and theoreticalb)
% 2 spectrum for!8®Er. The Hamiltoniar(24) is used
= 0 o/ — with parameters «'=13.55keV, a=
it B —75.40 keV,c=0.05286 keV, andy=—0.45.
s The boson number isl=15.
= L i— |
3 [ —
2,— 2,
Y . Y
65— Exp. ' Theo.
4 166, AN 165,
2, — - —
0L oo— L oor— J

064309-9



J. E. GARéA-RAMOS, J. M. ARIAS, AND P. VAN ISACKER PHYSICAL REVIEW 62 064309

Hamiltonians(23) and(24) to get an improved description of moment of inertia which can be obtained from the relation

the anharmonicity phenomenon. between angular momentum andray energy[28,29 and
The number of bosons fof®Dy and '®Er is N=16 can be approximated by

while for 1®Er it is N=15. In the different calculations

shown in this section the parameters of the Hamiltonian have T~ thﬂ 27)

been chosen as to reproduce as well as possible not only the dE,’

heads of single- and doublebands but also the structure of

the bands. Because these calculations are schematic and g@fiere J is given dimensionless. In a plot of-ray energy

not try to be the best answer, the parameters of the Hamil,ersus\], Z will be the slope. Equatiofi27) can be used to
tonian, for simplicity, will not be given fully and only in the - stydy the structure of the rotational bands in comparison with
case of final spectra will be shown. For comparison, the Ca'experimental results.

culation with three'body tern(see Sec. Il and Re[24]) is In Flg 10 the moments of inertia of the ground amd
also included. bands in the nuclet®Dy, ®%Er, and!®%r are compared to

In Figs. 7-9 the heads of single- and double-phonorngse obtained with the Hamiltonian of Sec. Ill. The param-
bands are shown. In each figure six panels are inclu@d: giers for 164Dy are k=24.2 keV, y=-0.55, x'=

experimental datgp) calculation with Hamiltoniari23) and  _g g keV, andd,=51.0 keV, for S6Er are indicated in
X=—\/7/2, (c) calculation with Hamiltonian(23) and x Sec. Il and for 1%r are k=24.1 keV, y=—0.55, k' =
=—0.55, (d) calculation with Hamiltonian(24) and x ~ —1.9 keV, andd,=31.6 keV. The predicted moments of
=—\7/2, (e) calculation with Hamiltonian(24) and x¥  inertia disagree completely with the almost pure rotational
=—-0.55. and(f) calculation with a three-body termd{  structure observed experimentally. So, although this simple
xdTxd")®). (dxdxd)®. In each panel, from left to right description based on one single three-body term describes
are represented the ground state, yHeand head, thg band  well the anharmonic position of the double-phonon band
head, the double- K=0 band head, and the doubjeK  heads, it fails in the moments of inertia of ground apd
=4 band head. Due to the controversy on the nature oBthe bands. A more realistic description needs others three-body
band, several candidates for the latter have been includeterms. A recent analys{23] shows, however, that Hamilto-
For the same reason in the figures will be used the labetians withtwo different three-body terms cannot get the cor-
“B.” In %Dy and '%8Er no information on the doublg-  rect moment of inertia.
K=0 band exists. The valug=—0.55 is chosen as an al- The results with the Hamiltonia23) are shown in Fig.
ternative to the S(B) value because it describes very well 11. Two different calculations are shown which correspond
the E2 transition probabilities in this mass region. Also, theto panelsb andc, respectively, of Figs. 7-9. In this case a
same value of is taken in the Hamiltonian and in the tran- better agreement is obtained but still some discrepancies re-
sition operator, in line with the consiste@t-formalism  main, especially when a realistic value fgris taken
(CQP [27]. In Sec. VC this ansatz is used in the complete= —0.55). Finally, in Fig. 12 the results with the Hamil-
analysis of spectra anBl(E2) transitions for'¢4Dy, 6%r,  tonian(24) are compared with the data. Again, two different
and 168, calculations are shown which correspond to paudedsde,

The most striking feature of Figs. 7—9 is that in all calcu-respectively, of Figs. 7-9. Here, good agreement is found
lations the position of the doublg-band heads and the de- both for y=— V712 andy=—0.55.
gree of anharmonicity is well reproduced. Thus the energies The different results with the Hamiltoniai83) and(24),
of the different band heads only are not sufficient to com-can be understood qualitatively by analyzing the structure of
pletely determine the Hamiltonian. Nevertheless, not all posfQ(y)-Q(x)11Q(x)-O(x)]. With just two-body terms the
sible terms are able to create sufficient anharmonicity in the4amiltonians(23) and (24) are equivalent. This is different
doublesy bands. For example, in the case of three-bodywhen up to four-body terms are included because
terms, a phenomenological study of th~e rrlosirelevant type TQ(X)'Q(X)][Q(X)'Q(X)] does not only contribute to
term shows that onlyd"xd">d")!- (dxd>d)* is able C,[SU(3)]Z andL? but also to {?)2. This can be clarified
to produce the required anharmonicigee Sec. III_ and Rgf. with the equation
[24]). On the other hand, only a few four-body interactions
have been explored here and it cannot be excluded that other N . . R
four-body terms can produce the appropriate degree of an-  [Q(x)- QU I[Q(X)-Q(x)]
harmonicity.

. . S . 1. 3. - 9 .
In order to decide which Hamiltonian is more appropriate, :—cz[su(:g)])z(— —(:z[su(s)])z(L?Jr —(L?)2.
a description should be attempted not only of band heads but 4 8 64
also of the structure of the bands ande# transition prob- (28)
abilities.

As a consequencefQ(x)- Q(x)I[Q(x)-Q(x)] substan-
tially modifies the rotational structure of a band even in the

The study of the moments of inertia of the lowest bands iscase of pure S(B). This is how it can be qualitatively un-
a very sensitive way to test the different calculations showrderstood thag description in terms of pseudo-Casimir op-
in Figs. 7-9. Particular attention will be paid to the dynamicerators is the most appropriate for dealing with anharmonic

B. Moments of inertia
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vibrations.In the next section a complete analysis is given 0fRZ= 2.84 for 6Dy, RY=2.82 andR}=2.45 for *%r, and
the nuclei under study in the framework of CQF using the

R)=2.50 for 158, Only for they? _, vibration the experi-
Hamiltonian(24). 4 y Yk=0 p

mental and theoretical results are slightly different in the
o _ sense that this framework overestimates the anharmonic be-
C. Realistic calculations havior for theyZ_, band. This can be corrected by increas-

The complete calculated spectra &¥Dy, ®%Er, and ing the value of x| in the Hamiltonian which, however, will
1681 and the most relevar2 transition probabilities are introduce one more parameter because in the electromagnetic
presented in this section. They are compared with existin@Perator a different value of must be used.
data. In each calculation the same valueydias been used For the calculation oE2 transition probabilities the same
both in the Hamiltoniar(24) and in the electromagnetic op- x values as in the Hamiltonian are adopted. The effective
erator(22). Finally, the effective charge in the transition op- charges aree?;=(1.66¢ W.u., e%=(1.83¢ W.u., and
erator(22), eq, was fixed for each nucleus to reproduce theeZs=(1.67¢ W.u., for 6Dy, ®%r, and %r, respec-
B(E2;2; —0;) value. tively. In Tables IlI-V the observeB(E2) values and ratios

The experimental and calculated spectra’f§by, ¢, concerningy-vibrational states are compared with the theo-
and '%%r are shown in Figs. 13—15, respectively. The pa-etical results. In general, a good overall agreement is ob-
rameters used in the calculations are listed in Table 1. Théained in the three cases under study.
parameters that yield the best fit to the energy spectra are
very similar in the three cases which is consistent with the VI. CONCLUSIONS
analysis carried out in the preceding sections. The overall

description of the energies is satisfactory. The calculated !N this paper the problem of anharmonicity in {eandy
low-lying bands are in good agreement with their experimen-"'brat'ons of deformed nuclei was addressed in the context

tal Counterpart$see also Fig. :I)Z\Nhile'the doubley band- TABLE Ill. Observed and calculateB(E2) values and ratios
head energies are close to the experimental values. The cal; 164y The E2 operator(22) is used withe2,=(1.66¢ W.u.

culated ratios(8) are: R}=3.31 andR}=2.81 for '*Dy,  andy=—0.55. ¢
RJ=3.08 andR}=2.43 for **%r, and R}=2.93 andR]

=2.46 for 1%%€r, to be compared with the experimental ones: B(E2) value or ratio
Observed Calculated

TABLE Il. Parameters of the Hamiltoniaf24) obtained in the

best fit to spectra anB(E2) transitions in the nuclet®Dy, 5%, B(E2;2; —0;)(W.u) 209+3° 209

and 68er. B(E2;4; —27)(W.u.) 272+ 142 298

B(E2;2} —0;)(W.u.) 4.0+0.42 3.9

Nucleus k' (keV) a (keV) c(keV) X N B(E2;4;VH2;) 05 36h ia

1e4py 12.18 8290 005150 -0.55 16 B(E2;2)-0;) o '

166y 13.55 -75.40 0.05286 -0.45 15

168y 13.23 -67.25 0.04080 -050 16 °From Ref.[31].

bFrom Ref.[7].
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TABLE IV. Observed and calculateB(E2) values and ratios TABLE V. Observed and calculateB(E2) values and ratios
for *5%Er. TheE2 operatoi(22) is used witheZ,=(1.83F W.u.and  for %Er. TheE2 operator22) is used withe;=(1.67¢ W.u. and

x=—0.45. x=—0.50.
B(E2) value or ratio B(E2) value or ratio

Observed Calculated Observed Calculated

B(E2;2; —0;7)(W.u.) 214+10% 214 B(E2;2; —07)(W.u.) 207+10% 207

B(E2;4] —2])(W.u.) 311+102 304 B(E2;4; —27)(W.u.) 318+10% 294

B(E2;2; —07)(W.u.) 5.5+0.42 5.9 B(E2;2)—0;)(W.u.) 4.80+0.172 4.6

B(E2;0!,—27 B(E2;4) —27

BE20,,—2,) 3.8:1.3P(2.2'11 1.8 BE24y,—2)) 0.5-1.6° 2.7

B(E2;2)—0;) B(E2;2,—0;)

B(E2:4! —27 B(E2;5! —3F

BE24,-2)) 1.3+0.4 (0.9+0.3 9 2.7 BE25,-3,) 0.7-3.5b 2.1

B(E2;2,—0;) B(E2;2;,—0;)

3 rom Ref.[30]. %From Ref.[32].

From Ref.[9]. From Ref.[10].

‘From Ref.[8].

SU(3) pseudo-Casimir operators allows to describe the
of the interacting boson model. The occurrence or not oflouble-phonon states while keeping correct the properties of
anharmonicity was shown to be related to the order of thdow-lying bands.
interactions between the bosons and the conclusions of the It should be emphasized that, in spite of its fourth-order
analysis can be summarized as follows. If the Hamiltoniarcharacter, the Hamiltonian considered here is only slightly
includes up to two-body interactions, no sizable anharmonicinore complex than the usual IBM Hamiltonidane more
ity can be obtained and the observed behavior cannot bearameter and is a straightforward extension of the
obtained. The origin of this behavior is related to the exis-consisten® formalism that was previously successfully ap-
tence of a first-order phase transition between rotational anglied to many nuclei. Also clear from our study is the need
vibrational nucle{19] which excludes any interplay between for more experimental information about the double-phonon
one- and two-body terms, necessary to obtain anharmonigbrations in deformed nuclei beyond the three cases known
spectra. For up to three-body interactions that presery@®SU at present: our analysis indeed has shown that this informa-
symmetry it can beshownthat the observed anharmonicity tion represents a challenging test of any theoretical descrip-
cannot be fully reproduced. Furthermore, extensive numerition of deformed nuclei.
cal calculations indicate that even a general IBM Hamil-
tonian that includes up to three-body interactions has diffi-
culty in reproducing all observed aspects of ground, single-
and doubley bands. However, due to the large parameter We are grateful to C. E. Alonso, K. Heyde, and F. lach-
space of three-body interactions which is difficult to searchello for valuable comments. Two of the authdg’V.I. and
exhaustively, this cannot be considered as a firm conclusiod.E.G.R) wish to thank the Institute for Nuclear Theory,
and alternative approachés.g., mean-fieldshould be tried  University of Washington, where this work was initiated.
to tackle the same problem. Finally, it was shown that aOne of the author$J.E.G.R) thanks the FWO for financial
simple parametrization of the IBM Hamiltonian that includes support. This work was supported in part by the Spanish
up to four-body interactions can account for all observedDGICYT under Project No. PB98-1111. J.E.G.R. thanks the
properties of the three deformed nuclei with firmly estab-Fund of Scientific Research, Flanders, Belgium for financial
lished doubley vibrations. In particular, the introduction of support.
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