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Anharmonic double-phonon excitations in the interacting boson model
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Double-g vibrations in deformed nuclei are analyzed in the context of the interacting boson model. A simple
extension of the original version of the model towards higher-order interactions is required to explain the
observed anharmonicities of nuclear vibrations. The influence of three- and four-body interactions on the
moments of inertia of ground andg bands, and on the relative position of single-g and double-g bands is
studied in detail. As an example of a realistic calculation, spectra and transitions of the highlyg-anharmonic
nuclei 164Dy, 166Er, and 168Er are interpreted in this approach.

PACS number~s!: 21.60.Fw, 21.60.Ev, 21.10.Re, 27.70.1q
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I. INTRODUCTION

Vibrational degrees of freedom in atomic nuclei can
described in terms of phonon excitations that arise fr
nuclear shape oscillations. Vibrations of nuclei with ellips
dal symmetry can be of two types@1#: b vibrations which
preserve axial symmetry and give rise to a band withK
50, andg vibrations which break axial symmetry and yie
a K52 band, whereK is the projection of the angular mo
mentum on the axis of symmetry. At the experimental lev
g bands have been identified in many well-deformed nuc
in contrast, the identification ofb bands is still full of ques-
tions and difficulties. This is mainly because, when the
ergy surface has a well-deformed minimum inb but is rather
flat in g, the b band increases in excitation energy and a
proaches the energy region where other degrees of free
are important. In that case band mixing may occur and
give rise to nonpure structures with decay patterns difficul
identify as those of ab band@2#.

Since single-g excitations are very well established, it
natural to look for double-g vibrations and to develop mod
els that can deal with such multiphonon excitations. Doub
g excitations correspond toKp501 and Kp541 bands
which are the antiparallel and parallel combinations
single-g phonons, respectively. The experimental identific
tion of two-g states in deformed nuclei is difficult becau
their expected excitation energy is around the pairing
and hence they can mix strongly with two-quasiparticle
citations. However, recent experimental improvements
nuclear spectroscopy following Coulomb excitation@3#, in-
elastic neutron scattering@4#, and thermal-neutron captur
@5# have made possible the study of highly excited low-s
states. Many states have been proposed as possible c
dates of double-g vibrations. There is, however, some co
troversy about their interpretation. The author of Ref.@6#
claims that some of the presumed double-g states can be
interpreted as single hexadecapole-phonon excitations
fact, to identify the band head of a double-g band it is not
sufficient to analyze justB(E2) values; data from single
nucleon transfer reactions,b-decay studies, and inelast
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scattering experiments must be considered as well. On
the key properties to disregard a band as a double-g band is
the fact that its members, in first order, cannot be popula
in single-nucleon transfer reactions. Many examples ofKp

541 states that are identified as double-g excitations but are
strongly populated in single-nucleon transfer reactions,
be found in the literature:158Gd, 162Dy, 172Yb, 176,178Hf,
and 190,192Os. Since the double-phonon character of t
states in question is in doubt, they are not considered h
However, some candidates seem to have a genuine dou
phonon nature. Such is the case with164Dy and 166268Er. In
particular, in Ref.@7# a Kp541 state in164Dy at 2.173 MeV
is found to exhibit all properties of a double-g band. In Refs.
@8# and @9# the observation is reported ofKp501 and Kp

541 double-g states in 166Er, at energies of 1.949 an
2.029 MeV, respectively. Finally, in168Er aKp541 double-
g excitation is identified at an energy of 2.055 MeV@10#.

One of the most striking features of the observed doub
g bands is their high anharmonicity, i.e., the ratio of doub
g over single-g energy is different from 2 and ranges fro
2.5 to 2.8. This information is very important since it pr
vides a stringent test of nuclear models. The nuclei164Dy
and 166,168Er have been interpreted in the context of ma
different models such as the quasiphonon model@11,12#, the
geometrical model@13#, the multiphonon model@14#, the
self-consistent collective-coordinate method@15,16#, and the
sdg interacting boson model~IBM ! @17,18#, and it is now of
interest to revisit these models in connection with anh
monic vibrational behavior.

In this paper the simplest version of the interacting bos
model~IBM ! @19# is extended by adding to the usual Ham
tonian higher-order interactions between the bosons with
purpose of creating a framework that accommodates the
anharmonicities observed in164Dy and 166,168Er. The struc-
ture of the paper is as follows. First, the IBM is reviewe
with special reference to its harmonic character. In Sec.
the inclusion of three-body terms in the Hamiltonian is d
cussed. The introduction of four-body terms is presented
Sec. IV and some analytic results are pointed out. In Sec
a detailed study of possible four-body terms is carried
©2000 The American Physical Society09-1
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and realistic calculations for164Dy and 166,168Er are pre-
sented. Finally, in Sec. VI the conclusions of this work a
made.

II. THE IBM-1 AS A HARMONIC MODEL

The IBM describes low-lying collective excitations i
even-even nuclei in terms of monopole~s! and quadrupole

FIG. 1. The ratiosRK
g ~as defined in the text! as a function of

u l /k for different l. The Hamiltonian~9! is used withx520.5; the
boson number isN515. The dashed lines give the experimen
values for the corresponding ratios in166Er.
06430
~d! bosons@19#. The boson number that corresponds to
given nucleus equals half the number of valence nucle
(N5n/2). The rotationally invariant and number-conservi
boson Hamiltonian usually includes up to two-body intera
tions between the bosons although higher-order terms ca
added in principle. The most general two-body IBM Ham
tonian can be written in a multipole expansion@19# as

Ĥ5«sn̂s1«dn̂d1k0P̂†P̂1k1L̂•L̂1k2Q̂•Q̂1k3T̂3•T̂3

1k4T̂4•T̂4 , ~1!

where n̂s and n̂d are thes- and d-boson number operators
respectively, and

P̂†5
1

2
d†
•d†2

1

2
s†
•s†, ~2!

L̂5A10~d†3d̃!(1), ~3!

Q̂5s†d̃1d†s̃1x~d†3d̃!(2), ~4!

T̂35~d†3d̃!(3), ~5!

T̂45~d†3d̃!(3). ~6!

The symbol ‘‘• ’’ represents the scalar product; in this pap
the scalar product of two operators with angular moment
L is defined asT̂L•T̂L5(M(21)MT̂LMT̂L2M where T̂LM

corresponds to theM component of the operatorT̂L . In the
previous equations the operatorg̃ lm5(21)mg l 2m ~whereg
refers tos or d) is introduced so that the annihilation oper
tor verifies the appropriate properties under spatial rotatio

It is not a priori clear to what extendb andg vibrations
are anharmonic in the IBM even if one just considers
Hamiltonian~1! with up to two-body interactions. A partia

l

-

FIG. 2. Experimental~a! and calculated~b!

spectrum for166Er. The theoretical results are ob
tained with the Hamiltonian ~9! with k
523.8 keV, x520.55, k8521.9 keV, and
u4531.3 keV. The boson number isN515.
9-2



r

n
s

-
a
h

te
n
th

wo

a
y

re

s
e
ox
o

ith
io
ne
uc
t i
d

is
ble
itu

ta-

-

ANHARMONIC DOUBLE-PHONON EXCITATIONS IN THE . . . PHYSICAL REVIEW C 62 064309
analysis of this problem was given in Ref.@20#. There, the
authors find that the IBM in its simplest version is a ha
monic model in the limit of infinite boson numberN and
even for finiteN the model cannot accommodate large a
harmonicity if one considers up to two-body interaction
only the interplay between one1two-body terms and higher
order interactions can induce, in principle, a sizable anh
monicity in the double-phonon excitations. The reason w
one-body terms and two-body interactions cannot crea
large anharmonicity can be understood as follows. If o
considers a Hamiltonian with one parameter that controls
ratio of the strength of the one-body energies and the t
body interactions,

Ĥ5~12j!~«sn̂s1«dn̂d!1j~k0P̂†P̂1k1L̂•L̂1k2Q̂•Q̂

1k3T̂3•T̂31k4T̂4•T̂4!, ~7!

wherej ranges from 0 to 1, one finds two ‘‘phases’’ sep
rated by a critical value,jc : a first phase where the one-bod
term plays the main role (j,jc) and a second phase whe
the two-body interaction is the driving force (j.jc). The
crucial point is that the separation between the two phase
very sharp@21# and essentially no interplay between on
and two-body terms can be found. Since, to a good appr
mation, the force is either one body or two body but n
both, harmonic behavior cannot be avoided.

The inclusion of high-order interactions in a system w
a high boson number also leads to a harmonic descript
Only for finite boson number the interplay between o
1two-body terms and higher-order interactions can ind
an anharmonicity in the double-phonon excitations tha
comparable to the observed one. These ideas will be use
a guideline in the following sections.

To carry out a quantitative study of anharmonicities, it
convenient to define a ratio between single- and dou
phonon excitation energies. Because the experimental s
tion for b excitations is not clear we concentrate ong vibra-

FIG. 3. The ratioR0
SU(3)g ~as defined in the text! for the Hamil-

tonianĤ5aĈ2@SU(3)#1bĈ3@SU(3)# with N55, 10, and 15.
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tions and define energy ratios forg phonons only~although
similar definitions can be given forb phonons!:

R0
g[

Ex~0gg
1 !

Ex~2g
1!2Ex~21

1!
, R4

g[
Ex~4gg

1 !2Ex~41
1!

Ex~2g
1!2Ex~21

1!
, ~8!

where 0gg
1 and 4gg

1 are the band heads of theKp501 and
Kp541 double-g bands, respectively, andEx stands for ex-
citation energy. This particular definition removes any ro
tional influence.

III. THREE-BODY HAMILTONIANS

Let us consider in the following a Hamiltonian that in
cludes a quadrupole term, a rotationalL̂2 term, and three-
body interactions between thed bosons,

FIG. 4. The ratioR0
SU(3)g ~as defined in the text! for the Hamil-

tonianĤ5aĈ3@SU(3)#1cĈ2@SU(3)#2 with N55, 10, and 15.

FIG. 5. The ratioR4
SU(3)g ~as defined in the text! for the Hamil-

tonianĤ5aĈ2@SU(3)#1cĈ2@SU(3)#2 with N55, 10, and 15.
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FIG. 6. Experimental~a! and theoretical~b!
spectrum for166Er. The theoretical results are ob

tained with the Hamiltonian Ĥ513.43L̂2

220.84Ĉ2@SU(3)#19.29631023Ĉ2@SU(3)#2 ~all
coefficients in keV! with x52A7/2. The boson
number isN515.
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Ĥ52kQ̂•Q̂1k8L̂•L̂

1(
kl

u l@~d†3d†!(k)3d†# ( l )
•@~ d̃3d̃!(k)3d̃# ( l ), ~9!

where 2k5k2 , k85k1. Five independent three-bod
d-boson interactions exist which havel 50, 2, 3, 4, and 6.
Interactions with the samel but differentk are not indepen-
dent but differ by a normalization factor only@22#. The com-
binations (k,l )5(2,0), ~0,2!, ~2,3!, ~2,4!, and~4,6! are cho-
sen here.

The Hamiltonian~9! is certainly not the most general on
1two1three-body Hamiltonian that can be considered. N
tably, a vibrational termedn̂d which dominates in spherica
nuclei is omitted since it is thought of lesser importance
the deformed nuclei considered here. And, of all poss
three-body interactions~seventeen terms!, only those be-
tween thed bosons are retained here since they are the m
efficient terms to produce anharmonicity@23#.

For the discussion of the anharmonicities ofg vibrations
we study the behavior of the energy ratios~8! as a function
of the ratiou l /k. The identification of the states 0gg

1 and 4gg
1

is based on theB(E2) values for decay into the single-g
states. In Fig. 1,1 the influence of the various three-bod
interactions is shown for a typical value ofx (x520.5) and
for N515 bosons. It is seen that ag-vibrational anharmonic
behavior is obtained which can be different for theKp

501 andKp541 bands~e.g., positive for the former while
negative for the latter!. Care has been taken to plot resu
only up to values ofu l that do not drastically alter the cha
acter of rotational spectrum; beyond these values, the th
body interaction, being of highest order in the Hamiltoni

1Note that this figure differs from Fig. 2 in Ref.@24# in some scale
factors due to an error in the definition ofu l .
06430
-

e

re

e-

~9!, becomes dominant. Also shown in Fig. 1 are the rat
RK

g as observed in166Er @8,9#, R0
g52.76 andR4

g52.50. Fig-
ure 2 shows the experimental spectrum of166Er @8,9# and
compares it to the eigenspectrum of Hamiltonian~9! with an
l 54 three-body interaction. The parameters arek
523.8 keV, x520.55, k8521.9 keV. and u4
531.3 keV.2 with boson numberN515. With these values
the calculated excitation energies of the double-g band heads
are 1926 keV and 1972 keV for theKp501 and Kp541

levels, respectively, leading to the ratiosR0
g52.82 andR4

g

52.45, in excellent agreement with observation. Note, ho
ever, that although allg-band heads are well reproduced b
the calculation, problems arise for the moments of inertia
particular of theg band. In next sections we will come bac
to the moments of inertia to see that three-body Hamiltoni
provide a very poor description of them.

IV. SU„3… HAMILTONIANS WITH UP TO FOUR-BODY
INTERACTIONS

In the previous section and in Ref.@24# a very good de-
scription of double-phonon excitation energy has been
tained, but at expense of spoiling the moments of inertia
ground andg bands. These drawbacks seem to be a gen
feature of three-body Hamiltonians. In this and the followi
section it is shown that the drawbacks of three-body inter
tions can be overcome by going to the next order.

Sinceg anharmonicity has been observed exclusively
well-deformed nuclei, it is appropriate to consider the pro
lem in the SU~3! limit of the IBM which is suited to deal
with nuclei in this mass region@25#. Therefore, in a first

2Note that the valueu4 is 1/3 of that given in Ref.@24# which has
an error in its definition. The results shown in that paper are cor
after a simple rescaling of the parameter.
9-4
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approach, the SU~3! limit is used and later, in the next sec
tion, these results are used as a guidance in more rea
calculations.

Let us consider the following Hamiltonian:

Ĥ5aĈ2@SU~3!#1b1Ĉ3@SU~3!#1b2N̂Ĉ2@SU~3!#

1c1Ĉ2@SU~3!#21c2N̂Ĉ3@SU~3!#1c3N̂2Ĉ2@SU~3!#,

~10!

whereĈn@SU(3)# stands for the Casimir operator of ordern
of SU(3). Note the inclusion of cubic terms for complet
ness in the SU~3! analysis. Since only the spectrum of
single nucleus is of interest here, the number of bosons
be fixed in every case and the Hamiltonian~10! can be sim-

TABLE I. Observed and calculatedB(E2) values and ratios for
166Er in a schematic calculation using an SU~3! Hamiltonian. The
E2 operator~22! is used witheeff

2 5(1.97)2 W.u. andx520.26.

B(E2) value or ratio
Observed Calculated

B(E2;21
1→01

1)(W.u.) 214610a 214
B(E2;41

1→21
1)(W.u.) 311610a 302

B(E2;2g
1→01

1)(W.u.) 5.560.4a 5.4

B~E2;0gg
1 →2g

1!

B~E2;2g
1→01

1!
3.861.3b (2.220.7

11.1 c! 2.5

B~E2;4gg
1 →2g

1!

B~E2;2g
1→01

1!
1.360.4 b (0.960.3c! 2.5

aFrom Ref.@30#.
bFrom Ref.@9#.
cFrom Ref.@8#.
06430
tic

an

plified by combining terms into a single one, leaving
Hamiltonian with three coefficientsa, b, andc,

Ĥ5aĈ2@SU~3!#1bĈ3@SU~3!#1cĈ2@SU~3!#2, ~11!

with eigenvalues

^~l,m!uĤu~l,m!&5a~l21m21lm13l13m!1b~l2m!

3~2l1m13!~l12m13!1c~l21m2

1lm13l13m!2. ~12!

No quartic Casimir operator exists for SU~3! because the
number of independent Casimir operators equals the num
of labels that characterize an irreducible representation.
Hamiltonian~11! has no rotational termL̂2 since of primary
interest, at this point, is the description of band-head ener
of single- and double-g excitations. Note that Hamiltonian
~11! is not in normal order, as a consequence, first term c
tains up to two-body interactions~one- and two-body!, sec-
ond term up to three-body interactions~one-, two-, and three-
body! and third term up to four-body interactions~one-,
two-, three-, and four-body!.

The definition of the energy ratios~8! must now be
adapted to incorporate the symmetry labeling of the states
the SU~3! limit the g band belongs to the SU~3! representa-
tion (2N24,2) where N is the number of bosons. Th
double-g band withK54 is contained in the (2N28,4) rep-
resentation; the double-g band withK50 is predominantly
contained in the (2N26,0) representation, although an im
portant component is in (2N28,4) @20#. In this section the
energy ratios~8! are thus defined as follows:

R0
SU(3)g[

Ex~2N26,0!

Ex~2N24,2!
, R4

SU(3)g[
Ex~2N28,4!

Ex~2N24,2!
.

~13!
FIG. 7. Band heads of ground,g, b, double-
gK50, and double-gK54 bands of164Dy. Pan-
els correspond to~a! experimental data,~b! cal-
culation with Hamiltonian~23! and x52A7/2,
~c! calculation with Hamiltonian~23! and x5
20.55,~d! calculation with Hamiltonian~24! and
x52A7/2, ~e! calculation with Hamiltonian~24!
and x520.55, and~f! calculation with Hamil-
tonian ~9!.
9-5
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FIG. 8. Band heads of166Er. See caption of
Fig. 7.
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Because no rotational term is included, the ratios~13! can be
compared directly with Eq.~8!. In the following the effect of
the different terms in Eq.~11! on the degree of anharmonic
ity of the two-phonon excitation energy is analyzed.

~i! a,0, b50, c50.
This corresponds to the simplest version of IBM; the ene
ratios become

R0
SU(3)g5

24N218

12N26
, R4

SU(3)g5
24N236

12N26
. ~14!

An almost pure harmonicg-vibrational spectrum is found
since the energy ratios~14! are only slightly lower than 2.
This will be referred to as negative anharmonicity as o
posed to the positive anharmonicity for energy ratios ab
2.

~ii ! a,0, b5” 0, c50.
In this case the Hamiltonian~11! is a combination of the

quadratic and cubic SU~3! Casimir operators. For given va
ues ofa andb and for a high enough boson number, only t
three-body part of the Hamiltonian is dominant and a h
monic spectrum is recovered. For obtaining an anharmo
spectrum the values of the Hamiltonian parameters are
constrained once the number of bosons has been fixed, a
following analysis shows.

Without loss of generalitya can be fixed toa521. The
energy ratios are then

R0
SU(3)g5

324N1b~24N2236N127!

~2N21!~6bN19b21!
, ~15!

R4
SU(3)g52

2N23

2N21
. ~16!

To keep the energy of theg excitation positive, the value o
b has an upper limit
06430
y

-
e

-
ic
ry
the

b,
1

6N19
. ~17!

The valueb51/(6N19) leads to a divergence inR0
SU(3)g

and around this value anharmonic behavior is found. Fr
Eq. ~15! one observes that the behavior of the (2N28,4)
representation is completely harmonic and does not dep
on b. On the other hand, from Eq.~15! one sees that a wide
range of anharmonic ratios is found for the (2N26,0) rep-
resentation. As an illustration, in Fig. 3 Eq.~15! is repre-
sented as a function ofb, for three values ofN (5, 10, and
15). Only positive values ofb are plotted because for th
negative onesR0

SU(3)g decreases smoothly to the asympto
values 1.27, 1.58, and 1.70 forN55, 10, and 15, respec
tively.

The conclusion is that a Hamiltonian withc50 does not
agree with the experimental situation observed in the m
region of well-deformed nuclei, where thegK54

2 state is
highly anharmonic.

~iii ! a,0, b50, c5” 0.
In this case the Hamiltonian~11! is a combination of the

quadratic and quadratic-square SU~3! Casimir operators. As
in the previous case, anharmonicity requires very constrai
Hamiltonian parameters once the number of bosons is fix

Again, without loss of generality, we fixa521. The
energy ratios then read as follows:

R0
SU(3)g5

~4N23!@2c~4N226N19!21#

~2N21!~8cN216c21!
, ~18!

R4
SU(3)g5

2~2N23!@4c~2N223N19!21#

~2N21!~8cN216c21!
. ~19!

To keep the energy of theg excitation positive, the value o
c has the upper limit
9-6
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FIG. 9. Band heads of168Er. See caption of
Fig. 7.
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8N216
. ~20!

The valuec51/(8N216) produces a divergence in the tw
energy ratios and in its neighborhood highly anharmonic
havior is found. In Figs. 4 and 5 are plotted the ratiosR0

SU(3)g

andR4
SU(3)g , respectively. Again, for negatives values ofc,

R0
SU(3)g goes asymptotically to the values 1.45, 1.69, a

1.78 forN55, 10, and 15. respectively, whileR4
SU(3)g goes

to 1.33, 1.59, and 1.71. These negative anharmonicities h
no phenomenological interest.

In this case the experimental situation can be nicely
scribed. BothgK50

2 andgK54
2 states can be accommodated

a anharmonic description. The conclusion is thus tha
Hamiltonian withĈ2@SU(3)#2 andĈ@SU(3)#2 terms seems
to be a good starting point to treat theg anharmonicity in
deformed nuclei.

The description presented here only provides band he
and, to recover a rotational structure, aL̂2 term must be
included. The rotational structure is the same in every b
because in the SU~3! limit no mixing exists between rota
tional and vibrational degrees of freedom. In next subsec
these results are illustrated with a schematic calculation
energies and transition probabilities.

A schematic application

Let us consider the case of166Er which is, as already
mentioned, one of particular interest because both doubg
excitations~with K50 andK54) have been identified@8,9#.
To carry out the schematic calculation, we use the Ham
tonian ~11! with b50. The experimental values for th
single and double-g energy ratios areR0

g52.76 and R4
g

52.50 and can be compared directly with the expressi
~18! and ~19! leading two values for2c/a, namely 5
06430
-

d

ve

-

a

ds

d

n
r

-

l-

s

31024 and 131024. Both solutions are fairly close and an
value in between them will correctly describe the anharm
nicity of the K50 andK54 bands. The value ofa and the
strength of the rotational term are fixed from the excitati
energies of the 21

1 and 22
1 levels. After these simple consid

erations one arrives at the following Hamiltonian:

Ĥ513.43L̂•L̂220.84Ĉ2@SU~3!#19.296

31023Ĉ2@SU~3!#2, ~21!

where the coefficients are given in keV. The theoretical a
experimental spectra are compared in Fig. 6 and a very g
agreement is obtained. However, due to the simplicity of
calculation,g andb bands are degenerate in energy which
not the case experimentally.

To complete the description,E2 transition probabilities
must be computed also. The calculation ofB(E2) values in
the SU~3! limit, as in other situations where degenerac
occur, must be treated with care and an appropriate b
must be chosen for states with the same energy. A nat
way to do this work is to slightly lift the degeneracy of th
SU~3! Hamiltonian. The levels can be split using in th
Hamiltonian a valuex521.30 which is very close to its
SU~3! value. With this SU~3! breaking the degeneracy i
lifted in a natural way because theb band is pushed up in
energy, as is observed. One may expect that with this sm
change inx the SU~3! spectrum will keep its properties. Th
E2 transition operator is

T̂~E2!5eeff@s†d̃1d†s̃1x~d†3d̃!(2)#. ~22!

The value ofx that best reproduces the data isx520.26.
Note thatx in the T̂(E2) operator and in the Hamiltonian i
different. The effective charge is fixed to reprodu
9-7
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B(E2;21
1→01

1): eeff
2 5(1.97)2 W.u. In Table I theoretical

and experimental transition rates involving the ground a
the g bands are compared.

This simple analysis suggests that a four-body operato
the type in Eq.~21! provides a good description of bot
single-, and double-g bands. In the next section this sch
matic analysis is extended to non-SU~3! situations.

FIG. 10. Total angular momentumJ ~dimensionless! of the ini-
tial state versusg-ray energies forDJ52 transitions in ground and
g bands, for164Dy, 166Er, and 168Er. Full lines correspond to ex
perimental data and long-dashed lines correspond to the calcu
results obtained with the Hamiltonian~9!. The corresponding pa
rameters are given in the text.

FIG. 11. Same caption as Fig. 10 but calculated results obta
with the Hamiltonian~23!.
06430
d

of

V. GENERAL HAMILTONIANS WITH UP TO FOUR-BODY
INTERACTIONS

A general Hamiltonian with all possible three- and fou
body terms can, in principle, be constructed but the num
of parameters is so high that a study, even a schematic
of the effect of the different terms on energy spectra a
electromagnetic transitions is impossible. Schematic IB
Hamiltonians have been used for many years and, in part
lar, the quadrupole-quadrupole interaction has been very
cessful in describing a wide variety of nuclear spec
@19,25#. On the other hand, in the previous section it w
shown that an expansion in terms of Casimir operato
which are mainly related to quadrupole operators, leads
satisfactory description of ground, single- and doubleg
bands. It is worth noting that such an expansion in terms
Casimir operators has been successfully used in molec
physics where spectroscopic data provide many anharm
states@26#. This leads us to propose a Hamiltonian as a qu
rupole expansion that includes up to four-body terms.
alternative Hamiltonian can be based on an expansion
terms of pseudo-Casimir operators, which we define here
operators that become a true Casimir operator only fo
particular choice of one structure parameter. For exam
theĈ2@SU(3)# operator is related to the quadrupole opera
through 2Q̂•Q̂1 3

4 L̂2 where Q̂5s†d̃1d†s̃6A7/2(d†

3d̃)(2). If the value6A7/2 is changed tox, a new operator
Ĉ2@SU(3)#x is obtained which we refer to as a pseud
Casimir operator. It is a Casimir operator only forx5
6A7/2.

Guided by the results of the previous section, two poss
Hamiltonians that include up to four-body interactions, c
be proposed, one based on a quadrupole expansion an
other on a pseudo-Casimir expansion:

ted

ed

FIG. 12. Same caption as Fig. 10 but calculated results obta
with the Hamiltonian~24!.
9-8
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FIG. 13. Experimental~a! and theoretical~b!
spectrum for164Dy. The Hamiltonian~24! is used
with parametersk8512.18 keV, a5282.90
keV, c50.05150 keV, andx520.55. The bo-
son number isN516.
in

the
ĤQ5k8L̂•L̂1aQ̂•Q̂1b~Q̂3Q̂3Q̂!(0)1c~Q̂•Q̂!~Q̂•Q̂!,

~23!

ĤpC5k8L̂•L̂1aĈ2@SU~3!#x1bĈ3@SU~3!#x

1cĈ2@SU~3!#x
2 , ~24!

whereQ̂5Q̂(x) and

Ĉ2@SU~3!#x52Q̂~x!•Q̂~x!1
3

4
L̂2, ~25!
06430
Ĉ3@SU~3!#x524A35~Q̂~x!3Q̂~x!3Q̂~x!!(0)

2
9

2
A15~ L̂3L̂3Q̂~x!!(0). ~26!

For simplicity and taking into account the analysis done
the previous section, in the followingb50 is taken in Eqs.
~23! and ~24!.

A. Double-g band heads

There are three nuclei that have double-g bands identified
without ambiguity: 164Dy, 166Er, and 168Er @7–10#. In this
section the band heads of these nuclei are studied using
FIG. 14. Experimental~a! and theoretical~b!
spectrum for166Er. The Hamiltonian~24! is used
with parameters k8513.55keV, a5
275.40 keV,c50.05286 keV, andx520.45.
The boson number isN515.
9-9
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Hamiltonians~23! and~24! to get an improved description o
the anharmonicity phenomenon.

The number of bosons for164Dy and 168Er is N516
while for 166Er it is N515. In the different calculations
shown in this section the parameters of the Hamiltonian h
been chosen as to reproduce as well as possible not onl
heads of single- and double-g bands but also the structure o
the bands. Because these calculations are schematic an
not try to be the best answer, the parameters of the Ha
tonian, for simplicity, will not be given fully and only in the
case of final spectra will be shown. For comparison, the
culation with three-body terms~see Sec. III and Ref.@24#! is
also included.

In Figs. 7–9 the heads of single- and double-phon
bands are shown. In each figure six panels are included~a!
experimental data,~b! calculation with Hamiltonian~23! and
x52A7/2, ~c! calculation with Hamiltonian~23! and x
520.55, ~d! calculation with Hamiltonian~24! and x
52A7/2, ~e! calculation with Hamiltonian~24! and x
520.55. and~f! calculation with a three-body term (d†

3d†3d†)(4)
•(d̃3d̃3d̃)(4). In each panel, from left to righ

are represented the ground state, theg band head, theb band
head, the double-g K50 band head, and the double-g K
54 band head. Due to the controversy on the nature of thb
band, several candidates for the latter have been inclu
For the same reason in the figures will be used the la
‘‘ b. ’’ In 164Dy and 168Er no information on the double-g
K50 band exists. The valuex520.55 is chosen as an a
ternative to the SU~3! value because it describes very we
the E2 transition probabilities in this mass region. Also, t
same value ofx is taken in the Hamiltonian and in the tran
sition operator, in line with the consistent-Q formalism
~CQF! @27#. In Sec. V C this ansatz is used in the comple
analysis of spectra andB(E2) transitions for164Dy, 166Er,
and 168Er.

The most striking feature of Figs. 7–9 is that in all calc
lations the position of the double-g band heads and the de
gree of anharmonicity is well reproduced. Thus the energ
of the different band heads only are not sufficient to co
pletely determine the Hamiltonian. Nevertheless, not all p
sible terms are able to create sufficient anharmonicity in
double-g bands. For example, in the case of three-bo
terms, a phenomenological study of the most relevant typ
term shows that only (d†3d†3d†)(4)

•(d̃3d̃3d̃)(4) is able
to produce the required anharmonicity~see Sec. III and Ref
@24#!. On the other hand, only a few four-body interactio
have been explored here and it cannot be excluded that o
four-body terms can produce the appropriate degree of
harmonicity.

In order to decide which Hamiltonian is more appropria
a description should be attempted not only of band heads
also of the structure of the bands and ofE2 transition prob-
abilities.

B. Moments of inertia

The study of the moments of inertia of the lowest band
a very sensitive way to test the different calculations sho
in Figs. 7–9. Particular attention will be paid to the dynam
06430
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moment of inertia which can be obtained from the relati
between angular momentum andg-ray energy@28,29# and
can be approximated by

I'2\2
dJ

dEg
, ~27!

where J is given dimensionless. In a plot ofg-ray energy
versusJ, I will be the slope. Equation~27! can be used to
study the structure of the rotational bands in comparison w
experimental results.

In Fig. 10 the moments of inertia of the ground andg
bands in the nuclei164Dy, 166Er, and 168Er are compared to
those obtained with the Hamiltonian of Sec. III. The para
eters for 164Dy are k524.2 keV, x520.55, k85
26.0 keV, andu4551.0 keV, for 166Er are indicated in
Sec. III and for 168Er are k524.1 keV, x520.55, k85
21.9 keV, andu4531.6 keV. The predicted moments o
inertia disagree completely with the almost pure rotatio
structure observed experimentally. So, although this sim
description based on one single three-body term descr
well the anharmonic position of the double-phonon ba
heads, it fails in the moments of inertia of ground andg
bands. A more realistic description needs others three-b
terms. A recent analysis@23# shows, however, that Hamilto
nians withtwo different three-body terms cannot get the co
rect moment of inertia.

The results with the Hamiltonian~23! are shown in Fig.
11. Two different calculations are shown which correspo
to panelsb and c, respectively, of Figs. 7–9. In this case
better agreement is obtained but still some discrepancies
main, especially when a realistic value forx is taken (x
520.55). Finally, in Fig. 12 the results with the Hami
tonian~24! are compared with the data. Again, two differe
calculations are shown which correspond to panelsd ande,
respectively, of Figs. 7–9. Here, good agreement is fou
both for x52A7/2 andx520.55.

The different results with the Hamiltonians~23! and~24!,
can be understood qualitatively by analyzing the structure

@Q̂(x)•Q̂(x)#@Q̂(x)•Q̂(x)#. With just two-body terms the
Hamiltonians~23! and ~24! are equivalent. This is differen
when up to four-body terms are included becau

@Q̂(x)•Q̂(x)#@Q̂(x)•Q̂(x)# does not only contribute to
Ĉ2@SU(3)#x

2 and L̂2 but also to (L̂2)2. This can be clarified
with the equation

@Q̂~x!•Q̂~x!#@Q̂~x!•Q̂~x!#

5
1

4
Ĉ2@SU~3!#x

22
3

8
Ĉ2@SU~3!#x

2L̂21
9

64
~ L̂2!2.

~28!

As a consequence,@Q̂(x)•Q̂(x)#@Q̂(x)•Q̂(x)# substan-
tially modifies the rotational structure of a band even in t
case of pure SU~3!. This is how it can be qualitatively un
derstood thata description in terms of pseudo-Casimir o
erators is the most appropriate for dealing with anharmon
9-10
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FIG. 15. Experimental~a! and theoretical~b!
spectrum for168Er. The Hamiltonian~24! is used
with parametersk8513.23 keV, a5267.25
keV, c50.04080 keV, andx520.50. The bo-
son number isN516.
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vibrations.In the next section a complete analysis is given
the nuclei under study in the framework of CQF using t
Hamiltonian~24!.

C. Realistic calculations

The complete calculated spectra of164Dy, 166Er, and
168Er and the most relevantE2 transition probabilities are
presented in this section. They are compared with exis
data. In each calculation the same value ofx has been used
both in the Hamiltonian~24! and in the electromagnetic op
erator~22!. Finally, the effective charge in the transition o
erator~22!, eeff , was fixed for each nucleus to reproduce t
B(E2;21

1→01
1) value.

The experimental and calculated spectra for164Dy, 166Er,
and 168Er are shown in Figs. 13–15, respectively. The p
rameters used in the calculations are listed in Table II. T
parameters that yield the best fit to the energy spectra
very similar in the three cases which is consistent with
analysis carried out in the preceding sections. The ove
description of the energies is satisfactory. The calcula
low-lying bands are in good agreement with their experim
tal counterparts~see also Fig. 12! while the double-g band-
head energies are close to the experimental values. The
culated ratios~8! are: R0

g53.31 andR4
g52.81 for 164Dy,

R0
g53.08 andR4

g52.43 for 166Er, and R0
g52.93 andR4

g

52.46 for 168Er, to be compared with the experimental one

TABLE II. Parameters of the Hamiltonian~24! obtained in the
best fit to spectra andB(E2) transitions in the nuclei164Dy, 166Er,
and 168Er.

Nucleus k8 ~keV! a ~keV! c(keV) x N

164Dy 12.18 -82.90 0.05150 -0.55 16
166Er 13.55 -75.40 0.05286 -0.45 15
168Er 13.23 -67.25 0.04080 -0.50 16
06430
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:

R4
g52.84 for 164Dy, R0

g52.82 andR4
g52.45 for 166Er, and

R4
g52.50 for 168Er. Only for thegK50

2 vibration the experi-
mental and theoretical results are slightly different in t
sense that this framework overestimates the anharmonic
havior for thegK50

2 band. This can be corrected by increa
ing the value ofuxu in the Hamiltonian which, however, wil
introduce one more parameter because in the electromag
operator a different value ofx must be used.

For the calculation ofE2 transition probabilities the sam
x values as in the Hamiltonian are adopted. The effect
charges areeeff

2 5(1.66)2 W.u., eeff
2 5(1.83)2 W.u., and

eeff
2 5(1.67)2 W.u., for 164Dy, 166Er, and 168Er, respec-

tively. In Tables III–V the observedB(E2) values and ratios
concerningg-vibrational states are compared with the the
retical results. In general, a good overall agreement is
tained in the three cases under study.

VI. CONCLUSIONS

In this paper the problem of anharmonicity in theb andg
vibrations of deformed nuclei was addressed in the con

TABLE III. Observed and calculatedB(E2) values and ratios
for 164Dy. The E2 operator~22! is used witheeff

2 5(1.66)2 W.u.
andx520.55.

B(E2) value or ratio
Observed Calculated

B(E2;21
1→01

1)(W.u.) 20963 a 209
B(E2;41

1→21
1)(W.u.) 272614 a 298

B(E2;2g
1→01

1)(W.u.) 4.060.4a 3.9

B~E2;4gg
1 →2g

1!

B~E2;2g
1→01

1!
0.523.9b 3.3

aFrom Ref.@31#.
bFrom Ref.@7#.
9-11



o
th
f t
ia
ni
t
is
an
n
on
U
ty
er
il

iffi
le
te
rc
sio

t
es
e
b
f

the
s of

er
tly

e
p-
ed
on
wn

ma-
rip-

h-

,
d.
l
ish
the
ial

J. E. GARCI´A-RAMOS, J. M. ARIAS, AND P. VAN ISACKER PHYSICAL REVIEW C62 064309
of the interacting boson model. The occurrence or not
anharmonicity was shown to be related to the order of
interactions between the bosons and the conclusions o
analysis can be summarized as follows. If the Hamilton
includes up to two-body interactions, no sizable anharmo
ity can be obtained and the observed behavior canno
obtained. The origin of this behavior is related to the ex
tence of a first-order phase transition between rotational
vibrational nuclei@19# which excludes any interplay betwee
one- and two-body terms, necessary to obtain anharm
spectra. For up to three-body interactions that preserve S~3!
symmetry it can beshownthat the observed anharmonici
cannot be fully reproduced. Furthermore, extensive num
cal calculations indicate that even a general IBM Ham
tonian that includes up to three-body interactions has d
culty in reproducing all observed aspects of ground, sing
and double-g bands. However, due to the large parame
space of three-body interactions which is difficult to sea
exhaustively, this cannot be considered as a firm conclu
and alternative approaches~e.g., mean-field! should be tried
to tackle the same problem. Finally, it was shown tha
simple parametrization of the IBM Hamiltonian that includ
up to four-body interactions can account for all observ
properties of the three deformed nuclei with firmly esta
lished double-g vibrations. In particular, the introduction o

TABLE IV. Observed and calculatedB(E2) values and ratios
for 166Er. TheE2 operator~22! is used witheeff

2 5(1.83)2 W.u. and
x520.45.

B(E2) value or ratio
Observed Calculated

B(E2;21
1→01

1)(W.u.) 214610 a 214
B(E2;41

1→21
1)(W.u.) 311610 a 304

B(E2;2g
1→01

1)(W.u.) 5.560.4a 5.9

B~E2;0gg
1 →2g

1!

B~E2;2g
1→01

1!
3.861.3 b (2.220.7

11.1 c! 1.8

B~E2;4gg
1 →2g

1!

B~E2;2g
1→01

1!
1.360.4 b (0.960.3 c) 2.7

aFrom Ref.@30#.
bFrom Ref.@9#.
cFrom Ref.@8#.
.

G.
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SU~3! pseudo-Casimir operators allows to describe
double-phonon states while keeping correct the propertie
low-lying bands.

It should be emphasized that, in spite of its fourth-ord
character, the Hamiltonian considered here is only sligh
more complex than the usual IBM Hamiltonian~one more
parameter! and is a straightforward extension of th
consistent-Q formalism that was previously successfully a
plied to many nuclei. Also clear from our study is the ne
for more experimental information about the double-phon
vibrations in deformed nuclei beyond the three cases kno
at present: our analysis indeed has shown that this infor
tion represents a challenging test of any theoretical desc
tion of deformed nuclei.
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TABLE V. Observed and calculatedB(E2) values and ratios
for 168Er. TheE2 operator~22! is used witheeff

2 5(1.67)2 W.u. and
x520.50.

B(E2) value or ratio
Observed Calculated

B(E2;21
1→01

1)(W.u.) 207610 a 207
B(E2;41

1→21
1)(W.u.) 318610 a 294

B(E2;2g
1→01

1)(W.u.) 4.8060.17a 4.6

B~E2;4gg
1 →2g

1!

B~E2;2g
1→01

1!
0.521.6b 2.7

B~E2;5gg
1 →3g

1!

B~E2;2g
1→01

1!
0.723.5b 2.1

aFrom Ref.@32#.
bFrom Ref.@10#.
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