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Phase transitions and critical points in the rare-earth region
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A systematic study of isotope chains in the rare-earth region is presented. For tfafgNd, ¢ 18oSm,
148-1%2Gd, and™® 1§Dy, energy levels, E2 transition rates, and two-neutron separation energies are described
by using the most generdup to two-body termsinteracting boson modgllIBM) Hamiltonian. For each
isotope chain a general fit is performed in such a way that all parameters but one are kept fixed, to describe the
whole chain. In this region, nuclei evolve from spherical to deformed shapes and a method based on catastro-
phe theory, in combination with a coherent-state analysis to generate the IBM energy surfaces, is used to
identify critical phase transition points.
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[. INTRODUCTION global approach was first used by Castet al. for the
study of series of isotopd®—12]. An alternative procedure
Recently, a renewed interest in the study of quantunis provided by the use of the consistent Q formali€dQF)
phase transitions in atomic nuclei has emerdedd]. Anew  [13]. In this case, although the Hamiltonian is simpler than
class of symmetries, which applies to systems localized ahe general one, the main ingredients are included. Within
the critical points has been proposed. In particular, the “criti-this scheme, a whole isotope chain is described in terms of a
cal symmetry” E(5)[5] has been suggested to describe criti-few parameters that change smoothly from one isotope to the
cal points in the phase transition from sphericajtanstable  next. Because of the possible nonuniqueness of such nucleus
shapes while X(5]6] is designed to describe systems lying by nucleus fits and the restricted parameter space, it is im-
at the critical point in the transition from spherical to axially portant to study under what circumstances the prediction of
deformed systems. These are based originally on particulahe location of critical points in a phase transition is robust.
solutions of the Bohr-Mottelson differential equations but arejn this paper, we follow Ref§10-12,14,15and use a more
usually applied in the context of the interacting boson modebeneral one- and two-body IBM Hamiltonian to obtain the
(IBM) [7] since the latter provides a simple but detailedmodel parameters from a fit to energy levels of chains of
framework in which first and second order phase transitiongsotopes. In this way, a set of fixed parameters, with the
can be studied. In the IBM language, symmetry E(5) correexception of one that varies from isotope to isotope, is ob-
sponds to the critical point between the U(5) and O(6) symtained for each isotope chain and the transition phase can be
metry limits while the X(5) symmetry should describe the studied in the general model space. The fit to a large data set
phase transition region between the U(5) and the SU(3)n many nuclei diminishes the uncertainties in the parameter
dynamical symmetries, although the connection is not a rigdetermination. A possible problem arising from working with
orous one. Very recently, the O(6) limit itself has also beersuch a general Hamiltonian, however, is the difficulty in de-
proposed to correspond to a critical pojsi. termining the position of the critical points. Fortunately, the
Usually, the IBM analyses of phase transitions have beemethods of catastrophe thedy6] allow the definition of the
carried out using schematic Hamiltonians in which the tran-essential parameters needed to classify the shape and stabil-
sition from one phase to the other is governed by a singléty of the energy surfacgl4,15.
parameter. It is thus necessary to see how much these pre- In this paper, we analyze diverse spectroscopic properties
dictions vary when a more general Hamiltonian is used. Thef several isotope chains in the rare-earth region, in which
shape transition from spherical to deformed shapes is ob-
served. We combine this study with a coherent-state analysis
*Email address: jegramos@nucle.us.es and with catastrophe theory, in order to localize the critical
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points and test the X(5) predictions. Since the introduction To=(dTxd)®, (5)

of the E(5) and X(5) symmetries, only a small nhumber of

candidateg17-24 have been proposed as possible realiza-

tions of such critical point symmetries. In this paper, we T,=(dtxd)@ (6)

show that the critical points can be clearly identified by 4 '

me%rlls of a ggneral theoretical approghbh,15. ?ymbol stands for the scalar product, definedTas T,

paper is structured as follows. In Sec. II, we present

the IBM Hamiltonian used. In Sec. Ill, the results of the fits = >m(—1)"TinTi-w where Tiy corresponds to thev

made for the different isotope chains are presented. Compar¢omponent of OpefatOH'L Operator Wm—( 1)™e-m

sons of the theoretical results with the experimental data fofwherey refers tos andd boson$ is introduced to ensure the

excitation energie€ 2 transition rates and two-neutron sepa-correct tensorial character under spatial rotations.

ration energies are shown. In Sec. 1V, the intrinsic state for- The first two terms in the Hamiltonian do not affect the

malism is used to generate the energy surfaces produced Ispectra but only the binding energy. Therefore, they can be

the parameters obtained in the preceding section. In additiofigmoved from the Hamiltonian if only the excitation spec-

the location of the critical point in the shape transition fortrum of the system is of interest. However, a complete de-

each isotope chain is identified by using catastrophe theorgcription of both excitation and binding energies requires the

Also, in this section the alternative description provided byuse of the full Hamiltoniar(1).

the CQF for the rare-earth region is briefly discussed. Fi- The electromagnetic transitions can also be analyzed in

nally, Sec. V is devoted to summarize and to present outhe framework of the IBM. In particular, in this work we will

conclusions. focus onE2 transitions. The most gener@R transition op-
erator, including up to one body terms, can be written as

Il. IBM DESCRIPTION

In this work we use the IBM to study in a systematic way TE2=eo i (sTxd+d"™xs) P+ x(dTxd) @], (@)
the properties of the low-lying nuclear collective states in
several even-even isotope chains in the rare-earth regiomhereeq¢; is the boson effective charge ands a structure
The building blocks of the model are bosons with angulamparameter.
momentumL =0 (s boson$ andL=2 (d bosons. The dy- Two-neutron separation energieS,{) are also studied in
namical algebra of the model is(8). Therefore, every dy- the present work. This observable is defined as the difference
namical operator, such as the Hamiltonian or the transition binding energy between an even-even isotope and the pre-
operators, can be written in terms of the generators of theeding even-even one:
latter algebra. Usually, some restrictions are imposed on
these operators, e.g., the Hamiltonian should be number con-
serving and rotational invariant, and in most cases it only S:n=BE(N)-BE(N—-1), 8
includes up to two-body terms.
The most generalincluding up to two-body termsiBM whereN corresponds to the total number of valence bosons.
Hamiltonian, using the multipolar form, can be written as  Note that if only the first two terms in E¢1) are considered
and.A and B are assumed to be constant along the isotope
chain,S,, would be given by

~ N(N—l) R fia . .
= AN T+sdnd+KoP P+ kil L+x,Q-Q
~ 1~ ~
A . A . =—| A— =B|—BN=A+BN. 9
+ Kk3Tg- Tt kaTy Ty, ) Son (A 2) A ©

whereN andng are the total boson number operator and the For a detailed study of this property, we refer to H@b].

d boson number operator, respectively, and
. FITS

In this section we analyze several isotope chains belong-
|5T:} (dt.df—s'-s" 7 ing to the rare-earth region using the most general IBM
' Hamiltonian Eq.(1) and E2 transition operator E(7). As
anansatzfor each chain of isotopes, we will assume a single
Hamiltonian and a singl&2 transition operator. All param-
[ — Ty ) (1) eters in these operators are kept fixed for a given isotope
L \/E(d )™ ® chain, except for the single particle energy which is allowed
to vary slightly from isotope to isotope. The way of fixing
the best set of parameters in the Hamiltonian is to carry out a
least-square fit procedure of the excitation energies of se-
lected states (2, 4, , 67,8, ,0,,2;5,45,2,,3;,and

V7

Q=(s*><"o‘|+d*x"é)@)—?(dfx"d)@), (4)
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TABLE I. Values ofe4 in the Hamiltonian(in keV) for each isotopic chain as a function of the neutron number.

Neutron number

Element 84 86 88 90 92 94 96 98 100
soNd 1686.3 1606.7 1645.4 1602.9 1536.1 1595.9

62oM 1427.3 1393.5 1289.3 1210.8 1158.6 1192.5 1312.2 1452.0

64Gd 1479.3 1508.7 1409.0 1300.4 1221.5 1174.4 1162.0 1176.5

s6DY 1558.8 1607.6 1562.4 1503.9 1461.0 1427.7 1413.4 1409.2 1443.1

47) and the two-neutron separation energies of all isotopesarth nuclei is to use the CQF. The CQF Hamiltonian is
in each isotopic chain. Once the parameters in the Hamil- A A A, A,
tonian are obtained, thB(E2) transition probabilities 2 _ H=engtxQ"-Q", (10
=0/, 47 =2/, 2/—0f, 2:—0f, 0j—2/, and g  With
—21 of the set of isotopes are used to & and x by Q' =(stxd+d"x3) @+ y(dxd)?@. (12)
carrying out a least-square fit. The experimental data for ex-
citation and binding energies af®B(E2)’s have been taken For each nucleus, parametersk, andy are determined in
from Refs.[26—38. Finally, it is worth noting that in Ref. order to fit the excitation energies aBdE2)’s. In particular,
[25] the Hamiltonian parameters were fixed just using thein Ref.[39] the parameters of the Hamiltonian are calculated
data for excitation energies and thgnand B were adjusted within the CQF framework with thansatzthat the strength
to reproduce the experimental valuesSf,. In this paper, of the quadrupole term of the Hamiltonian remains constant
since we are particularly interested in accurately describinglong a wide region of the mass table. As in the present
the spectroscopic data associated with shape transitions, bgtlper, they compare experimental data and theoretical values
excitation and binding energies are treated on an equal foofer excitation energies and(E2) transition rates. Both
ing, describing the shape transition to determine the set ahethods provide a consistent description of the rare-earth
Hamiltonian parameters in E¢l). region with a similar number of parameters, as can be ob-
Tables | and Il summarize the parameters obtained for theerved in Fig. 10 and in Table Ill where the case'¥Bm is
Hamiltonian andE2 transition operator for each isotope analyzed. Note that in the present work the results come
chain. from a global analysis, therefore ti8{E2) transition rates
In Figs. 1-4 the systematics of experimental and calcuare not normalized to transitid®(E2:2; —0;) in a particu-
lated energies for the states included in the least-square prar isotope. If in Table Il the results are normalized so as to
cedure are presented in order to show the goodness of theproduce the observed value B(E2:2; —0;) in 12%Sm,

fitting procedure. In Figs. 5 —8 the systematics of the experithe results of this work and CQF are basically the same.
mental and calculateB(E2) values are compared. Finally,

in Fig. 9 t'he' experimental and cach'atéQn Vf’ﬂl'UeS are IV. ENERGY SURFACES AND PHASE TRANSITIONS

shown. This is a fundamental magnitude for identifying a

phase transition since it is directly related to the derivative of The study of phase transitions in the IBM requires the use

the energy surface. First order phase transitions are related the so called intrinsic-state formalispd0—42 although

with the appearance of a kink in ti8, values. As shown in other approaches can be ug&#3]. This formalism is very

Fig. 9, the calculation matches the experimentally observedseful to discuss phase transitions in finite systems because it

behavior. provides a description of the behavior of a macroscopic sys-
The analysis of the preceding figures for different observiem up to 1IN effects. To define the intrinsic or coherent

ables and for several isotope chains shows that the presestate, it is assumed that the dynamical behavior of the system

procedure is appropriate for systematic studies and confirmzan be described in terms of independent bogbadessed

that it provides a simple framework to describe long chaingosons’) moving in an average fielfd4]. The ground state

of isotopes and detect possible phase transitions. of the system is a condensdt® of bosons occupying the
An alternative approach to describe long chains of rarelowest-energy phonon staﬂ.{r :

TABLE Il. Rest of the parameters in the Hamiltonian and in Ef transition operator.

Isotopes A (MeV) B (MeV) Ko (keV) K, (keV) K, (keV) K3 (keV) K4 (keV) €11 (€-b) X

144-15Nd 16.75 -0.51 83.753  —13.928 —17.151 —101.27 —187.57 0.119 —-1.43
146-169Sm 18.05 —0.46 53.209  —11.267 —14.674 —31.769 —131.24 0.119 -1.69
148-187Gd 22.55 -0.76 45207  —7.932 —-13.129 -35224 —156.24 0.110 -1.77
150-158py 25.06 —0.80 38651  —6.416 —13.638 —59.165 —163.05 0.103 -1.60
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1
= — ([N 12
)= TR (T 10 a2 +2 2 5 k083 7)
18
where + B4 Xo ﬂ+_
B 4 2 35 Ka |, (14)
1 1 where the terms which do not depend grand/ory [corre-
rl= s'+ B cosyd]+ —Bsiny (d}+ df_z)) sponding toA and B in Eq. (1)] have not been included.
Vit+p V2 The equilibrium values of variational parametgsnd y

(13 are obtained by minimization of ground state energy

c|A|c). As mentioned above, these parameters are related

andg andy are variational parameters related with the shapéo the parameters of the geometrical collective model and

;{arlablfs mfttr;]e ?j‘omﬁ”"?a' c.ol!e;:tllve. m(t)d(i.zThe egpeCtabrovide an image of the nuclear shape for a given IBM
ion value of the Hamiltonian in intrinsic sta(@2) provides Hamiltonian. A spherical nucleus has a minimum in the en-

the energy surface of the systemNeB,y)=(c|H|c). The  ergy surface aB=0, while for a deformed one the energy
energy surface in terms of the parameters of Hamiltodan  gyrface has a minimum at a finite value@®fand y=0 (pro-

and the shape variables can be readily obta[dAé&idt late nucleus or y=w/3 (oblate nucleus Finally, a
) y-unstable nucleus corresponds to the case in which the en-

~ NS 9 7 9 ergy surface has a minimum at a particular valugatnd is

{c] H|C>_(1+,32)( gt K=ot prat g K“) independent of the value of. The equilibrium values of

and y are the order parameters to study the phase transition
of the system although in the case under considertiRivi-

Ko + 2( _ Ko +4 Kz) 1), only B has to be taken into account since the minima in

4 2 are well defined.

L NON-D)
(1+p?)2
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FIG. 3. Excitation energies of Gd isotopes. FIG. 4. Excitation energies of Dy isotopes.
In Fig. 11 the energy surfaces for the isotopes of the dif-
ferent isotope chains studied in this paper are plotted as mainly performed with restricted IBM Hamiltonians. In par-
function of 8. The figure on the right is a zoom of the region ticular, within the CQF, or other restricted Hamiltonians, the
close tos=0. location of the critical point is obtained by imposing
The classification of phase transitions that we follow ind’E/dg?=0 at =0, whereE is the energy surfacg2].
this paper and that is followed traditionally in the IBM is the This condition leads to a flat surface in a region of small
Ehrenfest classificatiop46]. In this context, the origin of a values of8, with a single minimum in limity=0 and two
phase transition resides in the way the energy surfto@r  almost degenerate minintane of them in3=0) in the other
minima position$ is changing as a function of the control cases. In the CQF approximation it can be said that
parameter that, in this work, is a combination of parameter$d2E/d,82),3=0=0 corresponds approximately to a “very flat
of the Hamiltonian[see Eq.(21)]. First order phase transi- energy surface,” as happens for the E(5) and X(5) critical
tions appear when there exists a discontinuity in the firspoint models. Following this approach, both™Nd and
derivative of the energy with respect to the control param-'°Sm have been found to be close to critical. However,
eter. This discontinuity appears when two degenerate minimehen studying a transitional region in which the lighter nu-
exist in the energy surface for two values of order parameteclei are spherical and the heavier are well deformed,athe
B. Second order phase transitions appear when the secopdori restriction of the parameter space could play a crucial
derivative of the energy with respect to the control parameterole in the identification of a particular isotope as critical. It
displays a discontinuity. This happens when the energy suiis thus important to perform a general analysis in order to
face presents a single minimum f@=0 and the surface check whether the predictions obtained within the CQF for
satisfies conditiondzE/d,BZ)B:():O. those nuclei close to a critical point are robust. We present
With the introduction of the E(5) and X(5) symmetries to below such an analysis in the region of the rare earths. We
describe phase transitional behavior, diverse attempts ttwllow closely the approach introduced in R€f$4,15 using
identify nuclei that could be located at the critical points catastrophe theory. In the following section the main ingre-
have been made. The theoretical approaches have bedrents of the theory are summarized and the relevant equa-
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FIG. 6. B(E2) transition rates for Sm isotopes.

FIG. 5. B(E2) transition rates for Nd isotopes.

~ 7 9
tions are particularized for the IBM Hamiltonian written in e=eqt6ry— 4 Kot 5 K3t 5 Ka
multipolar form, Eq.(1).

) 1 1 18
A. The separatrix plane al:ZKO+ §K2+ 35K

For the study of phase transitions in the IBM within the
framework of catastrophe theory, we already have the basic
ingredients: the Hamiltonian of the system, Ef), and the a,=2 \/EKz
intrinsic state, Eq(12). With them, we have generated the
corresponding energy surface Ef4) in terms of the Hamil- 1
tonian parameters and the shape variables. It is our purpose az=— s kot4 Ky
to find the values of the parameters of the Hamiltonian that 2
correspond to critical points. In principle, this analysis in-
volves the six parameters of the Hamiltonian but a first sim-
plification occurs since the energy surface only depends on Up=—%- (16)
five parameters:

Fortunately, it is possible to reduce the number of relevant
NEE2  N(N-1) (or essentiglparameters to just two and study all phase tran-
+ sitions by using catastrophe thedd6]. We refer the reader
(1+8%  (1+p%)? to Refs.[14,15 for details of the application of this theory to
u the IBM case. The idea is to analyze the energy surface and
x| a;8%+a,B3cog3 y) +as B2+ 0 ' obtain all equilibrium configurations, i.e., to find all the criti-
2 cal points of Eq.(15). First, the critical point of maximum
(15)  degeneracy has to be identified. In our case, it corresponds to
B=0. Next, the bifurcation and Maxwell sets are con-
where structed[14,16. Finally, the separatrix of the IBM is ob-

(c|H[c)=
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FIG. 7. B(E2) transition rates for Gd isotopes. A
tained by the union of Maxwell and bifurcation sets. In gen- FIG. 8. B(E2) transition rates for Dy isotopes.

eral, a bifurcation set, corresponding to minima, limits an

area where two minima in the energy surface coexist. A sec- -

ond order phase transition develops when these minima b&heree, a;, a,, andag are defined in Eq(16). The de-

come the same. The crossing of a Maxwell set correspondingominator in both expressions fixes the energy scale, which

to minima leads to a first order phase transition. means that when it becomes negative, the energy surfaces are
In order to follow this scheme, one has to identify theinverted. The essential parametefsandr, can also be writ-

catastrophe germ of the IBM, which is the first term in theten in terms of the parameters appearing in @g.as

expansion of the energy surface around the critical point of

maximum degeneracy that cannot be canceled by an arbi-

trary selection of parameters. In our case, one finds that the

first derivative ing=0 is always 0O because of the critical 18 T L I
character of the point for any value of the parameters. The coNd &Sm G0 DY
second and third derivatives can also be canceled with an | T T
appropriate selection of parameters. However, if one imposes "
the cancellation of the fourth derivative, the energy becomes I 1 1 1 1
a constant for any value ¢8. This means that the catastro- < | | | | |
phe germ isg* and the number of essential parameters is =
equal to two, which can be defined, following reference \':5147 1 1 1 |
[14,15, as v
13+ + + + 1
—Up+e/(N—1) n b
M= = s [ T T T [m—= exp
Y 2a,+3/(N—1)—a,
156 ‘ 11‘)0 ‘ 154 14‘18‘ 1‘52‘ 1156‘ 1(%0 1“50‘ 1‘54‘ lif:s‘ 1é2 1%2‘1.136‘1(‘50‘1(‘54‘
148 152 150 154 158 152 156 160 154 158 162 166
2a, A A A A
ry=-— = : (18
2ap+el/(N—-1)—as FIG. 9. S,, values for Nd, Sm, Gd, and Dy isotopes.
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FIG. 11. Energy surfaces for the different chain of isotopes.

obtained. The basic point is to translate every set of Hamil-
tonian parameters to the plane formed by the essential pa-
rameters ; andr,. This plane is divided into several sectors
by the bifurcation set that form the geometrical place in the
parameter space whed@E/d3?=0 for a critical value of3,

and the Maxwell sets, the geometrical place in the space of
parameters where two or more critical points are degenerate
[16]. Both sets form the separatrix of the system; in this case,
of the IBM. In Refs.[14,15 the IBM bifurcation {, axis,
r,=0 andr;<0 semi-axis,rq;, andrq,) and Maxwell

A property of the parametrization used in this work is th?‘t(negativerl semi-axis, r{5, and ry,) sets were obtained.
the different chains of isotopes are located on a straight lingey are all indicated in Fig. 12. In this representation, it is
that crosses the point corresponding to the U(5) limit. Therequired that the denominator in Eq47) and(18) be posi-

equation of this line is given by

36

2K0_7K2+ 3_5K4

r,=
. 4\/§K2

r,+1. (21)

tive. The separatrix for;>0 is associated with minima
while for r;<0 it is associated with maximéexcept the
negativer,; semi-axig. In order to clarify the figure on the
separatrix, the energy surfaces corresponding to each set are
plotted as insets. The half plane with>0 corresponds to
prolate nuclei while the one with,<0 corresponds to oblate

It should be remarked that the derivation of the essentiahuclei. Note that expressioi$9) and(20) are only valid for
parameters has nothing to do with catastrophe theory. Thprolate nuclei but can be readily obtained for the oblate case.
application of this theory begins once those parameters are

TABLE IIl. Relevant transition rates fot>Sm (in W.u.).

Expt. X(5) This work CQE

B(E2:2; —0;) 144 144 128 144
B(E2:4] —2]) 209 228 193 216
B(E2:6, —4]) 245 285 215 242
B(E2:8; —67) 285 327 218 248
B(E2:10{ —8]) 320 376 210 242
B(E2:0; —2]) 33 91 53 57
B(E2:25 —4]) 19 52 14 20
B(E2:2; —27) 6 13 5 11
B(E2:25 —0;) 1 3 0 0.1
B(E2:4, —6;) 4 40 7 14
B(E2:4; —4]) 5 9 2 8
B(E2:4; —2]) 1 13 0 0.1

8 ollowing Ref.[2].

2

=

T T T T T T
L \| P
|~ UB) .
<\ -]
~
~
\\\ ==

FIG. 12. Separatrix plane with a positive energy scale.
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FIG. 15. Representation of isotopes in the separatrix phaiia
x<0). The numbers on the isotopes correspond to the number of
0sons.

FIG. 13. Separatrix plane with a negative energy scale.

b
In this figure, the symmetry limits and the correspondence
with Castenstnanglé?] are also represented. For complete-p| ne provides the required information on its transitional
ness, one should consider the case where the denomlnatorﬂflase character. As mentioned above, it follows that points
Egs.(17) and(18) is negative. It implies that the energy scale |ocat04 on a separatrix line correspond to critical points.
becomes negative and the energy surface should be invertggye that the dynamical behavior of the system is controlled
The separatrix for th.'s case IS plotted n Fig. 13 and C.OWeby the lowest minimum in the energy surface. In this sense,
sponds to the inversion Of Fig. 12. Again, the schematic €Mive are adopting the Maxwell convention in the catastrophe
ergy surfaces corresponding to each branch of the separatrmeow languagé16] and the only relevant branches of the

are shown as insets. Note that in this case the Symmetr%’eparatrix ar@ , andr,=0 with r,=<0. All these branches

“m't.s. . appear in the figure because they cor.respond t(?orrespond to first order phase transitions except for the
positive denominators for; andr,. In our analysis only

single point ¢;,=0,,=0) that corresponds to a second or-

pTO'ate n'.“'CI.e' are conS|der_ed k_Jecause of Wh'Ch anew flgur%er phase transition. The rest of Maxwell lines do not corre-
Fig. 14, is included. In this figure, the right panel corre-

sponds to positive denominators for andr, while the left spond to_a phase transition because they are related to

panel shows the case of negative denomi?]ator fandr maxima. The interest of the blfur_catlon set, cqrrespondlng to

In the following, we will follow the convention presentéd in minima, arises from the fapt that It defines regions Where two
’ minima exits. In the following section the transitional isotope

this figure. . S ) ; .
. I hain ied in thi r are analyzed in th ratrix
A set of parameters in the Hamiltonian corresponds to ?F)Iz;es studied S paper are analyzed e separat

point in the separatrix plane. The location of the point in tha

B. Rare-earth region on the separatrix plane

The fits presented in Sec. Il provide the parameter sets
given in Tables | and Il for the four isotope chains studied in
this paper. In this section, we plot the corresponding se-
quences of points representing the isotopes in each chain on
the separatrix plane. As can be observed in the previous
tables, all the parameters for each chain are fixed except the
value ofey that changes along the chain.

In Fig. 15 the positions of the different isotopes in the
chains studied are plotted in the separatrix plane. The inter-
pretation of these lines is given in Fig. 14. As mentioned
above, all isotopes in a chain lie on a straight line. The
lighter ones are close to the U(5) poitgpherical shapés
while as the number of neutrons is increased the correspond-
ing points get increasingly away. For the heavier isotopes of
Gd and Dy, the denominator of andr, becomes negative,
which means that the left panel in Fig. 14 has to be used.

The main feature we find is that some nuclei are close to
FIG. 14. Separatrix plane for prolate nuclgi<0). Maxwell setr;;: the closest are**®Nd (boson numbelN
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means that within this framework the exploration of only a
1 limited area in the separatrix plane is allowed. If all isotopes
in an isotopic chain are forced to be located on the line
connecting the U(5) and SU(3) points, it follows that one
will more often find an isotope close to tienique critical
point. In the calculations presented here, we have seen that
within the general formalism this is not always the case. For
example, for Dy we did not find an isotope close to a critical
point.

In previous systematic studies in the rare-earth region us-
ing the CQF formalism, Ref$39] and[25], the correspond-
ing energy surfaces were not presented. We have constructed
them from the parameters given in those references and the
results obtained are consistent with those given in the present
work. In particular,2*&d and 1°Sm seem to be closest to a
Iy critical point.

FIG. 16. Representation of isotopes in the separatrix plane in the V. CONCLUSIONS
closest view.

In this paper we have analyzed chains of isotopes in the
=8) and®°Sm (boson numbeN=9) and not far away is rare-earth region. In these chains nuclei evolve from spheri-
152Gd (boson numbeN=10). This can be complemented cal to deformed shapes. We have performed an analysis of
with the image of the energy surfaces plotted in Fig. 11. Théhe corresponding shape transitions to look for possible nu-
energy surfaces fol*8Nd and *5%Sm are rather flat around clei at or close to a critical point. We have used the more

B=0. For 5%Gd the situation is not so clear. For Dy there is 9€neral one- and two-body IBM Hamiltonian and generated
no isotope close to the critical point. According to our cal- €Neray surfaces using the coherent-state formalism. We have

culations, the transition from spherical to deformed occurdhen used catastrophe theory to classify phase transitions and

betweenN=11 andN=12. Isotope 6Dy is close to the to decide if a nucleus is close to criticality.
Maxwell set but in the left panel. In this situation there 1he approach used to fix the Hamiltonian parameters

should be two degenerate maxima. This can be observed [§2ds to & very good global agreement with the experimental
the corresponding energy surfa@eson numbeN=15) in  data corresponding to excitation energlE2)’s and Sy,

Fig. 11. The isotopes®™Nd (N=9) and 1525m (N=10) values. In partlcqlar, an excellent a_greeme_nt with the mea-
[also can be included in this situatio®’Gd (N=11) suredS,, values is obtained, wh_u_:h is consldered a key ob-_

and 1Dy (N=13)] are close to bifurcation set, axis. servable to Iocgte pha_tse tran.S|t|onaI. regions. The.anglyas
Again, inspection of Fig. 11 shows that the energy surface@resented here is consistent with previous CQF studies in the

H § 15
for these isotopes has a minimum 80 and a maximum ~ S&me region. As a result, we find thetNd and **°Sm are
at 8=0. In Fig. 16 we show an amplification of the critical the best candidates to be critical but we should remark that

15 5 H
area. Nd and®’Sm are not far away from it.

In conclusion, from this global analysis we find that A possible new way of defining critical nuclei is based on

18\, 1% m, and(ess clearly 15%Gd are close to criticality. “critical symmetries” E(5) or X(5) [5,6]. The properties

These isotopes are quite ciose but do not exactly coincid@SSOCiated with these solutions allow the identification of

with previously proposed critical nuclei®Nd and 15%Sm critical points by comparing the experimental data with char-

[20,24, where the quite basic criterion was the closeness of.Cteristic energy and transition rate ratios. Thus, according to
their low-lying excitation spectra and transition intensitiesS View, it may be possible to decide whether a nucleus is
with the X(5) values. critical by analyzing its spectrum and decay properties. A

trickier question is whether a flat energy surface can be truly
associated to a given nucleus with energy ratios close to
X(5). Consider the case of°’Sm; this nucleus reproduces
The CQF uses a simplified Hamiltonian with only three reasonably well the main X(5) features at low energies but it
parameters. For the description of transitional nuclei fromis not at all clear whether this truly implies a critical behav-
the U(5) to the SU(3) limits, the parameters are allowed tdor. As shown in Ref[3], due to the discrete character of
vary nucleus by nucleus. The representation of such calcularucleonN and Z numbers, it is difficult to define a critical
tions in the separatrix plane shows that all isotopes in a chainucleus in a precise fashion. The authors of R&f.define
are basically on top of the straight line connecting the U(5)an alternative(continuou$ control parameter and particular
point (r,,r,)=(1,0) and the SU(3) point rg,r,) order parameters to avoid this situation. They stress that it is
=(—4/3,4\2/3). Note that this point corresponds strictly to the shape coexistence #%Sm, together with its proximity
the SU(3) Casimir operator. However, a more general CQFo a phase transitional region that makes it a strong candidate
SU(3) Hamiltonian still lies very close to the latter point. In for criticality. We should remark, however, that in the general
general, the same happens in the U(5) and O(6) points. Thi8M framework discussed in this article there are no unique

C. Prediction of critical points within CQF
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