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Within the Feshbach formalism we calculate the nucleus-nucleus dynamical polarization potential
arising from the coupling of the elastic channel to the collective vibrational states, described by the
random-phase approximation. Calculations for the systems ' 0+ Ca and Ca+ Ca show the impor-
tance of the high-lying states. They give the main contribution to the real part of the polarization poten-
tial at every incident energy, while they dominate the imaginary part only at very high energy. At low

energy the absorption is given by the low-lying states. The real and imaginary parts of the potential are
shown to obey a dispersion relation. Calculations of elastic cross section give a good description of the
experimental data.

I. INTRODUCTION

The elastic scattering of nuclei is well described by the
optical potential. Its real part is usually constructed by
means of the double-folding model [1]. The imaginary
part describes the depopulation of the elastic channel due
to its coupling to the nonelastic ones. This coupling gen-
erates also a correction to the real part. Recently, a
renewed interest in this so-called dynamical polarized po-
tential has been raised by the experimental evidence [2] of
a strong energy dependence of both real and imaginary
parts of the optical potential at energies close to the
Coulomb barrier, which is known as threshold anomaly.
A dispersion relation has been used [3,4] to relate the
strong increase of the real part to the decrease of the
imaginary one. Thus it is interesting to study the behav-
ior of the polarization potential with the energy within a
microscopic approach.

Semiclassical models have been proposed in order to
calculate the polarization potential by including low-
lying collective vibrational states and one nucleon
transfer [5], only one nucleon transfer [6], and both low-
and high-lying collective vibrational states [7]. Although
the potentials so obtained give a good description of the
experimental elastic cross section, a drawback of these
models is that the polarization potential is not construct-
ed directly but only by making approximations on quanti-
ties expressed as integrals along classical trajectories.

The polarization potential can be calculated in a com-
plete quantum way through the use of the Feshbach for-
malism [8]. This approach has been exploited by Vinh
Mau by using the closure approximation [9]. The main
advantage of this method is its simplicity. One can ob-
tain the polarization potential without detailed informa-
tion on the structure of the nonelastic channels. At the
same time, one limitation of the model is its inability to
describe how specific channels contribute to the total po-
larization potential.

In this paper we calculate, following in spirit the ap-

proach of Vinh Mau, the polarization potential taking ex-
plicitly into account the effects of the excitations of the
collective vibrational states, described within the
random-phase approximation (RPA). An analysis of the
real and imaginary parts of the polarization potential in
terms of the single collective modes shows the impor-
tance of the giant quadrupole resonance (GQR) states.
They give a strong contribution to the imaginary part
only at high incident energies, while the real part is dom-
inated by the high-lying states at all energies.

We show that the energy dependence of the real and
imaginary parts of the polarization potential follows the
trend of the experimental data and satisfies a dispersion
relation. Finally, calculations of elastic cross section per-
formed with our microscopic optical potential give a
good description of the experimental data. Preliminary
results of this model have been presented elsewhere [10].

II. THE MODEL

An elegant and transparent way to take into account
the coupling of the elastic channel to the nonelastic ones
is through the use of the Feshbach formalism [8]. In this
approach the effective heavy-ion interaction is written as

v(R R') = ( oo I.(R)
l
oo )S(R R')

+ g (oolu(R)lK, K )
EC l E2

& G««, (R,R')(Ic, Ic, l
U(R') loo)

= VF(R)+hV(R, R') .

In the first term the nucleon-nucleon interaction U (R) is
double folded with the ground-state densities of the two
nuclei. In the second term the sum is over all the none-
lastic channels, and U (R) is double folded with the transi-
tion densities of the two nuclei: it describes the coupling
of the elastic channel to the nonelastic ones. This term is
the so-called dynamical polarization potential. Its physi-
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cal meaning is transparent from Eq. (1): the interaction
acting at the distance R' takes the system into one of the
eliminated channels; then it is propagated at another dis-
tance R where the interaction, acting again, brings the
system back into the elastic channel. Then the polariza-
tion potential is nonlocal, and if one or more of the elim-
inated channels is open it is also complex and its absorp-
tive part describes the loss of Aux from the elastic chan-
nel. The coupling also make b, V energy dependent be-
cause of the appearance of the energy in the propagator
Gx. x (R, R'):

V k«)V f(R')
Gx x (R,R')= d k

E E~ —Err —fi k —/2p+iri

where E, is the center-of-mass incident energy, EK
1

and EK are the excitation energies of nucleus 1 and 2, re-
2

spectively, and p is the reduced mass. The yk(R)'s are
the relative motion wave functions of the colliding nuclei.

The calculation of Eq. (1) is a very difficult task be-
cause of the presence of GK K . We calculate the propa-

1 2

gator in the WKB approximation, which has been shown
to be a good approximation for a-nucleus scattering [11]
at energies greater than the Coulomb barrier. In this ap-
proximation we have

are terms of the form

av, = y &oolU(R)ll~, o&G~,(R,R')&I~, olU(R')loo& .
K1%0

(8)

The closure approximation model of Vinh Mau con-
sists of replacing the excitation energies EK and EK by

1 2

average values E& and E2, respectively. In this case the
propagator G does not depend on the particular excita-
tion and it can be taken out of the summation of Eq. (8);
then a closure relation over the states E, and K2 can be
used. This approximation is very good at very high in-
cident energies, while at low energies the values of M (p)
[Eq. (3)] can be quite diff'erent depending on the values of
EK and EK . Furthermore, the e6'ective nucleon-nucleon

1 2

interaction is approximated by a separable force.
We want to calculate the polarization potential arising

from the excitation of the collective vibrational states and
to study the relative importance of low-lying and high-
lying ones. Thus we do not make use of the above ap-
proximations and we explicitly sum over the relevant
states, whose energies and transition densities are calcu-
lated microscopically within the RPA.

Within the double-folding approach the form factors
can be written as

F~,(R)—= & ool U(R) lI~ &o &

p exp[i'. x. (p)s]
1 2

G~ ~ (p,s)=-
2~%2 S

with

2p
M~, x, (p)=, [E. Ex, Ex, —~c(p—) —1'c(p) ]

where

p=-,'(R+R'),

The local optical potential VL (p) is given by

(2)

(3)

(4)

= f drtdr2px. O(r, )U(lr, —rz+Rl)poo(rz) .

The explicit expression of the radial part of the transition
density pox (r&) is

J'& +i /2

p, o(") g ( ) (l —lg —,
' lL o)

4m

X (Xpq' —Y„h' )8 (r)Rh (r), (10)ph ph p

1.5

&L, (p) = &p(p)+ &VL(p),

while Vc is the Coulomb potential between the two nu-
clei. A procedure to define the local polarization poten-
tial b, VI will be given later on in this paper.

In order to make more transparent the contribution of
the single terms in Eq. (1), we can separate the summa-
tion over K, ,E2 into three parts,

X = X + X + X
K1 K2 Kl =0 K2%0 K1%0 K2 0 K1 XO K2+

which give rise to three diff'erent contributions to b, V,

AV=AV2+hV, +AV)2,

0.0

—0.5
0

L= 1

l

0.5
cos 8

I

0.5
cos 8

L=3

I

0.5
cos 8

'i

/ I.

I'

I

respectively. In the first term nucleus 1 stays in its
ground state while nucleus 2 is excited, vice versa in the
second term, while in the third one both nuclei are excit-
ed. This last term is expected to give a small contribution
and will be neglected. Then what we have to calculate

FIG. 1. The quantity Al, defined in Eq. (11), as function of
cosO for three values of the angular momentum L. In each sec-
tor the three curves correspond to a fixed value of p= 8 fm and
to the following values of s: 1 fm (solid line), 4 fm (dashed line),
and 8 fm (dot-dashed line). The results corresponding to odd
values of L are multiplied by —1.
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where R~ (Rh ) is the particle (hole) wave function; X~&'

and Y z are the forward and backward RPA amplitudes
K)

corresponding to the mode K& whose multipolarity is L].
The calculation of b,V,z(p, s) is reported in the Appen-

dix. Expressions for it and for EV(p, s) are given by Eqs.

(AS) and (A9), respectively. Their angular part can be
easily worked out if we assume that the potential b, V is
weakly dependent on the angle 0 between p and s. This
has been shown to be true for nucleon-nucleus scattering
[12]. The angular part of b.V, can be written as

Ar(p, s,x)=(+p +—,'s +psx Qp + „'s —psx—) p
i/2 1/22L+1 2L+1

[2(L —
A, )+ 1]'~ [2(L —

A, ')+ I ]'
A, +A,L

( )i.

X, X =0
A, +A,

X g ( —)fW(A, , L —
A, , A.', L A, ', Lf—)(L —

A, 0 L —I,' Olf 0)(A, 0 A,
' Olf 0)Pf(x) .

where x =cos8 and 8 is the angle between p and s. Numerical calculations of Eq. (11) show that the variation of Ar
with 0 may be very different depending on the values of p and s. In particular, we show in Fig. 1 the behavior of Az,
for p= 8 fm and s=1,4,8 fm, as function of cosO for three values for L. We see that a rapid variation with cosO is found
for p=s =8 fm, while for small values of s the quantity A~ is almost independent of cosO. This range of values of large

p and small s is the physically interesting domain, where the localization procedure that we will describe later on also
makes sense. So in this range of values hV is weakly dependent on the angle 8. Choosing the value cos8=1, which
corresponds to take the maximum contribution, we have

Ar (p, s, x) =( ' ——'')
x=1

A. =O

2L+1
2 P 2A,

(A, 0 L OlL —1 0)( —)~

2L +1
A.'=0

(A,
' 0 L OlL —~' 0) =( —)c . (12)

Then the potentials AV&z and b.Vi can be written as

and

EV,~(p, s) —
6 g G»» (p, s)L fE qgA»» (p, s)%»» (p, s)(L, 0 L~ Ol J 0—)

» 1 2 1 2
l~ 2 J

(13)

EVi(p, s)=
5 X G», o(P s)+», o(P s)+» o(p~

—s)L i,
16m g

1

(14)

where %»» (p, s) is defined in Eq. (A7) of the Appendix.
The potential calculated with just the described pro-

cedure is nonlocal. But, since it is always preferable to
use local potentials, at least for the calculation of physical
observables, we use a standard procedure [13] to obtain a
local potential from a nonlocal one. This procedure is
applicable whenever the range of nonlocality of b,V is
small with respect to its radius. Thus, we have

It has been shown [9] that the hypothesis over the range
of nonlocality of b, V is valid, at least for large values of
p. Indeed, in Fig. 2 we show the real and imaginary parts
of Eq. (14) as functions of s for two fixed values of p. For
large values of p it is found that the range of nonlocality
is about 1 fm. This value is consistent with previous ones
given in the literature [9,14]. Thus the hypothesis of in-
dependence of b,V on the angle between p and s, dis-
cussed before, is a1so justified.

AV(p) =4m fj o(ks ) RehV(p, s )s ds, (15) III. RESULTS AND DISCUSSION

8'(p) =4mfjo(ks) Imb, V. (p, s)s ds,

where

p [&c.m. VF(p) Vc(p)] .2p
g2

We have done calculations for the systems ' O+ Ca
and Ca+ Ca at several incident energies. The levels
used in the calculations are reported in Table I. They
have been obtained with a self-consistent RPA code using
an SGII force [15]. We have included all the states which
exhaust at least 10% of the energy-weighted sum rule
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FICx. 2. Real and imaginary parts of the nonlocal polariza-
tion potential AV, (p, s), for the system ' 0+ Ca at E&,b =104
MeV, as a function of s for two fixed values of p: 7 fm (dashed
line) and 8 fm (solid line).

(EWSR). The RPA calculations have been done with a
large number of particle-hole configurations (-350 for
the 3 of " Ca) in order to get a good description of the
low-lying states [16]. Both energies and transition densi-
ties compare well with the experimental data. The
effective M3Y nucleon-nucleon interaction has been used

Nuclei

1

1
2+
2+
2+
3
3
3

E* (MeV)

19.096
19.996
19.945
20.620
21.280

7.220
32.870
34.610

%EWSR

27
21.4

44
13

12.6
8.8
8.4
8.9

"Ca

1

1

1

1
2+
3
3

16.302
16.765
17.372
17.883
18.296
18.632
16.741
4.830

31.281

9.8
15.2
10.6

10
10.6

16
80
15

13~ 5

TABLE I. Properties of the RPA states used in the calculations.

in order to construct the double-folding potential V~ of
Eq. (1) and the form factors of Eq. (9).

In order to study the interplay between the low-lying
and high-lying states we have made an analysis in terms
of the single vibrational collective states. In the left part
of Fig. 3 we show the real and imaginary parts of the po-
larization potential for the system Ca+ Ca at
E&,b =240 MeV. Each line corresponds to the contribu-
tion due to different multipolarities as indicated in the
figure; the total potential is given by the solid line. The
relative contribution of the single collective states can be
better seen in the right part of Fig. 3, where for the same
system we show the real and imaginary parts of the polar-
ization plotted in percentage of the total potential as
function of the relative distance R. Each line corre-
sponds to the relative contribution of the different mul-
tipolarities, as indicated in the figure. We note that the
absorptive part is given almost completely by the low-
lying 3 state. Conversely, the contribution of low-lying
and GQR states to the real part b, Vis of the same magni-
tude. The high-lying 3 states and the giant dipole reso-
nance states give essentially zero contribution. For the
dipole isovector state this contribution comes only
through the small mixture of T=O components due to
the Coulomb interaction. This result is not peculiar of
the particular system: in general, at low energy the ab-
sorptive part of the optical potential is given by the low-
lying states, while both low and GQR states contribute to
the real part. In fact, also for the system ' 0+ Ca at
E»b = 104 MeV (see upper part of Fig. 4) a similar behav-
ior is found.

In order to investigate the polarization potential at en-
ergies much higher than the Coulomb barrier we have
calculated 6 V and 8'for the system ' 0+ Ca at several
incident energies. In Fig. 4 we show the relative contri-
bution of the single modes to the real (left) and imaginary
(right) part of the polarization potential as a function of
R and for three different values of the incident energy.
Again, the multipolarities are indicated for each curve.
We note two striking features. (1) The real part is dom-
inated by the GQR states which give, at high energy,
80% of the potential. The contribution of the low-lying
3 state, comparable in the peripheral region to the 2+
states, is decreasing when the energy increases. The
high-lying 3 states and the GDR states behave in an op-
posite fashion. However, they never reach important
values. (2) Conversely, the behavior of the absorptive
part changes drastically, going from 104 to 640 MeV. In
fact, as we have seen before, at low energy the imaginary
potential is essentially due to the 3 low-lying states,
while as the energy increases the dominant absorption
comes from the GQR of both nuclei. This behavior can
be understood in semiclassical terms [7); higher energies
correspond to shorter interaction times; hence, by the un-
certainty relations, the probability of excitation of high-
lying states is higher. This mechanism does not work in
the case of the real part because the process involved in
the formation of 6Vis a virtual one.

A deeper analysis shows that the major part of the to-
tal 3 contribution comes from the low-lying state of the

Ca. This can be seen in Fig. 5, where for the system
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0+ Ca at E] b
= 104 MeV we show how the polariza-

tion potential due only to the low-lying states is distribut-
ed between the two partners of the reaction. We see that
the heavier partner is responsible for most of the effect.
This trend does not change at higher energies; the only
difference is that, for instance at EI,b =640 MeV, the two
curves get closer for large R. On the contrary, for the
high-lying states it is the lighter partner which gives the
greater contribution, although the difference is not as big
as in the previous case. As an example, we show in Fig. 6
the polarization potential due to the GQR states for the
case of ' 0+ Ca at E),b =640 MeV.

In order to check the range of validity of the previous
results with respect to the relative importance of GQR
and low-lying states, we have done calculations for labo-
ratory energies from 10 to 320 MeV for the system
' 0+ Ca at a fixed distance R=9 fm. The results are
reported in Fig. 7, where the real and imaginary parts of
the polarization potential are plotted as functions of the
energy. Their energy dependence resembles very much
the experimental findings of Ref. [2]. The dashed line is a
result of a calculation done including only the low-lying
3 states of the two nuclei; the solid line has been ob-
tained by using all the states of Table I. As was expected,
at low energy the absorptive part is given only by the 3
states, the contribution of the high-lying states increasing
with the energy until reaching a maximum around 650
MeV (not shown in the figure) and then decreasing very
slowly to 0.

Surprisingly enough, for the real part we have a com-
pletely different interplay between low- and high-lying
states: the latter are giving a big contribution even at
very low energy. The different behavior depends on the
physical process giving rise to the real and imaginary
parts of the polarization potential. The latter is due to
real excitation of the nuclei, and thus it vanishes at low
incident energy when the channels are closed. The real
part is due to virtual excitation of the nuclei, so it is
present at all energies. Previous calculations of the polar-
ization potential have not taken into account the GQR
states, missing in this case at least 50%%uo of the effect.

The energy dependence of the polarization potential,
shown in Fig. 7, has a twofold origin. The dynamic ener-
gy dependence is due to the appearance of the center-of-
mass energy in the definition of the propagator. The
second one can be thought of as a spurious one [17] be-
cause it is due to the localization procedure described in
Eqs. (15) and (16) and it comes through the local momen-
turn k.

The energy dependence of the real and imaginary parts
of the polarization potential are governed by the disper-
sion relation. This relation is deduced from the general
principle of causality, so every polarization potential
should obey it. The possible violation of the dispersion
relation due to the extra energy dependence introduced
by the localization procedure has been found to be small
[9,18,19].

In order to check it in our case we use the linear

Ca + Ca, EI g ~ 240 MeV

0.0 100

-2.5 80 - 2+

-5.0 K4
60

40

-7.5
/

/

-10.0
8
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20- 3 ll

1
0

9 10 11
R (fm)

0 100

60-

-10
40-

20

-15
8
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I
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8
R (tm)

I
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FIG. 3. Real and imaginary parts of the local polarization potential for Ca+ Ca (E& b =240 MeV) as a function of the relative
distance R. Each line corresponds to the contribution of difFerent multipolarities as indicated in the figure. On the left part the total
potential is given by the solid line. On the right part the potentials are plotted in percentage of the total one.
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schematic model given by Mahaux et al. [4]. In particu-
lar, we use the model of Eq. (3.1S) of Ref. [4], where we
have changed the misprinted plus sign of the last term to
a minus. In this model the imaginary part is segmented
into three parts, and this makes it possible to find an alge-
braic expression for the corresponding real part through
the subtracted dispersion relation. By using Eq. (3.1S) of
Ref. [4] we have then calculated the real part of the po-
larization potential for both of the imaginary parts of
Fig. 7; namely, the one due to only the 3 low-lying
states and the one calculated with all the states of Table
I. In both cases the schematic potential has been normal-
ized to the calculated one at Et,b

=320 MeV. The
squares in Fig. 8 are the result of this calculation. The
agreement with the curves calculated by means of Eq.
(1S) is very good. This implies that the localization pro-

cedure used here is a good one in the sense that it does
not violate the dispersion relation, at least at the distance
considered in the calculations.

Optical model analysis [1,20,21] on elastic scattering
data is available for the system ' 0+ Ca. Our imagi-
nary potential shows a behavior in qualitative agreement
with the empirical one, namely, it decreases in the
E&,„&80 MeV domain and goes to 0 at E&,b-40 MeV.
In the same energy region we have a corresponding in-
crease for 6 V. Unfortunately, the empirical values show
a considerable scatter which makes a quantitative corn-
parison hard. As pointed out by the authors of Ref. [4], a
consistent reanalysis of all the data would be interesting.

In order to have a further test of our microscopic opti-
cal potential we have calculated the elastic cross section
for the systems ' 0+ Ca and Ca+ Ca at various en-
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FIG. 9. Elastic scattering angular distribution for ' O+ Ca
and Ca+ Ca. The latter is plotted in absolute units. The
data are from Refs. [21] and [22], respective1y.

sidered the transfer channels which are thought to be im-
portant at least for asymmetric systems. This may be the
reasons why we have strong oscillations in the elastic
cross section at backward angles for the ' 0+ Ca case.
In fact, as is shown in Ref. [5], the imaginary potential
due to the transfer channels having a longer range may
smear out the oscillations.

Another point to be investigated is how much the re-
sults depend on the values of the excitation energies of
the collective states used in the calculations. In other
words, is the use of an average excitation energy in the
propagator and then the use of the closure approximation
justified, or is it important to use the proper energies for
low- and high-lying states'? To answer this question we
have done a calculation including aH the states of Table I,
where the energies have been arbitrarily put equal to a
Axed value. In particular, we have chosen E160 6.5
MeV and E4, =5.0 MeV (Ref [9]). Th.e results are re-4'Ca

ported in Fig. 10 as dashed lines, while the solid lines re-
sult from the RPA energies reported in Table I. The be-
havior with the energy of the imaginary potential is quite
difFerent in the two cases. In the calculation correspond-
ing to the solid line the effect of the high-lying states is
evident: the potential goes up as the incident energy in-
creases. The dashed line resembles the one in Fig. 7,

FIG. 10. Same as Fig. 7. The dashed curves refer to a calcu-
lation performed with constant excitation energy E&6 =6.50
MeV and E4O =5.0 MeV, while the dot-dashed ones corre-

Ca

spond to the values EI6 =20 MeV and E4o =17 MeV (see

text). The solid lines are the same as the ones plotted in Fig. 7.

which was calculated with only the two low-lying states.
Thus all the states now give an equally important contri-
bution, at least at low energies. The magniAcation factor
between the two curves is not equal to the number of
states used in the calculation because we have kept the
RPA form factors in both cases. For completeness we
have done a calculation with the average energies close to
the energies of the giant quadrupole resonance states, i.e.,
E,6 =20 MeV and E4o =17 MeV. The results (dot-
dashed line in Fig. 10) show an enlargement of the energy
scale: the rapid increase and then decrease of the real
part of the polarization potential is now spread out over a
much larger range of incident energy. As expected, the
imaginary part is important at high energies and vanishes
at E„b—100 MeV (see also lower part of Fig. 7). The real
parts are governed by the dispersion relation: different
behaviors of the absorption will produce different behav-
iors of the real polarization potential. In particular, ac-
cording to the simple form of the linear schematic model
of Ref. [4] [Eq. (3.17)], the positions of the maxima of the
real parts are determined by the energy value correspond-
ing to half the interval where the imaginary potential
goes rapidly to 0. The fact that the real potential corre-
sponding to the dot-dashed line has a maximum near 200
MeV conArms this simple model.
We have shown, at least for the two extreme cases
presented in Fig. 10, that the use of average excitation en-
ergies in the propagator of Eq. (2) gives rise to polariza-
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tion potentials which differ in shape and magnitude from
the potential calculated with the proper energies for both
low- and high-lying states. Since these results are not at
all exhaustive, this problem should be further investigat-
ed.

IV. CONCLUSIONS

Within the Feshbach formalism we have calculated the
dynamical polarization potential arising from the cou-
pling of the elastic channel to the collective vibrational
states. The latter were constructed within self-consistent
RPA with the SGII force. Both energies and transition
densities compare well with the available experimental
data. The propagator was calculated in the WKB ap-
proximation, which is very good at incident energies
greater than the Coulomb barrier. The bare nucleus-
nucleus potential has been constructed by double folding
the effective M3Y interaction with the HF densities of
the two nuclei. We have not made use of the closure ap-
proximation but we have summed over a finite number of
relevant states, each one with its own energy. The locali-
zation procedure we have used does not destroy the ener-

gy dependence of the polarization potential: The real and
imaginary parts satisfy the dispersion relation.

We have done an analysis of the real and imaginary
parts of the polarization potential in terms of the relative
contributions of the single collective states for the sys-
tems ' 0+ Ca and Ca+ Ca at several incident ener-
gies. As one should expect, at low incident energies the

main contribution to the imaginary part of the polariza-
tion potential comes from the 3 low-lying states. As the
energy is increased the role played by the 3 states is tak-
en over by the GQR states which give the main effect.
Conversely, the real part is dominated by the high-lying
states in all the energy range investigated, and they con-
tribute up to 80% to b, V. This novel result shows that
the GR states cannot be disregarded in the construction
of a dynamical polarization potential.

We have also shown that the use of the average excita-
tion energies, in the two extreme cases treated here, gives
rise to a polarization potential which differs appreciably
both in shape and magnitude from the one calculated
with the proper energies.

The energy dependence of the polarization potential
has been checked by means of the dispersion relation. In
particular, we have used the linear schematic model of
Ref. [4]. The result is very good. Calculations of elastic
cross section give a good description of experimental
data: these calculations have been done with no adjust-
able parameters.
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APPENDIX

In this Appendix we want to calculate the quantity b, V, 2 which is defined as

AV, 2(R, R')= g FK K (R)GK K (R,R')FK K (R'),
K1K2

where FK K (R) is given by
1 2

FK K (R)=(00~u(R)~K, Kz) =fdr, dr2pK o(r, )u(~r, —r2+R~)poK (rz)

(Al)

/ dp p u(p)pK o(p)poK (p)i ~1L2(4~'" 1 2

X g j~(PR)(L, M, L, M, ~J M, +M, )(L, 0 Lz O~J 0)YJM +M (R),
J

(A2)

where we have used the fact that

pK, o(ri)=pK, o(r, )YI. M (ri)

and the definition of the Bessel-Fourier transform

pK 0(p)=4~f "ri«iJI.
, (pri) K, o(ri ) .

(A.3)

(A4)

p ('s) g (J—A M pA p~J M) YJ iM—„(p)Yq(s) .

We have denoted with jl and Y& the Bessel and spherical harmonic functions, respectively. The caret over the spin
variables denotes J=VZJ+ I, and 8'(p) is the Fourier transform of u. According to Eq. (4) we can write R=p+ —,s;
then in this case we have [Eq. (6.50)] of Ref. [23]:

I /2
2I. +1

R YJM(R)=&4m. g
Q=o
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With the help of this equation we can write Eq. (Al) in the form

EVi2(p, s)= X G»» (p, s)( —)
' 'E iL 2

4m4 ~ ~
~ —J+J'

X g %»» (p, s)%»» (p, —s)(L, 0 L2 OIJ 0&(L, 0 L2 OIJ' 0&
JJ'

' 1/2

I

—J J—i( &

X=O A, '=0

1/2

( )i.'I &

I

—I' J'—i.'( & s )i.'

X g YJ i. M +M + (P)Yi (s)YJ* i. M +M „p
pp'M) M~

X (J—g —(Mi +M2+p) gp I
J —(Mi +M2 ) & (L i Mi L~ M2 I J(Mi +M2 ) &

X (J' —1,' —(M, +M~ —p) A, 'p'I J' (M, +M2) &(L, M, L2 M2I J' (Mi+M2) &,

where we have defined

&»» (P s)= f dpi''v(J )P» oV»Po» (P)JJ(PIP+ ,"I) . -
The angular part can be easily worked out, and one finally gets

(A6)

(A7)

b, V,2(p, s)= Q G»» (p, s)L iL ~

x y ( —)'W»» (p, s)N»» (p, —s) (L, O L, Ol J O &2( Ip+-,'s I lp
—

—,'s I ) 'p"
J

2J+1
(J—

A, ')
2J+1

Xg 2~ (J —A)g( —)
A, =O 2P X'=0

X g ( —) W(A, ,J—A, , A, ',J A, ';Jf)(J—A, 0—J —A,
' Olf 0&(A, 0 A,

' Olf 0&Pf(cos8) .
f

AV, (p, s)= g G» o(p, s)&», o(p, s)J7»'o(p, —s)E i( —)
16m.

where &is the Racah coefficient and the Pf (cos8) are the Legendre polynomials; 8 is the angle between p and s.
An analogous expression is valid for b, V, (p, s) and for b Vz(p, s):

(AS)

I.
1

x(lp+ —,'slip —
—,'s ) 'p

X=o

'' 2L, +1
(L, —A) g ( —)"

J A, '=0 2p

2L, +1
(L i

—
A, ')

X g ( —) W'(A. ,Li —A, , A, ', L, A, ',L,f )(L, ——1, 0 L, —
A,

' OIF 0&(A, 0 A,
' Olf 0&Pf(cos8) .

f
(A9)
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