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Geometric interpretation of the effect of the quadrupole force in the collisions of deformed nuclei
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The effect of a quadrupole force on a set of degenerate states of a rotational band with arbitrary spin

projection along the symmetry axis K is studied. Analytic expressions for the eigenvalues and eigenvec-

tors are obtained in terms of a set of orthogonal polynomials. This is applied to the collision of a spheri-

cal nucleus with a deformed one in which the coupling to a given set of rotational states is allowed, ig-

noring excitation energies. The elastic S-matrix, transition amplitudes, and the fusion cross sections are
obtained as a weighted average of the magnitudes corresponding to a set of definite orientations of the
axis of the deformed nucleus with respect to the relative coordinate. That weighted average corresponds
to approximate the extreme sudden result, consisting of an integral over all the orientations, by a gen-

eralized Gaussian quadrature.

PACS number(s): 24.10.Eq, 24.70.+s, 24.50.+g, 03.65.Nk

I. INTRODUCTION

The collective excitations of nuclei play a very impor-
tant role in the reaction mechanisms. The description of
these effects requires the explicit inclusion of the excita-
tion by means of coupled-channels calculations. For the
case of rotational nuclei, a proper coupled-channels cal-
culation would require the inclusion of many states of the
rotational band, making the calculation complicated and
time consuming, and complicating the interpretation of
the results. On the other hand, when the rotational
motion can be considered slow versus the relative motion
(sudden approximation) the scattering amplitudes can be
calculated as an integral extended to all the orientations
of the rotor of the scattering amplitudes calculated as if
the orientation of the deformed nucleus was frozen dur-
ing the reaction, weighted with the probability density
that the ground state has that orientation [l]. Also, it is
known that when the effect of the coupling to a restricted
set of excited states is considered, the excitation energy is
ignored, the centrifugal barrier is suitably approximated
and the coupling form factors have the same shape, the
coupled-channels system can be decoupled, and the
scattering amplitudes can be expressed as a combination
of the ones corresponding to a set of uncoupled eigen-
channels [2—5].

Nagarajan, Balantekin, and Takigawa [6) contributed
to bridge the gap between the coupled-channels calcula-
tion and the sudden result demonstrating that, for a
@=0 rotational band, the coupled-channels effect corre-
sponding to include the rotational states from I=O to
I=2%—2 ignoring their excitation energies, was
equivalent to do a weighted average of the amplitudes
corresponding to N orientations. These orientations are
characterized by the angle 0 between the symmetry axis
of the deformed nucleus and the relative motion, that
takes the values such that P2&(cos0) =0. Moreover, that

weighted average is precisely the combination obtained
when the integral corresponding to the sudden approxi-
mation is approximated by an N-point Gauss-Legendre
quadrature.

The aim of this work is to search for a similar result
that could be applied to a rotational band of arbitrary E.
This is important if one is interested in studying the
inhuence of polarization on the reaction mechanisms, be-
cause, if the nucleus is to be polarized, its ground state
needs to have spin different from zero.

This paper is organized as follows. In Sec. II we
evaluate the matrix element of a quadrupole interaction
between rotational states using the tidal spin basis. In
Sec. III we map the rotational states into a new set of
states characterized by a set of orthogonal polynomials.
In Sec. IV we perform an analytical diagonalization in
the new basis. In Sec. V we discuss the meaning of eigen-
values and eigenvectors. In Sec. VI we apply this treat-
ment to the calculation of scattering amplitudes. In Sec.
VII the relation to the geometrical limit is obtained. Sec-
tion VIII is for summary and conclusions.

II. COUPLING POTENTIALS

Let us consider the interaction between a spherical nu-
cleus and an axially deformed one. The interaction can
be written as

V(r, f') = Vo(r)+ V2(r)P2(r. g),
where r is the relative coordinate and g' stands for the
direction of the symmetry axis of the deformed nucleus.
In this expression we have neglected spin-orbit terms and
hexadecapole and higher-order deformation. The matrix
elements of the quadrupole interaction between rotation-
al states in the usual coupled-channels basis is given by
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(IKLJI V2(r)P~(r g)II'K'L'J )

= V2(r)5x ~, W(II'LL';2J)LI

x &I.o2olI. 'o) &IK20II'K), (2)

where I is the internal angular momentum of the de-
formed nucleus and K is the projection along the symme-
try axis, that characterizes the rotational band. L is the
orbital angular momentum, and J is the total angular
momentum. It is known that this interaction can be par-
tially diagonalized in the tidal spin basis [7]

(IKMJI V, (r)P, (r g)II'K'M'J )

= V~(r)5M ~ 5+ K I/I'(IM20II'M )(IK20II'K'),

where M is the projection of the spin I along the relative
coordinate r (tidal spin). Note that throughout this pa-
per, M denotes the tidal spin while K is the projection of
the spin along the symmetry axis of the rotor. Both mag-
nitudes are conserved by the coupling potential. Note
also that the value of J does not afFect the values of the
coupling potential in the tidal spin basis. So, in what fol-
lows, we will drop the index J in the characterization of
the states.

The coupling potentials have a common form factor
V2(r) and different strength factors. if the excitation en-

ergy is ignored for a given number of states, the coupling
matrix could be diagonalized numerically, and a set of
eigenchannels be obtained, from which all the relevant re-
action magnitudes can be calculated [2—S]. However, the
eigenvalues and eigenstates of the numerical diagonaliza-
tion do not have any clear geometrical meaning.

The main difficulty in extending the analytic diagonali-
zation [6] to KPO bands is that each state is coupled to
four other states, while for a K =0 band it is only cou-
pled to two other. That makes it difficult to make a suit-
able truncation in the states of the band included in the
calculation, and yet obtain analytic expressions for eigen-
values and eigenvectors. An exception to this are the
K= —,

' bands, because they can be considered as K=O
bands to which a j=

—,
' particle is coupled. For these ana-

lytic expressions for eigenvalues and eigenvectors can be
found.

III. MAPPING

To simplify the complicated coupling structure of a
EWO band we wi11 introduce a set of states obtained act-

ing with the P2(r. g) operator over the ground state of the
band.

I
1 & =N, (P2lo& —lo & &0IP, lo&),

n —1

In &=N„P, ln —1& —g li&&ilP, ln —»
i=0

(4)

These states do not have, in general, good angular
momentum I. Explicit expressions for overlap (nlIKM )
in the case K =—', are given in Table I (M =—,') and Table
II (M= —,'). The states In ) are the combinations of states
IIKM) that are most relevant for the quadrupole cou-
pling. %e expect that the coupled-channels efFects due to
the rotational states IIKM) from I=K to I=K+2N
would be very similar to consider the states

I
n ) from

n =0 to n =¹In both cases, terms of order %+1 in J'2
are ignored: Note that coupling structure is simplified,
because each of the states In ) is only coupled to In + 1 )
and ln —1). This way of generating the ln ) states is
known as the Lanczos method [8], which allows one to
obtain some eigenvalues and eigenstates quite accurately
from only part of the full matrix.

Although the states
I
n ) have a complicated expansion

in terms of states of good angular momentum, they have
a very appealing expression when expressed as a superpo-
sition of states corresponding to definite orientations of
the rotor. The state IO) can be written as [9]

=v (2K+1)/16m' J dn[2P~~(n)InK )

+( —i)2~gF, (n)lnK)],
(S)

where x =cosP and N(x) is a normalization factor. The
states lxKM) have the same parity as the states of the
rotational band, and satisfy

where I nK ) is a state vector of the deformed nucleus
corresponding to an orientation given by the Euler angles
n =(a,p, y) of the rotor with respect to an external coor-
dinate system with the z axis along the relative coordi-
nate, and a projection EC of the angular momentum along
the symmetry axis. InK ) is the time reversed state. We
can define the state lxEM ) as

lxKM) =N(x) J dady[2)xM(n)InK)

+( —1)' 2) (n)lnK ) ], (6)

(nII )

TABLE I. Mapping coefficien for K =
—,',M = —.

TABLE II. Mapping coefficients for K = —', ,M =
—,'.

&o

((I
&2 4465 7755

(of
v'-',
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TAHI.E III. %eight functions and orthogonal polynomials.

I( =—M=—27 2
K= —',M= —'

m(x) (1+3x )/4
1

Q —,,'2 (15x'—7)

(133x —126x + 17)

(3—3x )/4
I

Q —', (Sx ' —1)

Q 64 (21x —14x '+ 1 )

I.-.lxKM & =MI.KM &,

( I g')
l
xKM &

=K lxKM &,

P2(r.g)lxKM & =P2(x)lxKM&, '

(x'K'M'lxKM &=5x x5M ~5(x' x) . —

(7)

(8)

(10)

polynomials are the even Legendre polynomials. The an-
alytic diagonalization and the geometric interpretation
obtained in [6] for the K=0 band relied on the ortho-
gonality properties of the Legendre polynomials. Thus,
we are in the situation of applying similar techniques for
our case.

They can be interpreted as states of the rotor in which
the axis of the rotor and the relative coordinate form a
fixed angle p, but they are averaged over all the Euler an-

gles a and y so that M and E are good quantum num-
bers. In terms of these states, the ground-state wave
function is just

IV. ANALYTIC DIAGONALIZATION

We will demonstrate that the (unnormalized) state

I(()&= g Q„( p)l
n=0

(15)

lO&=lKKM&= f dx w(x)' lxKM&,

where

w(x) = [[dhM(p)] + [d —xM(p)] } .
4

(12)

is an eigenstate of the operator P2(r g) in the subspace
generated by [ln &, n =O, N}, corresponding to the eigen-
value P~(x&), if x& is a zero of QN+, . For that, it should
be noticed that the Q„, as orthogonal polynomials, satisfy
a recursion relation for that can be written as (cf. [10])

It is straightforward to see that, in general,

In &= f dx w(x)'~'g„(x')lxKM&, (13)

x Q„(x )=a„„,Q„+,(x )+a„„Q„(x )

+a„„,Q„,(x ), (16)

where Q„ is a polynomial of order n that satisfies the
orthogonality condition

(nlm &=f dx w(x)Q„(x )Q (x )=5„. (14)

Using this equation and the fact that Qo = 1, one can gen-
erate the polynomials. The explicit expressions for
w(x), go, g„and Q2 are given in Table III, for K= —,

' and

2' 2'
Note that, for a K =0 band, the state ln & has good an-

gular momentum I=2n. The corresponding orthogonal
I

+b„„,g„,(x ) .

Using that relation, it is straightforward to see that

(17)

where ao, =0. The coeScients in the recursion relation
depend on the normalization of the polynomials. In our
case, the polynomials are normalized to 1 [see Eq. (14)], it
can be seen [10] that a„„+,=a„+, „Similarly, one can
write

P2 (x)g„(x') =b„„+1Q„+1(x')+b„„Q„(x')

N N

g Q. (3') 2(x)Q.(x')= X Q. (3') 2(3)g (x )+bNN+1[QN(3 )QN+1(x ) QN(x )QN 1(+3')] '
n=0

(18)

Using these results, we can write

P,(r g)lg&=P, (x&)lg&

+bNN+1[QN(xp)IN+1&
—QN+1(xp)IN &] .

Thus, if the operator is restricted to the subspace generat-
ed by [ln &, n =O, N} the term proportional to lN+1&
cancels. If x& are taken as the zeros of QN+„ the term
proportional to lN & vanishes, and we are left with the re-
sult we wanted to demonstrate.

Note that QN+, , as an orthogonal polynomial, has
N + 1 zeros in the interval (0,1), which would correspond
to N + 1 eigenvalues and eigenstates of P2. The eigenval-
ues of P2 are shown in Tables IV and V. Using the
Christoffel-Darboux formula, one gets

(ply&= y g„(,')g„( ', )=0
n=0

if x& and x& are different zeros of QN+, . Thus, we
con6rm that the eigenstates are orthogonal. Finally, the
eigenstates can be normalized so that



1342 M. V. ANDRES, J. GOMEZ-CAMACHO, AND M. A. NAGARAJAN 45

TABLE IV. Eigenvalues of the P2 operator for K = 2,M = 2.

/=4
N=O
N=1
N=2
N=3
N=4

0.2000
—0.2556
—0.3871
—0.4367
—0.4599

0.6766
0.2303

—0.0312
—0.1811

0.8294
0.4984
0.2385

0.8953
0.6512 0.9294

n=O

(n~y) =Q„(xp) g Q (xy)
i=0

V. INTERPRETATION OF THE EIGENVALUES
AND EIGENSTATES

(21)

The values of
~ f„(13)~

represent the probability density of
having an angle P between the axis of the rotor and the
relative coordinate. They are plotted in Figs. 1 and 2 for
K= —,', n =0, 1,2. They do not present any preferred
orientation, and resemble the qualitative behavior of the
modulus square of spherical harmonics.

If we use the equivalent expression for the eigenstates

It should be noticed that the states ~n ) form a com-
plete basis of all the combinations of states ~xKM ) that
are even in x. Thus, a state Q —,'(~xKM)+~ —xKM)),
that correspond to an axially symmetric deformed nu-
cleus whose symmetry axis forms a fixed angle with the
relative coordinate, can be expanded in terms of the
states ~n ) as

Q —,
'

(
~

xKM ) +
~

xKM ) ) =—&2w (x ) g Q„(x )
~
n ) .

n=0

(22)

If this expansion is truncated up to n =X, we will have
the state in the subspace generated by the basis
[~n), n =O, N] that resembles most closely to a state
with a fixed orientation. This truncation is more accurate
for the values of x so that Q~+~(x )=0. Thus, we can
interpret the eigenstates of P2(r g) in a subspace generat-
ed by I ~0) . ~N)] as the combination of states that
resemble most to states of a definite orientation. This in-
terpretation is strengthened by the fact that the eigenval-
ues of P2(r g) in the truncated subspace coincide with
those corresponding to the states of definite orientation
~x&KM ), that are P2(x&).

To illustrate this, we can express the states (n ) as a
combination of states corresponding to an angle P be-
tween the axis of the rotor and the relative coordinate:

/P) =f dP f~(P)/PKM & (24)

we find that the values of
~ f&(p) ~

(see Figs. 3 and 4) have

significant values at orientations close to the angles p~
such that their cosines give the zeros of QN+ ~(x ) &»
gets bigger, the function

~ f&(p) ~
becomes a 5 function.

VI. APPLICATION TO SCATTERING
IN THE SUDDEN LIMIT

The interaction between the nuclei conserves both the
tidal spin M and the projection of the spin along the sym-
metry axis of the rotor E. However, that is not true for
the fu11 Hamiltonian. The centrifugal term of the relative
motion changes M, while the Coriolis term of the internal
Hamiltonian of the rotor changes E. However, the
Coriolis term can be neglected for not very high internal
angular momentum I, and the centrifugal term can be
substituted by an average value (isocentrifugal approxi-
mation [7]) for heavy-ion collisions. Note that, when the
ground-state angular momentum I=0 and one is discuss-

ing elastic scattering, the isocentrifugal approximation is

equivalent to ignoring the Coriolis force of the relative
motion [2]. The isocentrifugal approximation implies

that M is conserved in the scattering process, while

neglecting the Coriolis force of the internal degrees of
freedom implies that K is conserved.

Any magnitude related to the scattering of two parti-
cles can be obtained in terms of the S matrix. This, in

TABLE V. Eigenvalues of the P2 operator for K = ~,M = ~.

N=0
N=1
N=2
N=3
N=4

—0.2000
—0.3780
—0.4343
—0.4590
—0.4720

0.3780
0.0252

—0.1574
—0.2606

0.6399
0.3187
0.1008

0.7683
0.5068 0.8393
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0.4 0.4

0.2 0.2

0.0
~/6

P (»d)

0.0
0

P (rad)

FIG. l. ~f„(P)~' vs the angle P for K= —', ,M=2. The solid

line corresponds to n =0, the dashed line to n =1, and the dot-
dashed line to n =2.

FIG. 2.
~ f„(p)~2 vs the angle p for K = z, M= z. Same n«a-

tion as Fig. 1.

general, will be a function of the total angular momentum
J, the incoming and outgoing orbital angular momenta
L,L the incoming and outgoing intrinsic angular mo-
menta I,I', and their projection along the symmetry axis
K,K'. When the Coriolis term can be ignored, the S ma-
trix is diagonal in K. Besides, when tidal forces dom-
inate, and the isocentrifugal approximation can be done
[7], the S matrix elements can be written in terms of the
tidal spin Smatrices as

~J~L 'I'K', LIK

=5~x Ph g (LOIM~JM)(L'OI'M~JM)SI I
M

(25)

n, n'=0
( I'KM

~
n ' )S, ( n

~
IKM ) . (26)

The coefficients (nIKM ) can be obtained in a straight-
forward (but laborious) way from the definition of the
states ~n ). Some of them are presented in Tables I and
II.

Now if one uses the basis ~(() ) that diagonalizes the in-
teraction, it will also diagonalize the S matrix, and one
gets

N+1S„„=y (n' (t )S (xy)(y~n ) .
/=1

The S matrix S (x&) is the one obtained from a one-
channel optical model calculation with the potential

where M is the tidal spin, L =(L+L')/2, and Ph is a
phase factor involving Coulomb phase shifts. Now, if we
consider the coupling of the rotational states from I=K
to K+2N, ignoring the excitation energies, we can use
the mapping discussed previously to get

2.0

V~(r)= Vo(r)+ V2(r)P2(x&) .

The elastic S matrix for the ground state is just
N+1

SLY y ~MKSL(
(I5 =1

where

(28)

(29)

1.5

2.0

1.0

0.5

0.0
0

/

/X
pp / i pee= e-

vr/37T/6

P (»d)

FIG. 3. f&(P)~ vs the angle P for K= 3,M= —'. The solid
line corresponds to /=0, the dashed line to P= I, and the dot-
dashed line to / =2.

1.0

0.5

0.0
0 vr/6

P (rad)

FIG. 4. ~f&(P)~ vs the angle II for K= 3,M= —.Same nota-
tion as Fig. 3.
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TABLE VI. Weight factors for E= —', ,I= —', .

N=O
N=1
N=2
N=3
N=4

1.0000
0.5113
0.3145
0.2238
0.1733

0.4887
0.4120
0.2973
0.2218

0.2735
0.3068
0.2587

0.1721
0.2286 0.1176

N
MK 2 2

i =0
(30)

A~, ~ (8)= X d, M
M

A M (8)dK

(32)
The fusion cross sections, defined as the cross section that
does not appear in the channels included explicitly in the
calculation, for a given value the angular momentum J
and of the tidal spin M can be calculated in terms of
those of the uncoupled eigenchannels and one gets

N+1
JM MK J ~

/=1
(33)

Note that the fusion cross sections for a given projection
of the spin of the projectile along the beam direction m
can be related to the fusion cross sections for a given tidal
spin M using tidal symmetry [11]

6 JM
OK

J
K, m (34)m, M

Note that g&w4, =1. The weight factors w& are
shown in Tables VI and VII. As the weight factors do
not depend upon L, the sum to obtain the scattering am-
plitudes as a function of the scattering angle for a given
tidal spin can be performed, and one gets

N+1
Az~z(8) = g w& A (x&,8) . (31)

/=1
Note that tidal symmetry leads to the fact that the transi-
tion amplitudes corresponding to projections m, m ' of the
spin along the beam direction are given by

that the moment of inertia of the rotor is very large, and
so the orientation of the rotor is fixed during the scatter-
ing process, the scattering amplitudes will be given in
terms of the average over all the orientations, weighted
with the probability density that they occur in the ground
state [1]:

Sz~= J dx w(x)S (x), (35)

Az z(8) =f dx w(x) A (x,8),
1oP= f dx w(x)o (x) . (37)—1

(36)

Let P (x) be a set of polynomials that are orthogonal
with respect to the weight function w(x). One can ap-
proximate the integrals as follows:

1
N'+ 1

J dx w(x)f(x)= g A~f(x~), (38)—
1

1

N'

g P (x&)P (x)

L~(x)=
g P (x~)

(40)

Using the orthogonality of P (x) one gets

N'

where x& are the zeros of the polinomial PM+, (x), and
A

&
are weights given by the expression

A&= J dx w(x)L&(x) . (39)—1

L&(x) is the Lagrange multiplier function [12] that can be
written as

A~= g P (x~) (41)

where OJ is the classical scattering angle that corresponds
to an angular momentum J.

VII. RELATION TO THE GEOMETRICAL LIMIT

If the excitation energy of all the states of the rotation-
al band can be ignored, which is equivalent to assuming

m=0

The truncation error is of the order of the 2N'+ 2 deriva-
tive of f(x)

In the case that w(x) and f (x) are even functions of x,
only the polynomials Q„(x ) are relevant, and one can
write the expression

TABLE VII. Weight factors for I( = 2,M =
—,'.

N=O
N=1
N=2
N=3
N=4

1.0000
0.7646
0.5916
0.4779
0.3995

0.2354
0.3325
0.3380
0.3167

0.0759
0.1532
0.1911

0.0309
0.0779 0.0147
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1
%+1

f dx w(x)f(x)= g B&f(x&),—1
P
—

1

where x& are the positive zeros of Q~+, (x ), and

1
N

B~=f dx w(x)L~(x )= g Q„(x~)—1 n=0

(42)

(43}

The truncation error is of the order of the 4N+4 deriva-
tive off (x).

Comparing these expressions with the ones obtained
before, we conclude that the effect of including the cou-
pling of the states in ) from n =0 to N, or the rotational
states iIKM ) from I=K to K+2N, ignoring the excita-
tion energies, is equivalent to performing an (N+1)
point Gaussian integration on the geometrical expres-
sions of these magnitudes. Moreover, the coupling to the
states I=K+2N+1 and I=E+2N+2 is going to be
important for a magnitude such as the elastic scattering
or the reaction cross section when the geometrical ex-
pression of that magnitude as a function of the orienta-
tion angle has a significant contribution of the 4N+4
derivative.

states of the rotational band in a coupled-channels calcu-
lation will affect significantly the elastic magnitudes (S
matrix and transition amplitudes} and the fusion cross
sections when the parametric expression of these magni-
tudes as a function of the cosine of the orientation angle
presents significant contributions of the 4N+4 deriva-
tive.

As a final comment, we think that the analytic diago-
nalization found in this work and in other cases discussed
in [6] is not just a mathematical curiosity. One should
expect to have it for other kinds of collective excitation.
An algebraic treatment of the diagonalization of the col-
lective excitation, based on group theory, can be an alter-
native to the analytic approach presented here, based on
the properties of the orthogonal polynomials, and it can
provide a deeper understanding of the effect of internal
degrees of freedom on the reaction mechanisms.

This work was partially supported by the Acciones In-
tegradas HB-196 and the Spanish DGICYT PB89-0636.

APPENDIX: COMPARISON OF THE ANALYTIC
RESULTS WITH NUMERICAL DIAGONALIZATION

VIII. SUMMARY AND CONCLUSIONS

The quadrupole coupling in a rotational band with
KAO can be simplified if the states with definite angular
momentum are mapped into a set of states in ) obtained
acting with the P2 operator on the rotational ground
state and orthogonalizing. These states correspond to a
superposition of states with definite orientations, weight-
ed with a set of orthogonal polynomials. In general, the
states in ) do not correspond to states of good angular
momentum and hence the truncation of the basis states
~n ) is, except for the case of K =0 and IC =

—,
' bands, dis-

tinct from the truncation in terms of the members of the
ground-state rotational band. Nevertheless, the results
obtained when truncating in these two different ways are
very similar, as it can be seen in the Appendix.

The eigenvalues and eigenvectors of the P2 operator in
basis defined by the states in ) from n =0 to N are ob-
tained in terms of the zeros of the orthogonal polynomial
of order N+1. The eigenvectors can be interpreted as
the combination of states in ) from n =0 to N that most
resemble a state with definite orientation of the symmetry
axis of the rotor with respect to the relative coordinate.
The eigenvalues correspond to P2(x), where x is the
cosine of the orientation angle.

The S matrix, elastic transition amplitudes, and fusion
cross sections in the tidal spin basis correspond to a
weighted average of these magnitudes corresponding to
the orientations that define the eigenvalues and eigenvec-
tors of P2.

The classical sudden result for these magnitudes corre-
spond to an integral over all the orientation angles,
weighted with the probability that a given orientation
occurs in the ground state. The weighted average de-
scribed before corresponds to a generalized Gaussian
quadrature of the sudden integral expression.

The effect of the inclusion of the 2N+1 and 2N+2

AcoR b E—
Vbo.f= ln 1+exp 2m.

2E %co
(A1)

The barrier height depends on the orientation of the ro-
tor with respect to the relative coordinate as
Vb = Vp+ V2P2(cosg). Hence, within the sudden approx-
imation, the fusion cross section will be given by

AcoR bOf= g W; 2E

E —Vo —V2P2
X ln 1+exp 2w (A2)

The coupling matrix of Eq. (3) can be diagonalized nu-
merically, including the rotational states iIKM) from
I=K to I=K+2N. Thus, one obtains 2N+1 eigenval-
ues and eigenvectors, from which the scattering magni-
tudes can be obtained. However, the analytical diagonal-
ization including the states

~
n ) from n =0 to N generates

N+1 eigenvalues and eigenvectors. Despite this fact, we
will show that the predictions for scattering magnitudes
happen to very similar in both cases.

When K or M take the value 0, only the values of I
with I Keven are—coupled. The states in) coincide
with the states of a given angular momentum I =E+2n.
When K or M take the value —,', of the 2N+1 eigenstates
of P2, N are orthogonal to the ground state, and hence do
not affect the reaction mechanism. The remaining N+1
coincide with the eigenstates in the basis in) and have
the same eigenvalues. This is due to the fact that rota-
tional states with K (or M) equal to —,

' can be considered
as rotational states with K or M equal to 0 to which a
particle with j=—,

' is coupled. For the other cases, the
eigenstates and eigenvalues in the iIKM) basis differ
from those in the

~
n ) basis.

Let us consider the Wong formula for the fusion cross
section
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TABLE VIII. Enhancement factors for the fusion cross section calculated in the
~
n ) basis and in the

~IltM ) basis.

Imax

3
2
7
2
11
2
15
2
19
2

F{n)

7.3891
424.29

1098.3
1375.9
1435.2

E«V,
F(I)

7.3891
488.36

1150.6
1390.3
1437.4

F(n)

3.0685
4.8265

4.7079
4.6719
4.6989

E= Vo

F(I)
3.0685
4.7463
4.7081
4.6784
4.6950

F= g w;exp
2m V2

P2 (A3)

When the energy coincides with the underformed barrier
Vo

where P2 is the ith eigenvalue of Pz and w, is the square
of the overlap of the ground state with the ith eigenstate.
Let us de6ne an enhancement factor F as the ratio of the
coupled-channels fusion cross section to the uncoupled
cross sections. When the energy is well below the barrier,
that factor is given by

N

F= g w, ln 1+exp
2m V2

P2 ln2 (A4)

In Table VIII we present the evaluation of the factor F
for a nucleus with K =M =

—,', calculated in the basis
~
n )

and in the basis ~IKM ). We have taken 2trV2/fiw =10,
that is reasonable for the system Na + Pb. The
agreement is remarkable, and justi6es the mapping per-
formed in Sec. III.
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