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Metamaterial tuning by manipulation of near-field interaction
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We analyze the near-field interaction between the resonant subwavelength elements of a metamaterial and
present a method to calculate the electric and magnetic interaction coefficients. We show that by adjusting the
relative configuration of the neighboring split ring resonators it becomes possible to manipulate this near-field
interaction, and thus tune the response of metamaterials. We use the results of this analysis to explain the
experimentally observed tuning of microwave metamaterials.
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I. INTRODUCTION

Metamaterials, which are typically regular arrays of sub-
wavelength resonant particles, offer us a new degree of free-
dom in controlling the electromagnetic response of matter.
Thus we are no longer completely constrained by the prop-
erties of existing materials but can tailor the response in an
almost arbitrary fashion, for example, achieving very high,!
very low,? and negative’ values of refractive index, permit-
tivity and/or permeability. Because of the inherently strong
dispersion of resonant metamaterials, they must be modified
in order to operate in a different frequency band. Therefore,
there is a significant push to have a further degree of control
over these materials—tunability of their response.

Fortunately, the engineered nature of metamaterials al-
lows their properties to be controlled externally, either by
dynamically modifying their structure or by adding some
nonlinear inclusion and controlling with external fields.* Ex-
amples of the latter approach include the introduction of var-
actor  diodes,” ferroelectrics® and photoconductive
semiconductors.” On the other hand, even without resorting
to such exotic (and often lossy) constituents, there is a great
deal of freedom to manipulate the structure itself, and this is
the approach we take here. We consider specifically the split
ring resonator (SRR) as one of the most important metama-
terial elements, noting that while the fine details of near-field
interaction are structurally specific, our approach can be ap-
plied to a wide variety of structures.

An analytical model for the magnetic response of a sub-
wavelength array of identically oriented wire loops loaded
with a capacitance® takes into account the mutual interaction
of all the elements in the lattice, which is essential for deriv-
ing the effective permeability correctly. Although that analy-
sis is limited to the quasistatic case accounting only for mag-
netic near-field interactions, it is crucial for revealing the
consequence of lattice changes. These tend to be overlooked
by otherwise rigorous approaches which include spatial dis-
persion but develop Lorentz local field approaches, based on
nearest-neighbor interaction’ or point-dipole
approximation. '’

In particular, it was pointed out in Ref. 8 that the resonant
frequency of the metamaterial permeability can be altered by
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varying the lattice constants without changing the structural
units. This scheme is illustrated in Fig. 1(a) and has been
verified by experiments in Ref. 11. However, a practical con-
sequence of this change in lattice constant is that the sample
size also changes correspondingly. More recently, an alterna-
tive approach was suggested in Ref. 12: introducing a shift
between layers in order to create a monoclinic lattice with
the shift increasing linearly between layers, as shown in Fig.
1(b). This configuration keeps the density of elements within
the metamaterial constant and can tune the coupling between
neighboring particles to modify the response of the complete
metamaterial. However, for finite-size samples, this shift in-
evitably results in a significant change in sample shape.
Thus, for practical purposes, we have proposed a superlattice
type of geometry, whereby only every second layer is shifted
by the same amount, as shown in Fig. 1(c). This tuning
scheme proved to be robust and allows significant manipula-
tion of the resonant frequency with only a small change in
the sample geometry.!> Therefore, the sample geometry and
its effective properties can be engineered almost indepen-
dently to achieve the desired manipulation of electromag-
netic waves.

However, as we demonstrate below, this structural tuning
of metamaterials depends very strongly on the nature of the
near-field interactions. Since metamaterial elements such as
split ring resonators are usually not highly symmetric, the
relative orientation of particles within the lattice is of key
importance. This effect is not described by existing circuit
theory models and can give rise to some surprising experi-
mental results, which we present here.

TR

FIG. 1. (Color online) Several approaches to modify the lattice
for metamaterial tunability: (a) a change in the lattice constant (Ref.
11), (b) a continuous shift of the layers (Ref. 12), and (c) a super-
lattice of alternating shifts of layers (Ref. 12).
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In order to understand the coupling mechanisms and how
they are affected by the lattice shift, it is useful to start with
the simplest geometry—a pair of split ring resonators. Sev-
eral authors have conducted numerical and experimental in-
vestigations of coupling between metamaterial elements for
different types of elements and relative orientation between
them, in microwave'>!* and optical frequency ranges. (See
the overview in Ref. 15 and references therein, as well as
Refs. 16-21.) A detailed study has previously been under-
taken on tailoring the geometric arrangement of a pair of
coupled one-dimensional SRR arrays to engineer the disper-
sion curves of magnetoinductive waves.??

As we have shown recently,'? a rough qualitative under-
standing of the structural tuning can be achieved by using
circuit theory with purely inductive coupling between SRRs.
However, this approximation fails to provide a quantitative
understanding of the metamaterial tuning in question and,
most importantly, does not explain the observed strong influ-
ence of the relative SRR orientation. Therefore, below we
develop a distinct model based on the calculation of the fun-
damental mode of a single resonator. The knowledge of the
current and charge distributions within the mode allows cal-
culating the coupling constants of a pair of split rings. These
constants are then used to explain the experimentally ob-
served tuning response of our metamaterial samples.

In Sec. II, we develop our approach to calculate the
metamaterial coupling, including a discussion of the limita-
tions of other purely analytical methods. In Sec. III, we apply
our approach to the study of interaction between a pair of
split ring resonators which are shifted laterally relative to
each other and explain quantitatively how the shift affects
the position of the fundamental resonance. In Sec. IV, we
apply these results to a bulk metamaterial and identify the
mechanisms at work in the experimental tuning of a metama-
terial slab in a waveguide. Finally, Sec. V concludes the
paper with further discussions and outlook.

II. NEAR-FIELD INTERACTION IN METAMATERIALS

Considering a single SRR, it is known'? that it possesses a
discrete set of eigenmodes (standing waves) with corre-
sponding eigenfrequencies. In an arbitrarily excited SRR, the
currents and charges can be represented as a superposition of
the eigenmodes. The fundamental mode with the lowest fre-
quency is relevant for the magnetic resonance in SRRs. On
the frequency scale this mode is well isolated from the
higher-order modes, and we can restrict ourselves to the
single-mode approximation neglecting the excitation of
higher modes.

The time-dependent charge density p and current density
J in a resonant element with excited fundamental mode can
be written in the most general form of a standing wave

p(x,1) = Q(1)q(x), (1)

Jx,0) =1(0)j(x), 2)

where g and J describe the charge and current distributions
in space. In SRRs, the variation in the current distribution
across the width of the conductive track could be neglected,
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FIG. 2. (Color online) Numerically calculated (a) current and
(b) charge distribution across an SRR at resonance.

however, for generality our approach takes into account the
complete three-dimensional surface-current distribution.
To satisfy the conservation of charge

v.y=_ 0 3)
at
we imply that
1(1) = 0(1), 4)
V- jx)=-q(x). (5)

Thus if the current is known, it is easy to find the charge
distribution and vice versa. The mode profile obtained nu-
merically for our SRR geometry is shown in Fig. 2. The
current j is symmetric and reaches its maximum at the point
opposite to the gap. In accordance with Eq. (5), the charge
distribution ¢(x) is antisymmetric and goes through zero
where j(x) is maximal. We see that g(x) reaches its maxi-
mum magnitude near the gap.

In the single-mode approximation, the dynamics of the
SRR can be fully described by the time-dependent amplitude
Q(t), and we may write the SRR Lagrangian as a sum of

terms quadratic in Q and 0

L=AQ*-BQ%, (6)

where A and B are constants which will be discussed below.
Accordingly, the SRR energy reads

L
E=Q— - L=AP + BQ? (7)
49

and is nicely separated into inductive (magnetic) and capaci-
tive (electric) parts. Clearly, for a passive SRR we require
A=0, B=0.

The Lagrangian equation of motion

PR ®)

yields that the dynamics of a single SRR is described by the
oscillator equation for the charge amplitude
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O(1) + wyQ(1) =0, 9)

and the fundamental mode resonance occurs at the frequency
wn= \B / A

Note that in contrast to the known modifications of the
Lagrangian formalism for metamaterials (see, e.g., Ref. 23),
here we do not rely on an equivalent circuit model. Although
one might identify the parameters 2A and 1/2B as effective
inductance and capacitance, respectively, below we evaluate
them explicitly from the known fundamental mode shape. In
fact, the strongly inhomogeneous mode profile (see Fig. 2)
suggests that it is unlikely that the correct values of the pa-
rameters would agree with those calculated from a circuit
analysis. Additionally, to find the resonant frequency, we do
not need to calculate A and B explicitly, only their ratio.

For the purposes of our analysis, it is sufficient to con-
sider the case of a pair of SRRs, and it will subsequently be
shown that this explains all of the important features ob-
served in our experiments with a bulk metamaterial. In this
case, the Lagrangian can be written as a sum of the single
SRR Lagrangians and coupling terms, which we also write
as quadratic in currents and charges

L=A(Q7+ 05 +200,0,) - B(Q7 + 03+ 280,0,).
(10)
The parameters a and B are the dimensionless constants of
magnetic and electric near-field interaction, respectively.

The corresponding Lagrangian equations of motion yield
the system of ODEs for the time-dependent amplitudes Q, ,

0, + w0, = - a0, - Bwy0s, (11)

0, + w0y = - aQ, - Bwy0,. (12)

Solving these equations one finds that a pair of resonators
exhibits two resonances: symmetric and antisymmetric. For
the symmetric resonance, Q;=0,, which yields the resonant
frequency

1+
= 13
Wg = Wo 1+ a (13)
while the antisymmetric mode with Q;=-0Q, has the

frequency

[1-
Wp5= W #z. (14)

The described resonance splitting is well known in the
theory of harmonic oscillators. Generally, bringing together
two oscillators of the same resonant frequency introduces
coupling between them, which results in splitting into two
modes. Examples have been shown of SRR resonant fre-
quency as a function of some coupling parameter, e.g., mu-
tual orientation?* or twist angle,”> and typically demonstrate
a splitting or hybridization of modes.

As we see, the direction and strength of the resonance
shift are determined by the coupling constants & and . To
evaluate them, we use the expression for the electromagnetic
energy following from Lagrangian (10):
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E=A( + I+ 2al,1,) + B(Q} + 03+ 280,0,).  (15)

The first group of terms gives the magnetic energy and the
second group describes the electric energy.

A possible route to calculate o and $ is to approximate
the electric and magnetic response of each ring by a few
terms of the multipole expansion. The problem with this ap-
proach is that it is based on the assumption that the observer
(i.e., the second SRR) is at a large distance compared to the
dimensions of the source. This requirement is strongly vio-
lated in our metamaterial samples, where the separation be-
tween rings is actually much smaller than the outer ring di-
ameter. This is essential for achieving strong tuning by lattice
manipulation.

Therefore we have chosen to calculate « and 8 numeri-
cally from the known charge and current distributions, g(x)
and j(x), of the fundamental mode in a single SRR. Indeed,
in the single-mode approximation, the energy of a pair of
SRRs reads

2 2 2 2
E=01Wg 11+ O5We 0 +20,0:Wg 1o+ IEiWy 1 + LWy 2o

+ 2011, W 12, (16)
where the parameters
W, f d3J oy ADA) (17)
Fomn = dmeg|x —x'|’
Wit = J d3f B ,/-LOJ(X) j(x’) (18)
dalx -x'|

The integrals can be easily evaluated once the charge and
current distributions are known. The integrations over x and
x' are over the same ring if m=n or over different rings
otherwise. Accordingly, V; is a volume containing only the
first ring and V, is a volume containing only the second. The
singular terms at x=x" are handled using the analytical for-
mulas given in Ref. 26.

Comparing Egs. (15) and (16) shows that the coupling
parameters can be evaluated as

a=—"", B:_’ . (19)

For comparison purposes, when inductive coupling is the
dominant interaction mechanism between the SRRs in a
metamaterial, we are able to consider an array of split rings
as an array of current loops with some mutual inductance
between them. This approach can then be used to define the
effective permeability of a metamaterial sample.® In particu-
lar, for thin wire loops with their axes oriented in the same
direction, the mutual inductance can be found?’ by numerical
integration

27 (27
)7
L, (r)= . Of f dede, cos(p; — ¢,)

X {p*+ 22+ 2r[1 = cos(@; — ¢,)]
+2pro(cos @, —cos @)} 2,

where the distance vector r between the ring centers has
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FIG. 3. Geometry of the pair of rings (a) broadside-coupled and
(b) gap-to-gap orientation.

been decomposed into a radial component p and axial com-
ponent z, r, is the ring radius, and ¢; and ¢, represent the
angle about each ring. We can use the calculated mutual
inductance to define an equivalent magnetic interaction pa-
rameter

ap =L/ (20)

(where L denotes the self-inductance of one element) which
should approximate the interaction energy calculated from
Eq. (19). Asymptotically this interaction decays as 1/r so in
a large array the nearest neighbors provide the strongest con-
tribution but do not necessarily dominate over all others.
Clearly, this interaction is highly anisotropic,?> being posi-
tive for rings on the same axis, but negative for rings in the
same plane.

It is also possible to develop equivalent circuit models to
calculate the electric interaction between rings. For a pair of
coaxial rings, the total interaction can be reliably modeled as
a circular parallel conductor transmission line, as for
broadside-coupled (bc) split ring resonators®® or, alterna-
tively, with an extended circuit model accounting for the
distributed capacitance and inductance.?? However, once we
introduce some offset between the rings, these approaches
are not applicable and so we do not consider them here.

II1. TUNING INTERACTION BETWEEN A PAIR OF SPLIT
RING RESONATORS

Having developed an approach for calculating near-field
interaction between a pair of rings, we now apply it to a
canonical system which has the basic properties of our ex-
perimental arrangement. We consider a pair of SRRs, either
identically [gap-to-gap (gtg)] oriented or rotated by 180°
with respect to each other [broadside-coupled (bc)] and sub-
ject to a lateral offset da. The geometry and incident polar-
ization are shown in Fig. 3. The rings have average radius
ro=2.25 mm, track width of 0.5 mm, metal thickness of 0.03
mm, gap width of 1 mm, and are separated in the transverse
direction by 1.5 mm. The resulting resonant frequency is
10.6 GHz.

We plot the interaction energy calculated from Eq. (19) in
Fig. 4 for different offsets between the rings. It can be seen
that the electric coupling parameter B is nearly symmetric
between the two configurations. This can be understood from
Fig. 2, where we see that the charge distribution has a strong
dipole component oriented in the x direction. For the sym-
metric mode of the broadside-coupled orientation the charges
accumulated on the closest sides of the SRRs have opposite
signs, the total-charge distribution has the nature of a pair of
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FIG. 4. (Color online) Magnetic («) and electric (8) coupling
parameters for broadside coupled (bc) and gap-to-gap (gtg) orien-
tation of a pair of shifted SRRs. The magnetic interaction calculated
from the mutual inductance is given as ;.

antiparallel dipoles, thus Wy 1, <0, and g is also negative. In
contrast, in the gap-to-gap orientation, the closest charges are
of the same sign, the total-charge distribution becomes like a
pair of parallel dipoles and the parameter 8> 0.

At an offset of about one ring radius (da = ry), the charge
on one ring is approximately equidistant from both positive
and negative charges on the opposite ring, thus the net cou-
pling passes through zero. At larger offsets, the electric cou-
pling changes its sign but remains smaller, since only the
nearest halves of the SRRs are effectively interacting with
this interaction decaying toward zero as the offset increases.

The magnetic interaction energy is also quite different for
the two orientations with the magnetic interaction ¢; calcu-
lated by Eq. (20) lying between the gap-to-gap and broadside
curves. For the broadside-coupled case, the situation is quali-
tatively similar to the analytical result ;. At low offset, the
magnetic field of one ring cuts through the other ring in the
same direction to the surface normal, thus reinforcing the
magnetic field and increasing the total energy. As the offset is
increased, the situation gradually shifts to become like a pair
of loops in the same plane, where the field from one ring cuts
through the other in the opposite direction with respect to the
surface normal. Hence, a;,. undergoes a change in sign.
However, in comparison to the ring with uniform current, the
coupling is substantially more negative. This is due to the
current maxima being on opposite sides of the rings, and
hence further away from each other.

For the gap-to-gap orientation the magnetic interaction is
much stronger for low da. This is due to the current maxima
being located near each other which produces a stronger con-
tribution to the integral in Wy |, thus increasing a. As the
rings are further separated from each other, the interaction
energy reduces, but does not undergo a change in sign. We
can intuitively understand this by neglecting the small con-
tributions of the current in the region near the gaps, thus we
effectively have two linear current elements in the same
plane which always interact with the same sign. However,
this balance is not universal and is determined by the specific
geometry and parameters. To check this, we studied a geom-
etry with a very small gap so that the current distribution was
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(a) Broadside coupled orientation
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FIG. 5. (Color online) Numerical results. Transmission spectrum
for a pair of (a) broadside-coupled and (b) gap-to-gap oriented
rings. Solid line: wg from Eq. (13), broken line: wyg from Eq. (14)

much more homogeneous with lower resonance frequency.
In this simulation (not shown) the magnetic coupling did
change sign and both values of a converged closely to «;.

In order to verify that the calculated coupling correctly
describes the frequency splitting of this system, we compare
the frequency shift predicted by Eqgs. (13) and (14) with that
obtained from the full numeric simulations. For consistency
with our interaction-energy approach we assume a homoge-
neous free-space background. We use the frequency domain
solver of the commercial software package CST MICROWAVE
STUDIO (Ref. 30) to model a pair of rings, in a unit cell with
periodic boundary conditions in the directions transverse to
the propagation direction. This periodic system enables us to
define a transmission coefficient, and the boundaries are 10
mm from the rings. This value is chosen to be large enough
so that there is no significant interaction with periodic neigh-
bors, yet small enough to avoid significant scattering into
higher order diffraction modes. Thus we can consider this the
limiting case of a highly dilute metamaterial slab.

The transmission spectrum as a function of offset is plot-
ted in Fig. 5. We see that all the important features of the
mode splitting are represented correctly by our single-mode
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theory of coupled SRRs. Expansion of Egs. (13) and (14) for
small coupling predicts frequency splitting of Aw==*(8
—a)/2, hence the curves are approximately symmetric about
.

The strong splitting observed for the broadside-coupled
orientation is due to the opposite signs of the electric and
magnetic coupling. At da/ro=1.1 both a;,. and B, change
signs, hence the crossing of the symmetric and antisymmet-
ric modes is observed. In contrast, we see that for the gap-
to-gap orientation for small offset a,, and By, are of the
same sign, and thus they have an opposing effect, resulting in
small frequency splitting. Since 3 decreases much faster and
changes sign, the result in maximum frequency splitting for
dalry between 1.1 and 1.5. We note that in Ref. 12 the reso-
nant frequency based on a; was compared with experimental
results for the broadside-coupled orientation and strong dis-
agreement was found.

It can be seen that the calculated transmission through the
cell exhibits different depths of the resonance for the sym-
metric and antisymmetric modes. This is due to the different
efficiency of coupling between the modes and the incident
plane wave. For instance, it is impossible to excite the anti-
symmetric mode with a normally incident plane wave for
6a=0, since both rings are excited in phase. As the offset is
increased, some retardation between the rings occurs and ex-
citation of the antisymmetric mode is allowed.

There are several reasons for the small quantitative dis-
agreement between the exact calculations and those based on
the calculated interaction energy. First, the minimum of
transmission occurs at a frequency slightly different from the
resonant frequency, due to coupling effects (impedance
matching) between the incident wave and the ring. Second,
there may be some small contribution of higher SRR eigen-
modes due to perturbation of the charge and current distribu-
tions. Third, there may still be some small influence of the
periodic boundaries. Finally, our developed relations neglect
retardation, which is strictly valid in the subwavelength
limit, whereas the outer radius of the rings is 0.18\ at w.
Retardation has previously been shown to modify the inter-
action between SRRs through its influence on the dispersion
of magnetoinductive waves in arrays.>'=33

We emphasize that our approach developed in Sec. II is
advantageous over the direct numerical calculation. First,
once the mode profile is known, calculation of the frequen-
cies in Fig. 5 takes approximately 30 s on a single CPU
whereas the direct calculation of the full spectrum takes sev-
eral hours on a multicore machine. Second, we are clearly
able to demonstrate the nature of the coupling, which yields
insight into the tuning behavior.

IV. TUNING INTERACTION IN A BULK METAMATERIAL

We now apply our approach to explain experimental re-
sults for tuning the response of a slab of metamaterial. The
metamaterial is fabricated using photolithography to etch
copper tracks onto FR4 printed circuit board, using the same
geometry as in our numerical simulation of a pair of rings.
The fabricated sample has 30 layers, each with five rings in
the propagation direction and is only one ring in height (i.e.,
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FIG. 6. (Color online) Experimental transmission while tuning
Sa for split ring resonator slab in waveguide, for (a) broadside-
coupled and (b) gap-to-gap orientation of adjacent layers.

a 5X30X 1 array). The longitudinal period of the sample is
7 mm, the transverse period is dictated by the sample thick-
ness (1.5 mm) as there is no spacing between boards. As with
the pair of rings, we have assembled slabs with two relative
orientations of the split rings in adjacent planes—gap-to-gap
and broadside-coupled. The sample is placed in the center of
a WR229 rectangular metallic waveguide, with dimensions
58.17 mm X 29.08 mm, excited at its dominant TE,q
mode. We removed the influence of the coaxial adapters and
feeding waveguide sections by performing a through-reflect-
line calibration.’* In Fig. 6 we show the experimentally ob-
tained transmission through each slab of closely coupled
SRRs with the corresponding reflection shown in Fig. 7.

The shift of resonant frequency shows good qualitative
agreement with the results for a pair of rings presented in
Sec. III with very similar changes in the spectrum observed
(noting that da/a=0.5 corresponds to da/ro=1.56). How-
ever, for the gap-to-gap orientation, numerical simulation of
a system of two boards with five rings each, and periodic
boundaries in both transverse directions (not shown), is
qualitatively similar to the experimentally observed results
but quantitatively highly inaccurate. The reason turns out to
be the loss of symmetry when the system is placed inside the
waveguide because the upper and lower waveguide walls do
not correspond to periodic boundaries but instead represent
planes of mirror reflection. Therefore, this system must be
described as having a superlattice arrangement in the vertical
as well as horizontal planes with each supercell consisting of
four SRRs. This cell has alternating orientation of the SRRs
in the vertical direction corresponding to the planes of mirror
symmetry, as shown in Fig. 8(b). Once this unit cell is taken
into account, numerical simulations are in a good agreement
with the experiment [Fig. 9(b)].
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FIG. 7. (Color online) Experimental reflection while tuning da
for split ring resonator slab in waveguide, for (a) broadside-coupled
and (b) gap-to-gap orientation of adjacent layers.

Naturally, numerical simulations for the broadside-
coupled orientation also agree well with the experiment [Fig.
9(a)]. In this case a very similar result is provided with
simple periodic boundary conditions (not shown). For this
orientation the superlattice effectively formed by the wave-
guide shown in Fig. 8(a) does not have an essentially differ-
ent symmetry to the original superlattice.

We can conclude that in both cases the dominant mode of
the slab corresponds to the dominant symmetric mode of a
pair of rings with a similar pattern of resonant frequency vs
offset occurring. The weaker coupling to the modes for the
gap-to-gap orientation is due to the shape of the symmetric
mode. Its magnetic field has a large component parallel to
that of the waveguide mode, however, its electric field is
primarily longitudinal, in contrast to the transverse electric
field of the waveguide mode.

In Fig. 9(b), we see two higher order modes, which most
likely correspond to the higher order resonances observed in
the experimental results in Fig. 6(b). From the numerical

FIG. 8. (Color online) Schematic of the effective superlattice
geometry corresponding to the waveguide measurement for (a)
broadside-coupled and (b) gap-to-gap orientation. Dashed lines
show planes of reflection symmetry and the shaded region shows
the supercell with four SRRs.
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(a) Broadside coupled orientation

da/a

45 5.0
f (GHz)

(b) Gap to gap orientation

.5 4.0 4.5 5.0 5.5 6.0

FIG. 9. (Color online) Numerically obtained transmission spec-
trum of metamaterial in waveguide, (a) broadside-coupled and (b)
gap-to-gap orientation. The white line indicates experimentally ob-
tained resonant frequencies.

simulations we observe that the current distributions of these
modes are symmetric, thus they correspond to higher-order
modes of the metamaterial slab and not to the antisymmetric
mode of a pair of rings. In contrast, in Fig. 9(a) there is a
weakly coupled antisymmetric mode, which we verified by
inspection of the currents. This mode also qualitatively
agrees with the corresponding mode of the pair of rings with
somewhat weaker coupling due to the increased mismatch to
the incident waveguide mode. This mode may correspond to
some of the smaller features observable in Fig. 6(a), how-
ever, due to the size of these features this cannot be reliably
determined.

We do not consider offsets greater than 0.5a, since in an
infinite lattice only shifts between 0 and 0.5 are unique,
while in a finite structure, larger shifts result in very irregular
boundaries. Note that in the simulations we have neglected
the effect of the mode profile of the rectangular waveguide,
which would correspond to an effective variation in the angle
of incidence of the plane wave as a function of frequency,
which can result in a different response due to the anisotropy
and non-negligible spatial dispersion of the medium.'®

Clearly the coupling in the complete lattice is much more
complicated than in the simple two-ring system, as the inter-
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actions between a large number of rings must be taken into
account. In principle it is possible to extend the analysis of
Sec. III to an arbitrary number of rings. However, the quali-
tative agreement between the experimental results and the
modeled pair of rings suggests that the phenomenology de-
veloped for the two rings is generally applicable and leads to
correct predictions.

Although an accurate generalization of our modeling ap-
proach to a bulk system lies beyond the scope of this paper,
it is clear that the resulting homogenized effective metama-
terial parameters will exhibit similar tuning pattern due to the
resonance shift. Note that the introduction of the effective
parameters is justified when the ratio of the unit-cell size to
the incident wavelength is small. Therefore, when consider-
ing modifications of the lattice which create a superlattice
structure, the size of the supercell should be smaller than the
wavelength. There are homogenization approaches in the lit-
erature (e.g., Ref. 35) which include unknown parameters for
interaction between resonant elements and our semianalyti-
cal approach would make an ideal tool for evaluating these
constants.

V. CONCLUSION

We have analyzed the near-field coupling within metama-
terials, considering both the relative orientation and the off-
set between the centers of two neighboring resonators. Using
a pair of split ring resonators as a simple model, we have
shown the coupling mechanisms at work in our recently pro-
posed tuning scheme, based on the direct calculation of the
interaction energy. We have confirmed that these mecha-
nisms can predict qualitatively the performance of a realistic
metamaterial structure. This paves a road toward a reliable
design and development of tunable metamaterials for various
applications.

We note that the specific geometry of the split rings can
have a very significant influence on the qualitative nature of
the coupling, including cases which run counter to our intui-
tive understanding of current loops interacting magnetically.

Finally, we point out that the approach developed here for
modeling near-field effects is particularly promising for
metamaterials scaled down to operate at optical frequencies.
In the visible, the paradigm of ideally conducting metal fails
and the area of applicability of circuit models is rather lim-
ited. In contrast, the consideration in terms of excitation and
interaction of plasmonic standing waves will provide a clear
physical picture.
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