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Preface

During the past two decades, the theory of nonautonomous dynamical systems
and random dynamical systems has made substantial progress in studying the long
term dynamics of open systems subject to time-dependent or random forcing. How-
ever, most of the existing pertinent literatures are fairly technical and almost impen-
etrable for a general audience, except the most dedicated specialists. Moreover, the
concepts and methods of nonautonomous and random dynamical systems, though
well-established, are extremely nontrivial to apply to real-world problems. The aim
of this work is to provide an accessible and broad introduction to the theory of non-
autonomous and random dynamical systems, with an emphasis on applications of
the theory to problems arising in the applied sciences and engineering.

The book starts with basic concepts in the theory of autonomous dynamical
systems which are easier to understand, and used as the motivation for the study
of non-autonomous and random dynamical systems. Then the framework of non-
autonomous dynamical systems is set up, including various approaches to analyze
the long time behavior of non-autonomous problems. The major emphasis is given
to the novel theory of pullback attractors, as it can be regarded as a natural ex-
tension of the autonomous theory and allows a larger variety of time-dependence
forcing than other alternatives such as skew-product flows or cocycles. In the end
the theory of random dynamical systems and random attractors is introduced and
shown to fairly informative to the study of long term behavior of stochastic systems
with random forcing.

Each set of theory is illustrated by being applied to three different models,
the chemostat model, the SIR epidemic model, and the Lorenz-84 model, in their
autonomous, nonautonomous, and stochastic formulations, respectively. The tech-
niques and methods adopted can be applied to the study of the long term behavior
of a wide range of applications arising in applied sciences and engineering.

Sevilla, Spain, October 22, 2016 Tomás Caraballo
Auburn, Alabama Xiaoying Han
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Chapter 1

Introduction

The research on the theories of dynamical systems (autonomous, nonautonomous
or stochastic) has been receiving much attention over the last decades, due to the
fact that many real world phenomena can be modeled by a system of differential or
difference equations which generates one dynamical system. A general theory for
dynamical systems allows us to analyze various type of evolutionary problems, but
is sometimes over abstract for practitioner research. In particular, while analyzing
finite dimensional systems, the underlying theory can be less complicated and more
intuitive than the general theory for abstract dynamical systems. In this book, we
will set up a unified framework of dynamical systems accessible to researchers with
different background, which suffices to analyze finite dimensional systems arising
in applied sciences and engineering.

Roughly speaking, a dynamical system is a system that evolves in time through
the iterated application of an underlying dynamical transition rule. The application
of the transition rule can happen either at discrete time, with the time parameter
taking integer values, or infinitesimally with continuous time taking real values as
in differential equations. The theoretical framework of dynamical systems allows us
to develop a unified theory which can be applied directly to real-life evolutionary
events to analyze their long term behavior. To motivate the use of the theory of
dynamical systems, we start from considering the evolution in time of a certain
quantity, e.g., the position of a particle moving on a plane R2 (or in the space R3),
that can be modeled by the following differential equation in R2 (or R3),

dx
dt
= f (x), (1.1)

where f : Rd→ Rd d = 2 (or 3) is a function which ensures existence of solutions to
equation(1.1).

Usually, additional information is needed to determine properties of solutions to
the system (1.1). In fact, knowing the initial position x0 ∈ Rd of the particle is suffi-
cient to obtain its positions in all future instants. This corresponds to the knowledge
of the value of x at an initial instant t0. In other words, we can consider an initial
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2 1 Introduction

value problem (IVP) associated with equation (1.1):

dx
dt
= f (x), x(t0) = x0 ∈ Rd. (1.2)

Under a set of suitable assumptions on the function f , one can prove in a mathemat-
ically rigorous way that the IVP (1.2) possesses a unique solution which is defined
for all future instants of time. The solution is a continuously differentiable mapping
x(·; t0, x0) :R→Rd with derivative x�(t) = f (x(t)) and satisfies x(t0; t0, x0) = x0. Here
and also in the sequel the notation “; t0, x0” is used to specify the explicit dependence
of the solution on the initial value (t0, x0). Basic properties of the solution mapping
include:

(a) The evolution of x depends on the elapsed time instead of the initial and final
times separately.
As the vector field f does not depend on t, a simple shift on the time variable
t→ t− t0 allows us to prove that the position of the particle only depends on the
elapsed time t− t0. Mathematically this is described as

x(t; t0, x0) = x(t− t0;0, x0) for t ≥ t0,

which means that the position of the particle at time t(≥ t0), starting from the
point x0 at the initial time t0, is exactly the same as the position of the particle at
time t− t0 if it starts from point x0 at the initial time zero. Thanks to this property
we can always choose the initial time for the IVP (1.2) to be the time instant zero,
i.e., t0 = 0.

(b) Initial value property.
This is a straightforward property meaning that if the particle starts from x0 at the
initial time t0, then the solution trajectory of x passes through the point (t0, x0).
Mathematically this property reads

x(t0; t0, x0) = x0, for all x0 ∈ Rd, t0 ∈ R.

(c) Concatenation of solutions.
Assume that the particle starts from the point x0 at the initial time t0 = 0, arrives
at the point x1 = x(t1;0, x0) after t1 period of time, and takes off again from x1
and arrives at the location x2 = x(t2;0, x1) after another t2 period of time. Then
x2 will be the same as the location where the particle arrives at if it starts from
the point x0 at the initial time t0 = 0 and travels a total of t1 + t2 period of time.
Mathematically this is described as

x(t2;0, x(t1;0, x0)) = x(t1+ t2;0, x0).

(d) Continuity of solutions with respect to initial values.
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It happens often that the initial point is different from where it is supposed to be,
due to factors such as environmental influences, human errors, deviations in the
measurements, etc. It is then necessary to check the difference between the solu-
tion starting from x0 and the solution starting from x∗0, which is an approximation
of x0, at the same initial time t0. In fact, x(t; t0, x0) should be close to x(t; t0, x∗0)
as long as x0 is close to x∗0, as otherwise a small perturbation in initial data can
produce a large deviation in their corresponding solutions. This property, usually
referred to as the continuous dependence on initial data, can be ensured by some
proper assumptions on the vector field function f .

Mathematically, given a state space X (e.g., Rd), a dynamical system is a map-
ping ϕ(t, x0), defined for all t ∈ T (T = Z for discrete time or T = R for continuous
time) and x0 ∈ X, that describes how each x0 ∈ X evolves with respect to time. In the
previous example, we can define ϕ(t, x0) := x(t;0, x0) and translate the above prop-
erties of solutions of the IVP (1.2) into corresponding properties of the mapping
ϕ(·, ·).

Definition 1.1. Let X be a metric space. A dynamical system is a continuous map-
ping ϕ : T×X→ X with the following properties:

(i) initial value property

ϕ(0, x) = x for all x ∈ X; (1.3)

(ii) group property

ϕ(t+τ, x) = ϕ(t,ϕ(τ, x)) for all t,τ ∈ T and x ∈ X. (1.4)

Note that the continuous dependence on the initial values is implied by the conti-
nuity of the mapping ϕ. Property (1.4) is called a “group property” because the fam-
ily of mapping {ϕ(t, ·) : t ∈ T} that maps the state space X into itself, forms a group
under composition [9]. In some occasions the family of mappings {ϕ(t, ·) : t ∈ T+0 }
of X, where T+0 = {t ∈ T : t ≥ 0}, that maps X into itself forms a semigroup under
composition rather than a group [9]. While the group property (1.4) is replaced by a
semigroup property, we have a semi-dynamical system defined as follows.

Definition 1.2. Let X be a metric space. A semi-dynamical system is a continuous
function ϕ : T+0 ×X→ X with the initial value property (1.3) and the following semi-
group property

ϕ(t+τ, x) = ϕ(t,ϕ(τ, x)) for all t,τ ∈ T+0 and x ∈ X. (1.5)

When T = Z, the dynamical (semi-dynamical) system is called a discrete dynam-
ical (semi-dynamical) system, and when T = R, the dynamical (semi-dynamical)
system is called a continuous dynamical (semi-dynamical) system. In this book we
will focus on continuous dynamical (semi-dynamical) systems, and omit the phrase
“continuous” when the context is clear.
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Not every dynamical system is generated by the solutions of a system of ordinary
differential equations (ODEs) or partial differential equations (PDEs), but the main
focus of this book is to analyze such dynamical systems, due to their broad range
of applications in the applied sciences. Furthermore, our goal is to make the theory
of dynamical systems accessible to not only mathematicians but also researchers
from interdisciplinary fields such as engineers, biologists, physicists, and ecologists.
Therefore we will not state the general abstract theory of dynamical systems which
includes both ODEs and PDEs. More precisely, we will restrict our theories and ex-
amples to finite dimensional dynamical systems, i.e., those generated by solutions
to systems of ODEs. The systems under consideration in this book are mainly dis-
sipative systems (will be defined later) which have a broad range of applications in
applied sciences and engineering.

In particular, we will first establish some basic results ensuring existence and
uniqueness of solutions defined globally in time, i.e., defined for all future times.
Such existence is typical in systems in real-world problems and is easier to un-
derstand for a broad range of researchers, while as a trade-off it requires stronger
assumptions. In addition, we will also mention some weaker but less intuitive as-
sumptions which can ensure similar results so that a reader who may be potentially
interested in the formal mathematical aspects beyond basic analysis can benefit from
the information. Only fundamental results will be presented; for more details and
proofs the reader is referred to [25, 39, 63, 69] and references therein.

Let f : (a,+∞)×Rd ⊆ Rd+1→ Rd be a continuous mapping, and let (t0, x0) be a
point in (a,+∞)×Rd. Then we can formulate the following IVP

dx(t)
dt
= f (t, x), x(t0) = x0. (1.6)

Definition 1.3. Let I ⊆ (a,+∞) be a time interval. A solution to (1.6) on I is a map-
ping ϕ : I → Rd which is continuously differentiable on I, i.e., ϕ ∈ C1(I;Rd), and
satisfies:

(i)
d
dt
ϕ(t) = f (t,ϕ(t)), for all t ∈ I;

(ii) ϕ(t0) = x0.

We are interested in the IVPs of form (1.6) whose solutions are defined on an
interval I containing the interval [t0,+∞), i.e., IVPs with solutions defined globally
in time. There are various results ensuring this fact, and we first present one that is
straightforward to understand but still covers many interesting situations.

Theorem 1.1. Assume that f : (a,+∞)×Rd→Rd is continuously differentiable, i.e.,
its partial derivatives of first order are continuous functions, and there exist non-
negative continuous mappings h,k : (a,+∞)→ R such that

| f (t, x)| ≤ h(t)|x|+ k(t), for all (t, x) ∈ (a,+∞)×Rd. (1.7)

Then, there exists a unique solution to (1.6) which is defined globally in time.
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Remark 1.1. The existence and uniqueness of a local solution to (1.6), that is defined
on a finite time interval, can be proved by using a fixed point theorem. This local
solution may only be defined on a small time interval but can always be extended to
a larger time interval as long as it remains bounded. As a consequence, if the local
solution does not blow up within finite time, then it can be defined globally in time.

Two examples are provided below to illustrate Theorem 1.1 and Remark 1.1. First
consider the following IVP which satisfies the growth condition (1.7) in Theorem
1.1:

dx(t)
dt
=

3t2x3(t)
1+ x2(t)

+ x(t), x(t0) = x0. (1.8)

Multiplying the equation by 2x(t) results in

2x(t)
dx(t)

dt
=

6t2x3(t)
1+ x2(t)

+2x2(t)

which implies that
d
dt

x(t)2 ≤ 2(3t2+1)x2(t). (1.9)

Integrating (1.9) as a linear differential inequality gives

x(t)2 ≤ x2
0e2(t3+t)−2(t30+t0),

and as a result Theorem 1.1, the solution to the IVP (1.8) is defined globally in time.
We next consider another example which does not fulfill the linear growth con-

dition (1.7) in Theorem 1.1:

dx(t)
dt
= x2(t), x(t0) = x0. (1.10)

The IVP (1.10) can be solved directly by standard methods to obtain explicitly

x(t) =
x0

1− x0(t− t0)
.

It is clear that when x0 ≤ 0, the corresponding solution is defined for all t ≥ t0.
In fact, it is well defined on the interval

�
t0+ 1

x0
,+∞
�
, including formally the case

x0 = 0 which provides the null solution defined on the whole real line. However, if
x0 > 0, the solution is defined only on the interval (−∞, t0+ 1

x0
) because the solution

blows up at the finite time instant t = t0+ 1
x0

.
Another condition that also ensures the existence of solutions defined globally in

time is the so-called dissipativity condition. For a simple expanation of this condi-
tion, we consider the autonomous version of (1.6) with f (t, x) = f (x). Assume that
there exist two constants α,β with β > 0 such that

f (x) · x ≤ α|x|2+β. (1.11)
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Taking the scalar product of the equation in (1.6) with x results in

d
dt
|x(t)|2 ≤ 2α|x(t)|2+2β,

which implies that

|x(t)|2 ≤ |x0|2e2α(t−t0)− β
α

�
1− e2α(t−t0)

�
.

Therefore, if α > 0, then

|x(t)|2 ≤
�
|x0|2+

β

α

�
e2α(t−t0),

and solutions are globally defined in time. On the other hand, if α < 0, then

|x(t)|2 ≤ |x0|2e2α(t−t0)− β
α
,

and every solution enters the ball centered at zero with radius −β/α+1, at a certain
time T (dependent on x0) and remains inside the ball forever, i.e., for all t ≥ T .
More precisely, there exists an absorbing ball for all solutions, and this is due to the
dissipativity condition (1.11).

Remark 1.2. For autonomous IVPs, the growth condition (1.7) with constant h and
k implies the dissipativity condition (1.11).

Note that Theorem 1.1 is for the special case where f is define on the whole
Rd. Moreover, from a mathematical point of view, the growth condition (1.7) and
the dissipativity condition (1.11) introduced above, though straightforward to un-
derstand, are fairly restrictive. In fact, existence of solutions to the IVP (1.6) can be
guaranteed by assuming much weaker assumptions on a subspace of Rd. In what
follows we will include a brief summary on weaker and more typical conditions for
the existence of solutions to the IVP (1.6). The contents, however, are more abstract
and are mainly for the readers who are interested in gaining a deeper understanding
of the underlying mathematical foundation.

Consider a nonempty, open, and connected set O ⊆ Rd with d ∈ Z and d ≥ 1 and
an open time interval I, and consider the IVP (1.6) with a vector field function f (·, ·)
defined in the domain I×O. Now we provide the definition of solution to this IVP.

Definition 1.4. Let J ⊆ I be an interval of time such that t0 belongs to the interior
of J. A mapping ϕ : J → O is said to be a local solution of the IVP (1.6) on J, if
ϕ is continuously differentiable on J, i.e., ϕ ∈ C1(J;Rd), and satisfies the following
conditions:

(i) ϕ(t) ∈ O for all t ∈ J;

(ii)
d
dt
ϕ(t) = f (t,ϕ(t)), for all t ∈ J;

(iii) ϕ(t0) = x0.
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Definition 1.5. A mapping f (t, x) from I×O ⊂ Rd+1 to Rd is said to be locally Lips-
chitz with respect to x on I×O if for each (t0, x0) ∈ I×O there exist ε > 0 and L ≥ 0
(both depending on the point (t0, x0)) such that

(i) the closure of the ball centered at (t0, x0) with radius ε is contained in I ×O,
i.e.,

B((t0, x0);ε) ⊂ I×O;

(ii) for any (t, x1), (t, x2) ∈ B((t0, x0);ε), f satisfies

| f (t, x1)− f (t, x2)| ≤ L|x1− x2|. (1.12)

When (1.12) holds true for all (t, x1), (t, x2) ∈ I ×O and the constant L does not
depend on the point (t0, x0), then we say that f is globally Lipschitz with respect to
the variable x on I×O.

The following Picard theorem allows one to prove the existence and uniqueness
of local solutions to the IVP (1.6).

Theorem 1.2. (Picard’s theorem) Assume that f is continuous with respect to t and
locally Lipschitz with respect to x on I ×O. Then, for each (t0, x0) ∈ I ×O, there
exists δ > 0 such that the IVP (1.6) possesses a unique solution ϕ on the interval
Iδ = [t0−δ, t0+δ].

Remark 1.3. The Picard’s theorem ensures a unique solution on each single “exis-
tence interval” Iδ, but does not ensure the uniqueness of solutions on two or more
intersecting existence intervals. In fact, the solutions of (1.6) coincide on any inter-
section of existence intervals, as stated in the following theorem.

Theorem 1.3. (Uniqueness of solution) Assume that f is continuous with respect to
t and locally Lipschitz with respect to x on I×O. Given any (t0, x0) ∈ I×O, let ϕ1(t)
be the solution to IVP (1.6) on interval I1 and ϕ2(t) be the solution to IVP (1.6) on
interval I2. Then

ϕ1(t) ≡ ϕ2(t), ∀t ∈ I1∩ I2.

We are interested in studying the long time behavior of the solutions, and thus it
is important to ensure that the IVP has solutions defined globally in time, i.e., for
all t ≥ t0. To this end, we need to introduce the concept of the maximal solution to
(1.6), a solution which is defined on the largest possible interval [t0,Tmax) such that
there is no other solutions defined on a bigger interval. Hence if Tmax = +∞ then the
solution to (1.6) is defined globally in time. Before defining the maximal solution,
we first recall the continuation of local solutions to IVP (1.6) as follows.

Definition 1.6. Consider (t0, x0) ∈ I×O and let ϕ(t) be the solution to the IVP (1.6)
on interval J ⊂ I. It is said that solution ϕ(t)

(a) can be continued on the right, if there exists another solution φ(t) to IVP (1.6)
on interval J1, such that J ⊂ J1 and sup J belongs to the interior of J1.
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(b) can be continued on the left, if there exists another solution φ(t) to IVP (1.6) on
interval J2, such that J ⊂ J2 and inf J belongs to the interior of J2.

(c) is continuable, if it can be continued on the right or on the left, or both.

Definition 1.7. A solution to the IVP (1.6) is called a maximal solution if it is not
continuable.

Remark 1.4. Let ϕ(t) be a solution to IVP (1.6) on interval J that can be continued
on the right, and let φ(t) be another solution to IVP (1.6) on interval J1 such that
J ⊂ J1 and sup J belongs to the interior of J1. Then, as a direct consequence of
Theorem 1.3, ϕ and φ coincide on the intersection of both intervals, i.e, on J. This
implies that φ is merely a continuation of ϕ on the right end of J. Similar observation
can be done on the left side.

The following theorem presents the existence and uniqueness of a maximal solu-
tion to the IVP (1.6).

Theorem 1.4. (Existence and uniqueness of a maximal solution) Let O be an open,
nonempty, and connected subset of Rd and let f : I ×O→ Rd be continuous with
respect to t and locally Lipschitz with respect to x. Then, for each (t0, x0) ∈ O, there
exists a unique maximal solution to the IVP (1.6). Moreover, the interval of definition
of such a maximal solution, denoted by Imax = Imax(t0, x0), is open.

Denote by (m1,m2) the maximal interval of existence. Then the ideal situation
would be m2 = +∞, in which case the solution exists for all time t. The following
theorem provides a method for determining when a solution is global, i.e., defined
for all time t. In particular, if f (t, x) is defined on all of R×Rd, then a solution is
global if it does not blow up in finite time, which is consistent with Remark 1.1
stated earlier without detailed justification.

Theorem 1.5. Let (m1,m2) denote the maximal interval of existence for the IVP
(1.6). If |m2| <∞, then limt→m−2

|ϕ(t)| =∞. Similarly for m1.

We next discuss the dependence of solutions on the initial data of IVP (1.6).
Notice that a maximal solution of (1.6) can also be considered as a function of the
initial value (t0, x0) on I×O. In fact, define the set

Θ :=
�
(t, t0, x0) ∈ Rd+2 : (t0, x0) ∈ O and t ∈ Imax(t0, x0)

�
. (1.13)

Then we can formulate the solution mapping ϕ as

ϕ : Θ ⊂ Rd+2 → Rd

(t, t0, x0) ∈ Θ �→ ϕ(t; t0, x0) ∈ Rd.

Such a formulation of the solution mapping is called the maximal solution of the
IVP (1.6) expressed in terms of the initial values.

It is known that the maximal solution ϕ(·; t0, x0) is continuously differentiable
with respect the time variable t on the interval Imax(t0, x0). A natural question would
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then be whether or not the maximal solution ϕ(t; ·, ·) expressed in terms of the initial
values is also continuous with respect to the initial value (t0, x0). The answer is YES
as stated in the following theorem.

Theorem 1.6. (Continuous dependence on the initial values) Assume that O is a
nonempty, open and connected subset of Rd and f : I ×O→ Rd is continuous with
respect to t and locally Lipschitz with respect to x. Let Θ be defined in (1.13). Then
the global solution ϕ(·; ·, ·) of the IVP (1.6) expressed in terms of the initial values is
continuous in Θ, i.e. ϕ ∈ C0(Θ;Rd).

Existence and uniqueness of global solutions, along with the continuous depen-
dence of the global solutions on initial conditions, are the essential prerequisites
of the study of dynamical systems. In the theories of dynamical systems, we will
assume these hold, while in the applications we always need to prove these before
using the theories of dynamical systems.

The rest of the book is organized as follows. In Chapter 2 we will introduce the
basic concepts from the theory of autonomous dynamical systems which are eas-
ier to understand, and can serve as the motivation for the study of non-autonomous
and random dynamical systems. In Chapter 3 we will set up the framework of non-
autonomous dynamical systems, that can be regarded as a natural extension of the
autonomous theory, but allows a larger variety of time dependence forces than other
alternatives such as skew-product flows or cocycles. In particular we will describe
various approaches to analyze the long time behavior of non-autonomous dynam-
ical systems, with an emphasis on the novel theory of pullback attractors. Then in
Chapter 4 we will introduce the theory of random dynamical systems and random
pullback attractors and show how suitable is to analyze real-world problems with
randomness. In each chapter after establishing the main concepts, we will apply
them to analyze the long term behavior of several interesting models arising in ap-
plied sciences and engineering. In particular, the chemostat model, the SIR epidemic
model and the Lorenze-84 model are studied in their autonomous, nonautonomous
and stochastic/random formulations.





Chapter 2

Autonomous dynamical systems

The theory of autonomous dynamical systems is now well established after being
studied intensively over the past years. In this chapter we will provide a brief review
of autonomous dynamical systems, as the background and motivation to introduce
nonautonomous and random dynamical systems which are the major topics of the
book.

An ordinary differential equation (ODE) is said to be an autonomous differential
equation if the right hand side does not depend on time explicitly, i.e., it can be
formulated as

dx
dt
= g(x), (2.1)

where g : O ⊂ Rd → Rd is a mapping from an open subset O of Rd to Rd. This is
a particular case of the system in (1.6) where I = R and the vector field g does not
depend on the time t. Associating Equation (2.1) with an initial datum x(t0) = x0 ∈O
gives the following IVP

dx
dt
= g(x), x(t0) = x0. (2.2)

To apply the general results presented in Chapter 1 to obtain the existence and
uniqueness of a maximal solution to equation (2.2), we only need to impose a locally
Lipschitz assumption on function g. Note that if a function is locally Lipschitz with
respect to all its variables, then it is continuous. But in general, the continuity of
g guarantees only the existence of solutions to (2.1) (see e.g., [25]), but not the
uniqueness.

Remark 2.1. One effective way to check if a function satisfies a Lipschitz condition
is to check if it is continuously differentiable. A continuously differentiable function
is always locally Lipschitz (see, e.g., [66]), hence every IVP problem (2.2) with g ∈
C1(O) possesses a unique maximal solution. Moreover, if the domain O is convex,
then a continuously differentiable function is globally Lipschitz if and only if the
partial derivatives ∂gi∂x j

(x), i, j = 1,2 · · · ,d, are globally bounded.

11
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A general theorem on existence and uniqueness of a maximal solution to the IVP
(2.2) is stated below.

Theorem 2.1. (Existence and uniqueness of a maximal solution) Let O be an open
subset of Rd and assume that g is continuously differentiable on O. Then for any
t0 ∈ R and any x0 ∈ O the initial value problem (2.2) has a unique maximal solution
ϕ(·; t0, x0) defined in its maximal open interval Imax = Imax(t0, x0).

Remark 2.2. As our main interest is the long term behavior of solutions to (2.2),
we will focus on the cases when Imax contains the interval [t0,+∞). This means
that the solution ϕ(·; t0, x0) is globally defined in all future times, i.e., is a global
solution. However, note that the existence of a global solution is not free; it requires
conditions such as in Theorem 1.1.

An important property of autonomous ODEs, which can be easily verified, is that
the solution mapping depends only on the elapsed time t− t0 but not separately on
the initial time t0 and current time t (see, e.g., [51]), i.e.,

ϕ(t− t0;0, x0) = ϕ(t; t0, x0), and Imax(t0, x0) = t0+ Imax(0, x0),

for all x0 ∈ O, t0 ∈ R, and t ∈ Imax(t0, x0). Therefore for autonomous ODEs we can
always focus on t0 = 0. With t0 = 0 the solution can be written as ϕ(t; x0) and the ex-
istence interval of maximal solution can be written as Imax(x0). It is straightforward
to check that this solution mapping ϕ(·; ·) : R×O→ Rd satisfies the initial value
property (1.3) and the group property (1.4) (when Imax = R), and hence defines a
dynamical system, namely an autonomous dynamical system.

Next we will provide a survey on the long term behavior for autonomous dy-
namical systems. In particular, we will start from the stability theory of linear ODE
systems, followed by the stability of nonlinear ODE systems by the first approx-
imation method. Then we will introduce basic Lyapunov theory for stability and
asymptotic stability. Some comments on globally attracting sets will be provided
via the LaSalle theorem and the Poincaré–Bendixson theorem in dimension d = 2,
and serve as a motivation for the analysis of global asymptotic behavior in higher
dimensions. In the end we will introduce the general concept of attractors and their
main properties for autonomous dynamical systems.

2.1 Basic Stability Theory

For ease of understanding, we start from the stability of equilibrium points of
system (2.1). Recall that an equilibrium point (or steady state) x∗ of system (2.1) is
a constant solution to (2.1) satisfying g(x∗) = 0.

Definition 2.1. An equilibrium x∗ is said to be

• stable if for any ε > 0 there exists δ(ε) > 0 such that if |x0 − x∗| < δ(ε) then
Imax(x0) ⊇ [0,+∞) and
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|ϕ(t; x0)− x∗| < ε, ∀t ≥ 0.

(solutions starting close to one equilibrium point remain close to it in the future.)
• convergent or attractive if there exists δ > 0 such that if |x0 − x∗| < δ then

Imax(x0) ⊇ [0,+∞) and
lim
t→∞
ϕ(t; x0) = x∗.

(solutions starting close to one equilibrium point will converge to it when time
goes to infinity.)

• asymptotically stable if it is both stable and convergent.
• exponentially stable if there exist δ > 0 and α,λ > 0 such that if |x0− x∗| < δ then

Imax(x0) ⊇ [0,+∞) and

|ϕ(t; x0)− x∗| < α|x0− x∗|e−λt, ∀t ≥ 0.

Remark 2.3. Definition 2.1 includes only the stability for an equilibrium point, i.e.,
x∗ is constant, but can be easily generalized to any non-constant particular solution
of equation (2.1). More precisely, a particular solution x∗(t) to (2.1) is said to be
stable if for any ε > 0 there exists δ(ε) > 0 such that if |x0− x∗(0)| < δ(ε) then Imax ⊇
[0,+∞) and

|ϕ(t; x0)− x∗(t)| < ε, ∀t ≥ 0.

Following a similar manner all the other concepts in Definition 2.1 can be general-
ized to any particular solution of (2.1).

It is worth mentioning that exponential stability implies asymptotic stability, and
asymptotic stability implies stability and convergence. However, stability and con-
vergence are independent properties. Convergence implies stability for linear ODEs
(see, e.g., [81]), but does not imply stability in general. For example, the autonomous
ODE system

dx(t)
dt
=

x2(y− x)+y5

(x2+y2)(1+ (x2+y2)2)
;

dx(t)
dt
= 0 for x = 0, y = 0, (2.3)

dy(t)
dt
=

y2(y−2x)
(x2+y2)(1+ (x2+y2)2)

;
dy(t)

dt
= 0 for x = 0, y = 0. (2.4)

has an isolated equilibrium at (0,0) that is convergent but unstable (see Fig. 2.1).

Remark 2.4. In the autonomous framework, all the stability concepts in Definition
2.1 are uniform in time, i.e., the choice of δ does not depend on time. But this
does not hold true for nonautonomous ODEs, which requires new definitions to
distinguish uniform and non-uniform type of stability (see, e.g., [71]).

Notice that a very simple change of variable can reduce the problem of analyzing
the stability of any solution to (2.1), to the problem of analyzing the stability of the
zero (or trivial) solution ϕ0(t) ≡ 0 (for all t ∈ R) of a corresponding system of ODEs.
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Fig. 2.1: Attractivity and convergence of example (2.3) – (2.4).

More precisely, assume that x∗(t) is a non-zero particular solution of system (2.1),
and consider the change of variables y(t) = x(t)− x∗(t), then it is easy to check that

dy(t)
dt
= g̃(t, y(t)), where g̃(t, y) = g(y+ x∗(t))−g(x∗(t)),

in which the right hand side satisfies g̃(t,0) = 0 for all t ∈ R. In the special case that
x∗(t) = x∗ is a constant for all t ∈ R, g̃(t, y) = g̃(y) = g(y+ x∗)−g(x∗). This observa-
tion allows us to focus the stability analysis to the zero solution by assuming that
function g in (2.1) satisfies g(0) = 0.

Stability for linear ODEs

One important fact of linear ODE systems is that all solutions possess the same
type of stability. Moreover, the type of stability can be characterized by the asymp-
totic behavior of its fundamental matrix. For the autonomous system (2.1), the fun-
damental matrix can be determined by the eigenvalues of the matrix on the right
hand side. More specifically, consider the following linear system of ODEs

dx
dt
= Ax+b(t), (2.5)

where A = (ai j)i, j=1,··· ,d is a d×d matrix with real coefficients ai j ∈R. Clearly if x∗(t)
is a solution to (2.5), then y(t) = x(t)− x∗(t) is solution to the ODE system



2.1 Basic Stability Theory 15

dy
dt
= Ay. (2.6)

The same holds true if x∗(t) is a solution to the homogeneous counterpart of equation
(2.5), x� = Ax. Consequently, the stability of any solution of the linear ODE system
(2.5) is equivalent to the stability of the zero solution to (2.6), regardless whether or
not b(t) is zero. The theorem presents the stability of linear ODEs.

Theorem 2.2. Let {λ j}1≤ j≤d ⊂ C be the set of eigenvalues for the matrix A. Then,

(i) any solution to (2.6) is exponentially stable if and only if the real parts of all the
eigenvalues are negative, i.e.,�(λ j) < 0 for all 1 ≤ j ≤ d.

(ii) any solution to (2.6) is (uniformly) stable if and only if�(λ j) ≤ 0 for all 1 ≤ j ≤ d
and, if for those eigenvalues λ j (1 ≤ j ≤ d) such that �(λ j) = 0, the dimension
of the Jordan boxes associated to them in their canonical forms is 1 (in other
words, their algebraic and geometric multiplicity coincide).

Stability for nonlinear ODEs

Theorem 2.2 can characterize completely the stability of linear ODE systems
with constant coefficients. It can also be used to analyze the stability of nonlinear
differential equations, by the so called first approximation method which can be
briefly described as follows. Assume that the function g in (2.1) is continuously
differentiable and satisfies g(0) = 0. Then according to the Taylor formula, g can be
written as

g(x) = Jx+T1(x), J =
�
∂gi

∂x j
(0)
�

i, j=1,...,d
(2.7)

where the higher order term T1(·) is sufficiently small for small values of x in the
sense that

lim
x→0

|T1(x)|
|x| = 0.

We now state the following result on stability and instability of solutions to system
(2.1).

Theorem 2.3. (Stability in first approximation) Assume that g ∈ C1(O) and g(0) = 0.
Let J be the Jacobian matrix defined in (2.7). Then,

(i) if all the eigenvalues of matrix J have negative real parts, the trivial solution of
(2.1) is (locally) exponentially stable.

(ii) if one of the eigenvalues of matrix J has positive real part, the trivial solution of
(2.1) is (locally) unstable.

Stability by the Lyapunov theory

Theorem 2.3 is based on a spectrum analysis of the linearization of system (2.1),
and provides only local stability. For nonautonomous systems, such linearization
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requires additional justification (see, e.g., [55]). We next introduce the Lyapunov
theory, that allows us to determine the stability of a system without either explicitly
solving the differential equation (2.1) or approximating it by its first approximation
linear system. Practically, the theory is a generalization of the idea that if there exists
some “measure of energy” in one dynamical system, then we can study the rate of
change of the energy to ascertain stability. In fact this “measure of energy” can be
characterized by the so-called Lyapunov function. Roughly, if there exists a function
V : X → R satisfying certain conditions on V and V̇ (the derivative along solution
trajectories) that proves the Lyapunov stability of a system, we call it a Lyapunov
function.

Definition 2.2. A continuous function V : O ∈ Rd → R is said to be

• positive definite around x = 0 if V(0) = 0 and V(x) > 0 for all x ∈ O\{0}.
• positive semi-definite around x = 0 if V(0) = 0 and V(x) ≥ 0 for all x ∈ O\{0}.
• negative definite or negative semi-definite if −V is positive definite or positive

semi-definite, respectively.

The following basic theorems provide sufficient conditions for the stability and
instability of the origin of an autonomous dynamical system. First we recall that
given a continuously differentiable function V :O→R, the derivative of V along the
trajectories of system (2.1), V̇ : X→ R is defined by

V̇(x) =
d�

i=1

∂V
∂xi

(x)gi(x), x ∈ O.

It is straightforward to check that if x(·) is a solution to (2.1), then

d
dt

V(x(t)) = V̇(x(t)), ∀t ∈ R.

Next we present the Lyapunov theorem on stability and the Tchetaev theorem on
instability based on the Laypunov functions.

Theorem 2.4. (Lyapunov’s stability theorem) Let V : O→ R be a continuously dif-
ferentiable function with derivative V̇ along the trajectories of the system (2.1).

1. If V is positive definite and V̇ is negative semi-definite, then the zero solution is
stable.

2. If V is positive definite and V̇ is negative definite, then the zero solution is asymp-
totically stable.

3. If there exist some positive constants a1,a2,a3 and k such that

a1|x|k ≤ V(x) ≤ a2|x|k and V̇(x) ≤ −a3|x|k, ∀x ∈ O,

then the zero solution is exponentially stable.

Denote by B(x0;r) the ball centered at x0 with radius r.
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Theorem 2.5. (Tchetaev’s instability theorem) Assume that there exists ρ > 0 and
V ∈ C1(B(0;ρ)) such that B(0;ρ) ⊆ O and

(i) V(0) = 0,
(ii) V̇ is positive definite in B(0;ρ),

(iii) for any σ ∈ (0,ρ) there exists yσ ∈ B(0;σ) such that V(yσ) > 0.

Then the zero solution is unstable.

Sometimes an equilibrium point can be asymptotically stable even if V̇ is not neg-
ative definite. In fact, if we can find a Lyapunov function whose derivative along the
trajectories of the system is only negative semi-definite, but we can further establish
that no trajectory can stay identically at points where V̇ vanishes, then the equilib-
rium must be asymptotically stable. This is the idea of Lasalle’s invariance principle
[54]. Before stating the principle we first introduce the definition of ω-limit set and
invariant set, which is needed to state the LaSalle theorem.

Let ϕ(t; x0) be the autonomous dynamical system generated by the solutions of
IVP (2.2).

Definition 2.3. A set S ⊂Rd is said to be the ω-limit set of ϕ(t; x0) if for every x ∈ S ,
there exists a strictly increasing sequence of times tn such that

ϕ(tn; x0)→ x as tn→∞.

It is usual to write S = ω(x0). In a similar way, it is defined the omega limit of a set
A ⊂ O, and it is denoted as ω(A), as the set of points x ∈ O such that there exist two
sequences {xn} ⊂ A, tn→ +∞ such that

ϕ(tn; xn)→ x, as n→ +∞.

Definition 2.4. A set M ⊂ Rd is said to be (positively) invariant if for all x ∈ M we
have

ϕ(t; x) ∈ M, ∀t ≥ 0.

Remark 2.5. The positively invariance means that as long as a solution passes a
point inside M it will remain inside M forever, although the solution may have been
outside of M in some previous instants of time.

Theorem 2.6. (LaSalle’s Invariance Principle) Let K ⊂ X be a compact and posi-
tively invariant set. Let V : K ⊂Rd→R be continuously differentiable with V̇ ≤ 0 on
K. Let M be the largest invariant set in E = {x ∈ K : V̇ = 0}. Then ϕ(t; x0) approaches
M as t→∞ for every x0 ∈ K.

Remark 2.6. LaSalle’s Invariance principle requires V to be continuously differen-
tiable but not necessarily positive definite. It is applicable to any equilibrium set,
rather than just an isolated equilibrium point. But when M is just a single point, it
provides additional information about the type of stability of the equilibrium point.
Indeed, when M is just a single point, and we are able to find a Lyapunov function
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which is only negative semi-definite, we can then ensure that this equilibrium is
stable (thanks to Theorem 2.4) and also convergent as a consequence of LaSalle’s
principle, and hence is asymptotically stable.

To illustrate how the LaSalle invariance principle work, consider the following
second order differential equation describing the movement of a pendulum with
friction

d2x
dt2 +β

dx
dt
+ k sin x = 0,

where k and β are positive constants. First we transform the equation into an equiv-
alent first order system by setting x = y1, dx

dt = y2 to obtain

dy1
dt
= y2,

dy2
dt
= −βy2− k siny1.

Consider the function

V(y1, y2) =
1
2
y22+ k(1− cosy1).

It is easy to prove that V is positive definite on B(0;π) and satisfies

V̇(y) = (k siny1)y2+y2 (−βy2− k siny1) = −βy22 ≤ 0, ∀(y1, y2) ∈ B(0;π).

Therefore, V̇ is negative semi-definite and, consequently, the trivial solution is sta-
ble. To prove that the trivial solution is also attractive, we will use LaSalle’s invari-
ance principle. Denote by

E := {y ∈ B(0;π) : V̇(y) = 0} ≡ {(y1,0) : y1 ∈ (−π,π)}.

If we prove that {(0,0)} is the only positively invariant subset of E, then it will be
also attractive, and thus the trivial solution will be uniformly asymptotically sta-
ble. To this end, pick y0 = (y01,0) ∈ E, with y01 ∈ (−π,π) \ {0}, then the solution
ϕ(t;0, y0) = (ϕ1(t),ϕ2(t)) satisfies the differential system as well as the initial condi-
tion (ϕ1(0),ϕ2(0)) = y0 = (y01,0). Notice that

ϕ�(0) = ϕ2(0) = 0,
ϕ�2(0) = −kϕ2(0)− k sinϕ1(0) = −k siny01 � 0 (y01 ∈ (−π,π) \ {0}).

Therefore, the function ϕ2 is strictly monotone in a neighborhood of t = 0, and since
ϕ2(0) = 0, there exists t̃ ∈ Imax(y0) such that ϕ2(t̃) � 0. Thus, solutions starting from
points of E \{(0,0)} leave this set and, therefore, the unique invariant subset is (0,0).

Remark 2.7. The LaSalle invariance principle is applicable to autonomous or peri-
odic systems and can be extended to some specific nonautonomous systems (see,
e.g., [65]), but not to general nonautonomous systems.
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Remark 2.8. The Lasalle invariance principle provides a natural connection between
the Lyapunov stability and the concept of attractors, to be introduced in the next
section.

The largest invariant set M in Theorem 2.6 is the union of all invariant sets in
the compact set K. It contains critical information on the asymptotic behavior of the
system, as any solution has to approach this set as time goes on. In fact, the asymp-
totic dynamics of an autonomous dynamical system can be fully characterized by its
invariant sets [51]. An invariant set possesses an independent dynamics inside itself
and can also determine if any other trajectory outside the invariant set is approach-
ing it (attractor) or being repelled from it (repeller). Next we will introduce in more
details the concept of attractor, which is an invariant compact set that attracts all
trajectories of a dynamical system starting either in a neighborhood (local attractor)
or in the entire state space (global attractor).

2.2 Attractors

First we generalize the definition of invariance established in the previous sec-
tion.

Definition 2.5. Let ϕ : R×O→ O be a dynamical system on O. A subset M of O is
said to be

• invariant under ϕ (or ϕ-invariant), if

ϕ(t,M) = M for all t ∈ R.

• positively invariant under ϕ if

ϕ(t,M) ⊂ M for all t ∈ R.

• negatively invariant under ϕ if

ϕ(t,M) ⊃ M for all t ∈ R.

For any x ∈ O, the function ϕ(·, x) : R→ O defines a solution curve, trajectory, or
orbit of (2.2) passing through the point x0 in O. Graphically, the function ϕ(·, x) can
be thought as an object moving along the curve

γ(x0) := {x ∈ O| x = ϕ(t; x0), t ∈ R}

defined by (2.2), as well as a possible parametrization of the orbit γ(x0) passing
through the point x0. A local attractor of a dynamical system is a compact invariant
set that attracts all trajectories starting in some neighborhood of the attractor as
t→∞, and a global attractor is such a compact invariant set that attracts not only
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trajectories in a neighborhood but trajectories in the entire state space. In this book
we will focus on global attractor whose precise definition is given below.

Definition 2.6. A nonempty compact subset A is called a global attractor for a dy-
namical system ϕ on O if

(i) A is ϕ-invariant;
(ii) A attracts all bounded sets of O, i.e.,

lim
t→∞

dist(ϕ(t,B),A) = 0 for any bounded subset B ⊂ O,

where dist denotes the Hausdorff semi-distance given by

dist(A,B) = sup
a∈A

inf
b∈B
|a−b|.

The existence of attractors is mostly due to some dissipativity property (a loss of
energy) of the dynamical system. The mathematical formulation for this concept is
given in the following definition.

Definition 2.7. A nonempty bounded subset K of O is called an absorbing set of
a dynamical system ϕ on O if for every bounded subset B ⊂ O, there exists a time
TB = T (B) ∈ R such that ϕ(t,B) ⊂ K for all t > TB.

The following theorem stated in [51] provides the existence of a unique global
attractor.

Theorem 2.7. Assume that a dynamical system ϕ on O possesses a compact ab-
sorbing set K. Then, there exists a unique global attractor A ⊂ K which is given
by

A = ω(K).

If, in addition, K is positively invariant, then the unique global attractor is given by

A =
�

t≥0
ϕ(t,K).

Global attractors are crucial for the analysis of dynamical systems, as they can
characterize their asymptotic behavior. On the one hand, any trajectory starting from
inside the global attractor is not allowed to leave it (because its invariance), and the
original dynamical system restricted to the global attractor forms another dynami-
cal system. On the other hand, any trajectory starting from a point outside the global
attractor has to approach it, but can never touch it. Due to the complexity of the
trajectories, the global attractor may eventually exhibit a strange and chaotic struc-
ture. Therefore, in addition to the general existence and continuity properties of the
global attractors, geometrical structures of the global attractors can provide more
detailed information about the long term dynamics of a dynamical system. We will
not elaborate this point in this section, but will include below a few more comments
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including one example which can help the reader to understand the importance of
the global attractor.

There are some particular dynamical systems, such as gradient dynamical sys-
tems, for which the internal geometrical structure of the global attractor is well
known. These are the dynamical systems for which a “Lyapunov function” exists,
but in this context is a continuous function V that (i) is nonincreasing along the tra-
jectories of the dynamical system, i.e., the mapping t �→ V(ϕ(t, x0)) is nonincreasing
for any x0 ∈O, and (ii) if it is constant along one trajectory, then this trajectory must
be an equilibrium point. In fact, if V(ϕ(t, x0)) = V(x0) for some t > 0, then x0 is
an equilibrium point. This concept is slightly different for the concept of Lyapunov
function used in the stability analysis, but we will still adopt the same terminology
while the context is clear.

One simple example of a gradient ordinary differential equation is

dx
dt
= −∇h(x), (2.8)

where h : Rd→ R is at least continuously differentiable. It is straightforward to ver-
ify that V(x) := h(x) is a Lyapunov function for the dynamical system generated by
(2.8). Let ϕ(t, x0) be the solution to (2.8) with initial condition x(0) = x0, and let
ω(x0) be the ω−limit set of the orbit through x0. Then ω(x0) is a compact invariant
set in Rd. According to the LaSalle invariance principle, for any x ∈ ω(x0), the so-
lution ϕ(t, x) belongs to ω(x0) and V(ϕ(t, x) = V(x) for all t ∈ R. As a consequence,
V̇(ϕ(t, x)) = 0, which implies that ∇h(ϕ(t, x)) = 0 for all t ∈ R, i.e., ω(x0) belongs to
the set of equilibria of (2.8). More details on gradient dynamical systems can be
found in [38].

The most interesting property of gradient dynamical systems is that their attrac-
tors are formed by the union of the unstable manifold of the equilibrium points (see,
e.g, [53]). Briefly, given an equilibrium point x∗ for the dynamical system ϕ, its
unstable manifold is defined by

Wu(x∗) = {x ∈ O : ϕ(t, x) is defined for t ∈ R, and ϕ(t, x)→ x∗,as t→−∞}.

Then, if ϕ is a gradient dynamical system, it holds that the global attractor A is
given by

A =
�

x∗∈E
Wu(x∗),

where E denotes the set of all the equilibrium points.
Another interesting aspect of global attractors is related to how the global attrac-

tor determines the asymptotic dynamics of the system. According to the definition
of the global attractor, we can say that any trajectory outside the global attractor
can be tracked by some trajectories (or pieces of trajectories) inside the attractor.
In other words, any external trajectory has a “target” on the attractor, that is getting
closer to the trajectory as time passes. This property is know as the “tracking prop-
erty” reads as follows. Given a trajectory ϕ(t, x0) with x0 not necessary inside the
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global attractorA, and given any ε > 0 and T > 0, there exists a time τ = τ(ε,T ) and
a point v0 ∈A such that

|ϕ(t+τ, x0)−ϕ(t, v0)| ≤ ε, for all 0 ≤ t ≤ T.

If we wish to follow a trajectory for a time longer than T , then we may need to use
more than one trajectory ofA (see e.g., [68]).

Remark 2.9. There are several other interesting and important properties of the
global attractor which can also help in understanding the dynamics of a dynami-
cal system. The reader is referred to the monograph [68] for more details.

2.3 Applications

In this section we will introduce three applications of autonomous systems aris-
ing from different areas of the applied sciences. In particular we will discuss the long
term dynamics including stability and existence of attractors for (1) a chemostat
ecological model, (2) an SIR epidemic model and (3) a Lorenz-84 climate model.
Later we will study the nonautonomous and random counterparts of these systems
in Chapter 3 and 4, respectively. To simplify the content and to avoid unnecessary
repeated calculations, we will assume in this section that given any positive initial
condition each of these systems possesses a continuous positive global solution. The
proofs will be provided for their corresponding nonautonomous versions in Section
3.

2.3.1 Application to ecology: a chemostat model

A chemostat is associated with a laboratory device which consists of three in-
terconnected vessels and is used to grow microorganisms in a cultured environment
(see Fig. 2.2). In its basic form, the outlet of the first vessel is the inlet for the sec-
ond vessel and the outlet of the second vessel is the inlet for the third. The first
vessel is called a feed bottle, which contains all the nutrients required to grow the
microorganisms. All nutrients are assumed to be abundantly supplied except one,
which is called a limiting nutrient. The contents of the first vessel are pumped into
the second vessel, which is called the culture vessel, at a constant rate. The microor-
ganisms feed on nutrients from the feed bottle and grow in the culture vessel. The
culture vessel is continuously stirred so that all the organisms have equal access to
the nutrients. The contents of the culture vessel are then pumped into the third ves-
sel, which is call a collection vessel. Naturally it contains nutrients, microorganisms
and the products produced by the microorganisms [76].

As the best laboratory idealization of nature for population studies, the chemostat
plays an important role in ecological studies [8, 13, 14, 32, 34, 41, 79, 82, 83, 84].
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Fig. 2.2: A basic chemostat

With some modifications it is also used as the model for waste-water treatment
process [33, 52]. The chemostat model can be considered as the starting point for
many variations that yield more realistic biological models, e.g., the recombinant
problem in genetically altered organisms [56, 77] and the model of mammalian large
intestine [36, 37]. More literature on the derivation and analysis of chemostat-like
models can be found in [74, 75, 83] and the references therein.

Denote by x the growth-limiting nutrient and by y the microorganism feeding on
the nutrient x. Assume that all other nutrients, except x, are abundantly available,
i.e., we are interested only in the study of the effect of this essential limiting nutrient
x on the species y. Under the standard assumptions of a chemostat, a list of basic
parameters and functional relations in the system includes [76]:

• D, the rate at which the nutrient is supplied and also the rate at which the contents
of the growth medium are removed.

• I, the input nutrient concentration which describes the quantity of nutrient avail-
able with the system at any time.

• a, the maximal consumption rate of the nutrient and also the maximum specific
growth rate of microorganisms – a positive constant.

• U, the functional response of the microorganism describing how the nutrient is
consumed by the species. It is known in literature as consumption function or
uptake function. Basic assumptions on U : R+ → R+ are given by

1. U(0) = 0, U(x) > 0 for all x > 0.
2. limx→∞U(x) = L1, where L1 <∞.
3. U is continuously differentiable.
4. U is monotonically increasing.

Note that conditions 1 and 2 of the uptake function U ensure the existence of a
positive constant L > 0 such that

U(x) ≤ L for all x ∈ [0,∞).

Throughout this book, when solid computation is needed, we assume that the con-
sumption function follows the Michaelis-Menten or Holling type-II form:
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U(x) =
x
λ+ x

, (2.9)

where λ > 0 is the half-saturation constant [76].
Denote by x(t) and y(t) the concentrations of the nutrient and the microorganism

at any specific time t. In the simplest model where I and D are both constants,
the limited resource-consumer dynamics can be described by the following growth
equations:

dx
dt
= D (I− x)−a

x(t)
λ+ x(t)

y(t), (2.10)

dy
dt
= −Dy(t)+a

x(t)
λ+ x(t)

y(t). (2.11)

Stability analysis

We start from the behavior of equilibrium solutions. The equilibrium solutions to
system (2.10) – (2.11) can be found by solving

D(I− x∗)−a
x∗

λ+ x∗
y∗ = 0,

−Dy∗+a
x∗

λ+ x∗
y∗ = 0,

which yields

(x∗, y∗) = (I,0) or (x∗, y∗) =
� Dλ
a−D

, I− Dλ
a−D

�
.

1. When a < D, system (2.10) – (2.11) has only one axial equilibrium (I,0), which
is globally asymptotically stable. This means that the microorganisms y become
extinct.
Sketch of proof: First, it is straightforward to check that the positive quadrant is
positively invariant. In fact, first notice that

dx
dt

�����
x=0
= DI > 0.

On the other hand, the set {(x,0) : x > 0} is formed by three orbits: (1) the equi-
librium point (I,0), (2) the segment {(x,0) : 0 < x < I} which is parameterized
by the solution {(I + (x0 − I)e−Dt,0) : t ∈ (−D log I(I − x0)−1,+∞)} for any fixed
x0 ∈ (0, I), and (3) the unbounded segment {(x,0) : x > I} which is parameter-
ized by the solution {(I+ (x0− I)e−Dt,0) : t ∈ R}. We now investigate the stability
in first approximation by Theorem 2.3. The corresponding Jacobian of system
(2.10) – (2.11) and its value at the point (I,0) are, respectively,
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J(x, y) =




−D− aλy
(λ+ x)2 − ax

λ+ x

aλy
(λ+ x)2 −D+

ax
λ+ x



, J(I,0) =




−D − aI
λ+ I

0 −D+
aI
λ+ I



.

The eigenvalues of J(I,0) are −D and −D+
aI
λ+ I

, which are both negative be-
cause a < D is assumed. The equilibrium (I,0) is then asymptotically exponen-
tially stable.

2. When a>D and λD
a−D < I, system (2.10) – (2.11) has two equilibria, among which

the positive equilibrium (x∗, y∗) =
�

Dλ
a−D , I− λDa−D

�
is globally asymptotically sta-

ble. This means that the microorganisms y and the nutrient x co-exist.
Sketch of proof: In this case, the axial equilibrium becomes unstable because

one of the eigenvalues of J(I,0), −D +
aI
λ+ I

, is positive due to the condition
λD

a−D < I. On the other hand, the positive equilibrium point (x∗, y∗) is now globally
asymptotically (exponentially) stable, since the Jacobian evaluated at (x∗, y∗)

J(x∗, y∗) =




−D− aλx∗

(λ+ x∗)2 −D

aλy∗

(λ+ x∗)2 0



,

has two negative eigenvalues −D and − aλx∗

(λ+ x∗)2 .

Global attractor

As each IVP associated to (2.10) – (2.11) corresponding to positive initial val-
ues has a positive global solution, this system generates an autonomous dynamical
system ϕ(t, x0, y0). Adding (2.10) – (2.11) we obtain immediately that

d(x+y)
dt

= DI−D(x+y),

and given x(0) = x0, y(0) = y0 we have

x(t)+y(t) = I+ (x0+y0− I)e−Dt.

This implies that
Kε :=

�
(x, y) ∈ R2

+ : x+y ≤ I+ε
�

is a bounded absorbing set for the dynamical system ϕ generated by solutions of
(2.10)– (2.11). Hence due to Theorem 2.7 ϕ possesses a global attractor A inside



26 2 Autonomous dynamical systems

the nonnegative quadrant R2
+. Moreover, we obtain the geometric structure of the

global attractor as follows.

1. When a < D, the attractorA has a single point (I,0).
2. When a > D and λD

a−D < I, the attractor A consists of two points, (I,0) and�
Dλ

a−D , I− Dλ
a−D

�
, and heteroclinic solutions between them (solutions that converge

in one time direction to a steady state and in the other direction to different steady
state).

2.3.2 Application to epidemiology: the SIR model

The modeling of infectious diseases and their spread is crucial in the field of
mathematical epidemiology, as it is an important and power tool for gauging the
impact of different vaccination programs on the control or eradication of diseases.
Here we will only introduce a simple autonomous model, which does not take into
account age structure nor environmental fluctuation. More sophisticated models will
be discussed in later chapters.

The classical work on epidemics is due to Kermack and McKendrick [42, 43, 44].
The Kermack-McKendrick model is essentially a compartmental model based on
relatively simple assumptions on the rates of flow between different classes of mem-
bers of the population. The population is divided into three classes labeled S , I and
R, where S (t) denote the number of individuals who are not yet infected but sus-
ceptible to the disease, I(t) denotes the number of infected individuals, assumed
infectious and able to spread the disease by contact with susceptible, and R(t) de-
notes the number of individuals who have been infected and then removed from the
possibility of being infected again or of spreading infection. Removal is carried out
through isolation from the rest of the population, through immunization against in-
fection, recovery from the disease with full immunity against reinfection, or through
death caused by the disease.

The terminology “SIR” is used to describe a disease that confers immunity
against reinfection, to indicate that the passage of individuals is from the suscep-
tible class S to the infective class I to the removed class R. Epidemics are usually
diseases of this type. The terminology “SIS” is used to describe a disease with no
immunity against re-infection, to indicate that the passage of individuals is from the
susceptible class to the infective class and then back to the susceptible class. Usu-
ally, diseases caused by a virus are of SIR type, while diseases caused by bacteria
are of SIS type.

In this book we will use SIR as an example and investigate dynamics of au-
tonomous, nonautonomous and random SIR models. The simplest SIR model as-
sumes that the total population size is held constant, i.e.,

S (t)+ I(t)+R(t) = N,
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by making birth and death rates equal. Denote by ν the birth and death rate of all
population, and assume that all new-born are susceptible to disease, we have the
following basic SIR model.

dS
dt
= ν(S + I+R)− β

N
S I− νS , (2.12)

dI
dt
=
β

N
S I− νI−γI, (2.13)

dR
dt
= γI− νR, (2.14)

where γ is the fraction of infected individuals being removed per unit of time, and
β is the contact rate of susceptible and infected individuals (see Fig. 2.3).

Fig. 2.3: Transition between SIR compartments

The vector field of system (2.12)-(2.14) is continuously differentiable, and hence
ensures the maximal solution to the corresponding IVP exists and is unique. Fur-
thermore the solutions are defined globally in time (see Chapter 3 for more details).
Notice that assumption of constant total population, S (t)+ I(t)+R(t) = N, reduces
system (2.12) – (2.14) to the following two dimensional system.

dS
dt
= νN − β

N
S I− νS , (2.15)

dI
dt
=
β

N
S I− νI−γI. (2.16)

Note that such a reduction needs the positiveness of solutions which will be dis-
cussed later in Chapter 3.

Stability analysis

The equilibrium solutions to system (2.15) – (2.16) can be found by solving

νN − β
N

S ∗I∗ − νS ∗ = 0,

β

N
S ∗I∗ − νI∗ −γI∗ = 0,
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which yields two equilibrium solutions

(S ∗, I∗) = (N,0), (S ∗, I∗) =
�

N(ν+γ)
β

,νN
�

1
ν+γ

− 1
β

��
.

1. When ν+ γ > β, system (2.15) – (2.16) has only one axial equilibrium, (N,0),
in the nonnegative quadrant, which is globally asymptotically stable. This means
that all infected and removed individuals are cleared, the system is fully immu-
nized.
Sketch of proof: The corresponding Jacobian of system (2.15) – (2.16) and its
value at the equilibrium point (N,0) are, respectively,

J(S , I) =




− βN I− ν β
N S

β
N I β

N S − ν−γ



, J(N,0) =




−ν −β

0 β− ν−γ


 .

The eigenvalues of J(N,0) are negative, and hence the axial equilibrium (N,0) is
globally asymptotically stable.

2. When ν + γ < β, system (2.15) – (2.16) has two equilibria, among which the
positive equilibrium (S ∗, I∗) =

�N(ν+γ)
β ,νN

�
1
ν+γ − 1

β

��
is globally asymptotically

stable and the axial equilibrium (N,0) is unstable. This means that the system is
at endemic state, where infected, removed and susceptible individuals co-exist.
Sktech of proof: The instability of the axial equilibrium is obvious as J(N,0)) now
has a positive eigenvalue since ν+γ < β. The Jacobian evaluated at the positive
equilibrium (S ∗, I∗) is

J(S ∗, I∗) =




−βν
�

1
ν+γ − 1

β

�
− ν −(ν+γ)

βν
�

1
ν+γ − 1

β

�
0



,

whose eigenvalues are the roots of the quadratic equation

r2+

�
βν

�
1
ν+γ

− 1
β

�
+ ν

�
r+β(ν+γ)

�
1
ν+γ

− 1
β

�
= 0,

both of which have negative real part. Hence the positive equilibrium (S ∗, I∗) is
asymptotic exponential stable.

Attractors

Any IVP of (2.15) – (2.16) associated with positive initial values has positive
global solutions (see Chapter 3 for detailed proof). Hence system (2.15) – (2.16)
generates an autonomous dynamical system ϕ(t,S 0, I0). By adding (2.15) – (2.16)
we obtain immediately that
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d(S + I)
dt

= νN − ν(S + I)−γI ≤ νN − ν(S + I),

and given S (0) = S 0, I(0) = I0 we have

S (t)+ I(t) ≤ N + (S 0+ I0−N)e−νt.

This implies that
Kε :=

�
(S , I) ∈ R2

+ : S + I ≤ N +ε
�

is a bounded absorbing set for the dynamical system ϕ generated by solutions of
(2.15)– (2.16). Hence due to Theorem 2.7, ϕ possesses a global attractor A inside
the nonnegative quadrant R2

+. Moreover, at light of the stability properties of the
equilibrium points, we obtain the geometric structure of the global attractor as fol-
lows.

1. When ν+γ > β, the attractorA has a single point (N,0).
2. When ν+γ < β, the attractorA consists of two points, (N,0), and�N(ν+γ)

β ,νN
�

1
ν+γ − 1

β

��
, and heteroclinic solutions between them.

2.3.3 Application to climate change: the Lorenz-84 model

A model of atmospheric circulation was introduced by Lorenz in 1984, defined
by a system of three nonlinear autonomous differential equations [58, 59, 80]. Let x
represents the pole ward temperature gradient or the intensity of the westerly wind
current, y and z are the strengths of cosine and sine phases of a chain of superposed
waves transporting heat poleward, respectively. Then a modified Hadley circulation
can be modeled by

dx
dt
= −ax−y2− z2+aF, (2.17)

dy
dt
= −y+ xy−bxz+G, (2.18)

dz
dt
= −z+bxy+ xz, (2.19)

where the coefficient a, if less than 1, allows the westerly wind current to damp less
rapidly than the waves, the terms in b represent the displacement of the waves due
to interaction with the westerly wind, the terms in F and G are thermal forcings:
F represents the symmetric cross-latitude heating contrast and G accounts for the
asymmetric heating contrast between oceans and continents.

Despite the simplicity of the Lorenz-84 model, it addresses many key applica-
tions in climate studies such as how the coexistence of two possible climates com-
bined with variations of the solar heating causes seasons with inter-annual variabil-
ity [6, 58, 59, 67], how the climate is affected by the interactions atmosphere and
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the oceans [7, 70], how the asymmetry between oceans and continents may result in
complex behaviors of the system [62], etc. In addition to applications, the Lorenz-
84 model has also attracted much attentions from mathematicians because of certain
interesting and subtle mathematical aspects of its underlying differential equations
such as multistability, intransitivity and bifurcation [35]. Here we will focus on the
Laypunov stability and existence of attractors for the Lorenz-84 model.

Notice that the vector field of system (2.17)-(2.19) is continuously differentiable,
which ensures existence and uniqueness of maximal solutions to the corresponding
IVP. Moreover, once we prove that the solutions are absorbed by a ball centered at
zero, then it follows immediately from Theorem 1.5 that all solutions are defined
globally in time (more details will be provided in Chapter 3).

Stability analysis

The equilibrium points of system (2.17) – (2.19) can be calculated by solving

a(F − x∗)(1−2x∗+ (1+b2)(x∗)2) = G2, (2.20)

(1− x∗)G
1−2x∗+ (1+b2)(x∗)2 = y

∗, (2.21)

bx∗G
1−2x∗+ (1+b2)(x∗)2 = z∗. (2.22)

When G = 0, system (2.20) – (2.22) has only one solution, (F,0,0), and hence (2.17)
– (2.19) possesses only one equilibrium, (F,0,0). To analyze its stability, we first
shift the point (F,0,0) to the origin (0,0,0) by performing the change of variable
x̃ = x−F. The resulting system reads

dx̃
dt
= −ax̃−y2− z2, (2.23)

dy
dt
= −y+ (x̃+F)y−b(x̃+F)z, (2.24)

dz
dt
= −z+b(x̃+F)y+ (x̃+F)z. (2.25)

Though we can use again the first approximation method to analyze the stability of
(0,0,0), to present alternative methods we study the stability of the (0,0,0) for this
system, by the Lypunov theory and Tchetaev’s theorem.

1. When F < 1, the equilibrium (0,0,0) is globally asymptotically stable.
Sketch of proof: Define the function

V(x̃, y,z) :=
1
2

(x̃2+y2+ z2). (2.26)



2.3 Applications 31

Then V(0,0,0) = 0 and V(x̃, y,z) > 0 for all (x̃, y,z) ∈ R3 \ {(0,0,0)}, what implies
that V is positive definite in any ball centered in (0,0,0) (in particular, in the
entire R3). Moreover, the derivative of V along trajectories of system (2.17) –
(2.19) satisfies

V̇ = −ax̃2− (1−F)y2− (1−F)z2

which implies that V is negative definite when F < 1. The conclusion follows
immediately from Theorem 2.4.

2. When F > 1, the equilibrium (0,0,0) is unstable.
Sketch of proof: The previous Lyapunov function defined in (2.26) is no longer
valid, but we can apply Tchetaev’s theorem. To this end, let us consider the func-
tion

V(x̃, y,z) :=
1
2

(−x̃2+y2+ z2). (2.27)

Then, straightforward computations give

V̇ = ax̃2+ (F −1)y2+ (F −1)z2+2x̃(y2+ z2).

Observing that

lim
(x̃,y,x)→(0,0,0)

2x̃(y2+ z2)
ax̃2+ (F −1)y2+ (F −1)z2 = 0,

we can find a positive ρ such that
������

2x̃(y2+ z2)
ax̃2+ (F −1)y2+ (F −1)z2

������ ≤
1
2
, for (x̃, y,z) ∈ B((0,0,0);ρ).

Hence
2x̃(y2+ z2) ≥ −1

2
(ax̃2+ (F −1)y2+ (F −1)z2),

which implies that

V̇ = ax̃2+ (F −1)y2+ (F −1)z2+2x̃(y2+ z2)

≥ 1
2

(ax̃2+ (F −1)y2+ (F −1)z2)

for all (x̃, y,z) ∈B((0,0,0);ρ). The instability of (0,0,0) then follows immediately
from Tchetaev’s theorem.

3. When F = 1, we cannot deduce any information from Theorem 2.3. However,
since the Lyapunov function defined in (2.26) has a negative semi-definite V̇ ,
the equilibrium point (0,0,0) is at least stable. Next we will apply the LaSalle
invariance principle to prove that the equilibrium point is also attractive, and
hence asymptotically stable. In fact, V̇ = −ax̃2 ≤ 0 when F = 1. Denote by E the
set

E := {(x̃, y,z) ∈ R3 : V̇(x̃, y,z) = 0} = {(0, y0,z0) : y0,z0 ∈ R}.
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Let us prove that (0,0,0) is the unique invariant subset of E. To this end, pick
(0, y0,z0) ∈ E \ {(0,0,0)}, and denote by ϕ(·) the corresponding solution of the
IVP. Then we only need to observe that

d
dt
ϕ1(0) = −y20− z2

0 < 0.

Since ϕ1(0) = 0, then there exists ε > 0 such that ϕ1(t) < 0 for all t ∈ (0,ε). This
proves that (0,0,0) is the only invariant subset of E, and therefore, the equilib-
rium point (0,0,0) is asymptotically stable.

When G � 0, the dynamical behavior of system (2.17) – (2.19) becomes compli-
cated and exhibits chaotic attractors. Note that from (2.20) – (2.22) it is difficult to
obtain an explicit expression of the equilibrium points on parameters a,b,F and G.
It is also difficult to determine how many equilibrium points there exist. Hence it is
impossible to apply the Lyapunov method to obtain stability properties. However,
we can still investigate the existence of global attractor.

Global attractor

System (2.17) – (2.19) possesses a global solution that generates an autonomous
dynamical system ϕ(t, x0, y0,z0) (see Chapter 3 for a detailed proof). To prove the
existence of an attractor, we first prove the existence of a compact absorbing set. In
fact, it is sufficient to prove the existence of a bounded absorbing set, as its closure
will give us a compact absorbing set.

Let D ⊂ R3 be a bounded set. Then, there exists k > 0 such that |u0| ≤ k for all
d ∈ D. Then, for any u0 = (x0, y0,z0) ∈ D we have

d
dt

(x2+y2+ z2) = 2x
dx
dt
+2y

dy
dt
+2z

dz
dt

= 2
�
−ax2−y2− z2+aFx+Gy

�

≤ −ax2−y2−2z2+aF2+G2

≤ −µ1(x2+y2+ z2)+aF2+G2,

where µ1 =min{a,1}, and hence

x2(t)+y2(t)+ z2(t) ≤ (x2
0 +y

2
0+ z2

0)|u0|2e−µ1t +
aF2+G2

µ1
(1− e−µ1t)

≤ k2e−µ1t +
aF2+G2

µ1
.

This implies that given any fixed positive ε, there exists T = T (ε,D) > such that

x2(t)+y2(t)+ z2(t) ≤ aF2+G2

µ1
+ε, for all t ≥ T. (2.28)
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In fact, simple calculations yield that we can take T (ε,D) = − 1
µ1

log
ε

k2 . Note that

we can always take k such that k2 > ε, so that − 1
µ1

log
ε

k2 > 0.

The inequality (2.28) implies that

Kε :=
�

(x, y,z) ∈ R3 : x2+y2+ z2 ≤ aF2+G2

µ1
+ε

�

is a bounded absorbing set for ϕ. Hence by Theorem 2.7, we conclude immediately
that the dynamical system generated by solutions to (2.17) – (2.18) possesses a
global attractorA. When G = 0, this attractorA consists of a single point, (F,0,0).
When G � 0, the geometric structure of A is difficult to obtain. In fact, numerical
simulation shows that the attractorA exhibits chaotic behavior.





Chapter 3

Nonautonomous dynamical systems

It was emphasized in Chapter 2 that the formulation of an autonomous dynamical
system as a group (or semigroup) of mappings is based on the fact that such systems
depend only on the elapsed time t− t0 instead of the starting time t0 or current time
t independently. The key difference between nonautonomous and autonomous dy-
namical systems lies in that the nonautonomous systems depend on both the starting
time t0 and the current time t.

There are several ways to formulate the concept of nonautonomous dynamical
systems in the literature. In this work we will only introduce the two most typical
formulation of nonautonomous dynamical systems: the process formulation and the
skew product flow formulation. The process formulation is also known as the two-
parameter semigroup formulation, where both t0 and t are the parameters. The skew
product flow formulation is induced by an autonomous dynamical system as a driv-
ing mechanism which is responsible for the temporal change of the vector field of
a dynamical system. The driving mechanism can be considered either on a metric
space, which leads to the concept of nonautonomous dynamical systems, or on a
probability space, which leads to the concept of random dynamical systems (which
will be studied in more details in Chapter 4). For this reason, notation of skew prod-
uct flow can be used for both nonautonomous and random dynamical systems. We
will highlight the main differences between nonautonomous and random dynamical
systems in Chapter 4.

3.1 Formulations of nonautonomous dynamical systems

The main motivation to study nonautonomous dynamical systems comes from
the interest in studying phenomena which can be modeled by nonautonomous
ODEs. Let O ⊂ Rd be an open connected set, and let f : R×O→ Rd be a continuous
map. Recall that an initial value problem for a nonautonomous ordinary differential
equation in Rd is given by

35
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dx
dt
= f (t, x), x(t0) = x0. (3.1)

Unlike the solutions to autonomous ODEs that depend only on the elapsed time
t − t0, solutions to (3.1) depend separately on the starting time t0 and the current
time t in general. Assuming that the vector field f in (3.1) satisfies appropriate hy-
potheses (such as stated in Chapter 1) ensuring the existence and uniqueness of a
global solution ϕ(t, t0, x0) of the IVP (3.1), i.e., a solution defined globally in time
such that Imax(t0, x0) ⊃ [t0,+∞). we next present the two different formulations of
nonautonomous dynamical systems mentioned above.

3.1.1 Process formulation

Thanks to properties of the global solution to the IVP (3.1), in particular the
uniqueness and the continuous dependence of solutions on initial values and param-
eters, it is straightforward to verify that the global solution ϕ of (3.1) satisfies:

(i) the initial value property

ϕ(t0, t0, x0) = x0,

where ϕ(t0, t0, x0) denotes the value of the solution of (3.1) at time t0;
(ii) the two-parameter semigroup evolution property

ϕ(t2, t0, x0) = ϕ (t2, t1,ϕ(t1, t0, x0)) , t0 ≤ t1 ≤ t2,

which essentially means the concatenation of solutions. Let ϕ(t1, t0, x0) be the
value of the solution to (3.1) at time t1. If we take ϕ(t1, t0, x0) as the initial value
for another IVP starting at time t1, then the value of the solution of this new IVP
at time t2 is the same as the value of the solution of the original IVP (3.1) at time
t2;

(iii) continuity of the map (t, t0, x0) �→ ϕ(t, t0, x0) on the state space Rd, which is
ensured by the continuous dependence of the solutions of (3.1) on the initial
values.

The above properties of the solution mapping of nonautonomous ODEs give rise
to the motivation for the process formulation of a nonautonomous dynamical system
on a state space Rd (or, more generally, a metric space (X,dX)) and time set R for a
continuous-time process. Define

R2
≥ := {(t, t0) ∈ R2 : t ≥ t0}.

Definition 3.1. A process ϕ on space Rd is a family of mappings

ϕ(t, t0, ·) : Rd → Rd, (t, t0) ∈ R2
≥,
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which satisfy

(i) initial value property: ϕ(t0, t0, x) = x, for all x ∈ Rd and any t0 ∈ R;
(ii) two-parameter semigroup property: for all x ∈ Rd and (t2, t1), (t1, t0) ∈ R2

≥ it
holds

ϕ(t2, t0, x) = ϕ (t2, t1,ϕ(t1, t0, x)) ,

(iii) continuity property: the mapping (t, t0, x) �→ ϕ(t, t0, x) is continuous onR2
≥×Rd.

A process is often called a two-parameter semigroup on X, in contrast with the
one-parameter semigroup of an autonomous semi-dynamical systems since it de-
pends on both the initial time t0 and the current time t.

3.1.2 Skew product flow formulation

To motivate the concept of a skew product flow, we first consider the following
triangular system of ODEs (also called a master–slave system):

dx
dt
= f (q, x),

dq
dt
= g(q), x ∈ Rd, q ∈ Rn, (3.2)

in which the uncoupled component q can be considered as the driving force for x.
Assuming global existence and uniqueness of solutions to (3.2) forward in time,

system (3.2) generates an autonomous semi-dynamical system π on Rn+d, which can
be written in the component form as

π(t,q0, x0) = (q(t,q0), x(t,q0, x0)), (3.3)

and satisfies the initial value property π(0,q0, x0) = (q0, x0), and the semigroup prop-
erty on Rn+d,

π(t+τ,q0, x0) = π(t,π(τ,q0, x0)). (3.4)

Notice that the q-component of the system is independent, with its solution map-
ping q = q(t,q0) generating an autonomous semi-dynamical system on Rn and satis-
fies the semigroup property

q(t+τ,q0) = q(t,q(τ,q0)) ∀t,τ ≥ 0. (3.5)

Then relations (3.3), (3.4) and (3.5) together imply that

π(t+τ,q0, x0) = (q(t+τ,q0), x(t+τ,q0, x0)) = (q(t,q(τ,q0)), x(t+τ,q0, x0)). (3.6)

On the other hand by (3.3)

π(t,π(τ,q0, x0)) = π(t,q(τ,q0), x(τ,q0, x0))
= π (q (t,q(τ,q0)) , x (t,q(τ,q0), x(τ,q0, x0))) . (3.7)
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According to (3.4), the right-hand side of (3.6) and (3.7) should be the same, i.e.,

(q(t,q(τ,q0)), x(t+τ,q0, x0)) = (q (t,q(τ,q0)) , x (t,q(τ,q0), x(τ,q0, x0))) .

This implies that

x(t+τ,q0, x0)) = x (t,q(τ,q0), x(τ,q0, x0)) ,

which is a generalization of the semigroup property and known as the cocycle prop-
erty.

Given a solution q = q(t,q0) of the q−component of the triangular system (3.2),
the x−component becomes a nonautonomous ODE in the x variable on Rd of the
form

dx
dt
= f (q(t,q0), x), t ≥ 0, x ∈ Rd. (3.8)

The function q = q(t,q0) can be considered the “driving” system that is responsible
for the changes in the vector field with the passage of time. The solution mapping
x(t) = x(t,q0, x0) with initial value x(0) = x0 then satisfies

(i) (initial condition): x(0,q0, x0) = x0;
(ii) (cocycle property): x(t+τ,q0, x0) = x(t,q(t,q0), x(τ,q0, x0));
(iii) (continuity): (t,q0, x0) �→ x(t,q0, x0) is continuous.

Such a mapping x(·, ·, ·) :R+0 ×Rn×Rd→Rd is called a cocycle mapping. It describes
the evolution of the solution of the nonautonomous differential equation (3.8) with
respect to the driving system q. Note that the variable t here is the time since starting
at the state x0, with the driving system at state q0.

The product system π onRn×Rd is an autonomous semi-dynamical system and is
known as a skew product flow due to the asymmetrical roles of the two component
systems. This motivates the skew product flow formulation for a nonautonomous
dynamical system, which is based on a driving dynamical system and a cocycle
defined below.

Definition 3.2. Let P be a base or parameter space. Let θ = {θt}t∈T be a group of
homeomorphisms under composition on P that satisfy

(i) θ0(p) = p for all p ∈ P;
(ii) θt+τ(p) = θt(θτ(p)) for all t,τ ∈ T;
(iii) the mapping (t, p) �→ θt(p) is continuous.

Then θ is called a driving dynamical system.

Definition 3.3. Let (X,dX) be a metric space. A cocycle mapping, associated to the
driving dynamical system (P,θ), is a mapping ψ : T+0 ×P×X→ X which satisfies

(i) ψ(0, p, x) = x for all (p, x) ∈ P×X;
(ii) ψ(t+τ, p, x) = ψ(t,θτ(p),ψ(τ, p, x)) for all t,τ ∈ T+0 and (p, x) ∈ P×X;
(iii) the mapping (t, p, x) �→ ψ(t, p, x) is continuous.
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Definition 3.4. Let (X,dX) and (P,dP) be metric spaces. A driving dynamical system
θ acting on parameter space P along with a cocycle mapping ψ acting on the state
space X forms a nonautonomous dynamical system, denoted by (θ,ψ).

For T+0 = {t ∈ T : t ≥ 0), define the mapping π : T+0 ×P×X→ P×X by

π(t, (p, x)) := (θt(p),ψ(t, p, x)).

Then π forms an autonomous semi-dynamical system on the product space X = P×
X, and is called the skew product flow associated with the nonautonomous dynamical
system (θ,ψ).

Remark 3.1. At this point it seems that the process formulation of a nonautonomous
dynamical system is more intuitive and the skew product flow formulation would
only serve in complicating the analysis. However, the skew product flow formula-
tion contains more information than the process formulation regarding input-driven
dynamical systems, since the input dynamics in the skew product flow formulation is
explicitly stated by the driving dynamical system, and is only implicitly considered
in the process formulation. Moreover, in the particular case where the parameter
space P is compact, the topological methods used in the classical theory of skew
product flows provide interesting results on the recurrence properties of solutions,
etc. Furthermore, with its general form discussed above, the skew product flow for-
mulation can be easily generalized to the formulation of random dynamical systems
as we will see in Chapter 4.

The skew product flow formulation of nonautonomous dynamical systems does
not only arise from triangular differential systems; it can also be generated by nonau-
tonomous ODEs. In fact, given a continuous vector field f in the IVP (3.1), we
define the hull of f as

H( f ) = { f (t+ ·, ·) : t ∈ T}. (3.9)

Then H( f ) is a compact metric space provided f satisfies appropriate hypotheses
(e.g., f is periodic or almost periodic in t, or it belongs to a class of functions more
general than almost periodic ones, as introduced by Kloeden and Rodrigues in [46])
and the closure in (3.9) is taken in the uniform convergence topology (see e.g., [51]).

Define the shift mapping θt :H( f ) �→H( f ) by

θth := h(·+ t, ·), ∀t ∈ T, h ∈H( f ).

It is easy to check that θ = {θt}t∈T is a driving dynamical system on H( f ). Now
consider the IVP

dx
dt
= F(θt p, x), x(0) = x0 ∈ Rd, (3.10)

where p ∈H( f ), F(p, x) := p(0, x). Let x(t; p, x0) denote the solution to IVP (3.10)
with initial value x0 at t = 0, then we can construct a cocycle mapping generated by
(3.10) via

ψ(t, p, x0) = x(t; p, x0).
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Notice that if we take p= f ∈H( f ), then ψ(t, f )x0 = x(t; f , x0), and hence IVP (3.10)
becomes

dx
dt
= θt f (0, x), x(0) = x0 ∈ Rd,

or, equivalently,
dx
dt
= f (t, x), x(0) = x0 ∈ Rd.

In addition, we have
ψ(t, f , x0) = ϕ(t,0, x0),

where ϕ(t, ·, ·) denotes the process generated by IVP (3.1). Therefore, problem (3.10)
generates a skew product flow with driving system θ = {θt}t∈T on H( f ) and associ-
ated cocycle {ψ(t, p, ·)}p∈H( f ),t∈T on Rd. Moreover the following relation holds:

ψ(t,θτ f , x0) = ϕ(t+τ,τ, x0).

Remark 3.2. When we consider the skew product flow based on the hull of the
nonautonomous vector field, we are studying not only a single ODE but all those
ODEs whose vector field is a translation of the original vector field as well as the
limiting equations. This means that we would be able to obtain the most complete
information on the dynamics of the underlying system. On the other hand, when we
are interested in studying only a single equation, the process formalism is simpler
to apply.

3.2 Nonautonomous Attractors

In this section we will introduce the concept of nonautonomous attractors, for
both the process and skew product flow formulations of nonautonomous dynamical
systems.

3.2.1 Nonautonomous attractors for processes

Denote by ϕ(t, t0, x0) the nonautonomous dynamical system generated by the so-
lution mapping of IVP (3.1), then ϕ generates a two-parameter semigroup that pro-
vides two-time description of the system evolution. Recall that, in the autonomous
case, a one-parameter semigroup suffices to determine completely the evolution,
and hence the system evolution is invariant with respect to the elapsed time, i.e.,
ϕ(t, t0, x0) = ϕ(t− t0,0, x0). This results in the same asymptotic behavior of the un-
derlying system when t0 → −∞ and t fixed and when t0 fixed and t→∞. Without
such translation invariance property, the limiting behavior when t0→−∞ and t fixed
may be different from the one obtained in the forward sense with t0 fixed and t→∞.



3.2 Nonautonomous Attractors 41

To illustrate the fundamental character of this distinction, consider the following
simple nonautonomous initial value problem:

dx
dt
= −ax+bsin t, x(t0) = x0, t ≥ t0, (3.11)

where a and b are positive constants. The solution mapping ϕ(t, t0, x0) is given ex-
plicitly by

ϕ(t, t0, x0) =
b(asin t− cos t)

a2+1
+

�
x0−

b(asin t0− cos t0)
a2+1

�
ea(t0−t). (3.12)

Clearly for any x0, the forward limit limt→∞ϕ(t, t0, x0) does not exist. But if we
consider the difference between any two solutions corresponding to two different
initial values x0 and y0, it follows from an easy computation that

ϕ(t, t0, x0)−ϕ(t, t0, y0) = (x0−y0)ea(t0−t).

Hence although individually each solution does not have a limit as t goes to +∞,
all solutions behave similarly in the sense that the difference between any two solu-
tions goes to zero when t goes to +∞, i.e., all solutions approach the same target as
time goes on. The goal is then to find a particular or special solution such that the
trajectory of this solution describes the path that any other solution should approach
during their evolution. It is easy to check that the function

A(t) :=
b(asin t− cos t)

a2+1
(3.13)

is such a particular solution to the IVP (3.11), that provides the long term informa-
tion on the future evolution of the system, in the sense that any other solution will
eventually approach it, i.e.,

lim
t→∞
|ϕ(t, t0, x0)−A(t)| = 0, for all t0, x0 ∈ R.

However, if we take limit with t fixed and the initial time t0 goes to −∞ in the
expression in (3.12), we obtain that

lim
t0→−∞

ϕ(t, t0, x0) = A(t), for all t, x0 ∈ R. (3.14)

The limit in (3.14) is said to be taken in the “pullback” sense, as we are solving a
series of IVPs with the same initial value x0 at retrospective initial times t0, and look
at the solution at a current fixed time t. The concepts of the forward and pullback
limit are illustrated in Figures 3.1 and 3.2 by solution trajectories of equation
(3.11).

In some occasions we can obtain special solutions to an underlying ODE that
attract any other solution in both the pullback and the forward sense such as in ex-
ample (3.11). But it is also possible that the attraction happens in either the pullback
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Fig. 3.1: Forward limit of solutions to
equation (3.11) with t0 fixed and t→
∞.

Fig. 3.2: Pullback limit of solutions to
equation (3.11) with t fixed and t0 →
−∞.

or the forward sense, but not both. Taking limit in the pullback sense may result
in obtaining special (particular) solutions of a nonautonomous ODE which are in-
dependent of the initial values x0. This fact is very important in the random cases,
because such stationary solutions can be seen as a natural extension of the concept
of equilibrium points in the random framework.

The set A(t) defined in (3.13) can be further shown to be invariant under the
dynamical system ϕ (or ϕ–invariant), i.e., ϕ(t, t0,A(t0)) = A(t) for every t ≥ t0. We
have therefore constructed a family of limiting objects A(t), which in addition is
a particular solution of the equation in (3.11). These objects exist in actual time
t rather than asymptotically in the future (t → ∞), and convey the effect of the
dissipation due to the term −ax. Note that A(t) is merely a time-dependent object
that attracts solutions starting from all the initial data x0 in the past. More gener-
ally, in the force-dissipative case, we can obtain, for all t, a collection of objects,
A = {A(t) : t ∈ R} = {A(t)}t∈R that depend on time t, by letting t0 → −∞. This col-
lection A is the so-called pullback attractor for processes. Each A(t) may be more
complicated than a point, and attracts particular subsets of initial data taken in the
asymptotic past. The rigorous definition of pullback attractors and forward attractors
will be given below, following the definition of pullback and forward attraction.

Recall that in the basic definition of attractor (Definition 2.6), the attractor for a
dynamical system on X attracts all bounded subsets of X. While for nonautonomous
dynamical systems, the candidates for nonautonomous attractors are families of sets
parameterized by time. Thus we will define the concept of attraction based on fam-
ilies of sets D = {D(t)}t∈R, instead of a single set (which is the special case where
D(t) ≡ D).

Definition 3.5. Let ϕ be a process on Rd. A family of setsA = {A(t)}t∈R is said to
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(i) pullback attract another familyD = {D(t)}t∈R if

lim
t0→−∞

dist(ϕ(t, t0,D(t0)),A(t)) = 0, for all t ∈ R;

(ii) forward attract another familyD = {D(t)}t∈R if

lim
t→∞

dist(ϕ(t, t0,D(t0)),A(t)) = 0 for all t0 ∈ R.

The pullback attraction is said to be uniform if

lim
t0→−∞

sup
t∈R

dist(ϕ(t, t0,D(t0)),A(t)) = 0, (3.15)

and the forward attraction is said to be uniform if

lim
t→∞

sup
t0∈R

dist(ϕ(t, t0,D(t0)),A(t)) = 0. (3.16)

Remark 3.3. In general the pullback and forward attraction are independent con-
cepts. However, when the attraction is uniform, then it is straightforward to prove
that both concepts are equivalent.

Observe that in the motivating example (3.11), the convergence of solutions onto
A(t) defined in (3.13) is both pullback and forward. To illustrate the difference be-
tween pullback and forward attractions, consider the following IVPs:

du
dt
= 2tu+1, u(t0) = u0, (3.17)

dv
dt
= −2tv+1, v(t0) = v0. (3.18)

whose solutions are given explicitly by

u(t; t0,u0) = u0et2−t20 + et2
� t

t0
e−s2

ds

v(t; t0, v0) = v0e−(t2−t20)+ e−t2
� t

t0
es2

ds.

It is clear that

u(t; t0,u0) −→ +∞ as t→ +∞,

u(t; t0,u0) −→ et2
� t

−∞
e−s2

ds as t0→−∞,

and hence u(·; ·, ·) possesses a limit in the pullback sense but not in the forward sense.
On the other hand,
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Fig. 3.3: Forward and pullback trajectories of Eqs. (3.17) and (3.18).
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v(t; t0, v0) −→ 0 as t→ +∞,
v(t; t0, v0) −→ +∞ as t0→−∞.

Hence v is convergent to 0 in the forward sense, but is not convergent in the pullback
sense (see Fig. 3.3).

Next we will define the concept of pullback and forward attractors. Notice that
the family of sets D in Definition 3.5 is the key to define attractors; different char-
acterizations of D will give different attractors. In the general abstract framework
for attractors, we should consider the attraction (by the attractor) of a universe (de-
noted byU) of nonautonomous sets, i.e., a collection of familiesD = {D(t)}t∈R that
satisfies some specific property. For example,U can be the collection of all families
D that satisfies

lim
t→+∞

e−t sup
d∈D(t)

|d| = 0.

However, all the applications in this chapter requires no more than the attraction
(by the attractor) of families of sets which are formed by the same bounded set for
all t, i.e.,D = {D(t) ≡ D0}t∈R, where D0 is a bounded set. Hence at this point we will
simply restrict our definition of attractors based on families of nonempty bounded
subsets of X,

D = {D(t) : t ∈ R}where D(t) is a bounded subset of X.

Later in Chapter 4 we will generalize the definition of attractors by using the con-
cept of universe.

Definition 3.6. A family of sets A = {A(t)}t∈R is said to be a (global) pullback at-
tractor for the process ϕ, if

(i) A(t) is compact for all t ∈ R,
(ii) ϕ(t, t0,A(t0)) = A(t) for all t ≥ t0,

(iii) A pullback attracts all families of bounded subsets of X, i.e.,

lim
t0→−∞

dist(ϕ(t, t0,D(t0)),A(t)) = 0 for any fixed t ∈ R.

The pullback attractor is said to be uniform if the attraction property is uniform in
time as established in (3.15).

Definition 3.7. A family of sets A = {A(t)}t∈R is said to be a (global) forward at-
tractor for the process ϕ, if

(i) A(t) is compact for all t ∈ R,
(ii) ϕ(t, t0,A(t0)) = A(t) for all t ≥ t0,

(iii) A forward attracts all families of bounded subsets of X, i.e.,

lim
t→∞

dist(ϕ(t, t0,D(t0)),A(t)) = 0 for any fixed t0 ∈ R.
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The forward attractor is said to be uniform if the attraction property is uniform in
time as established in (3.16).

Remark 3.4. When the attraction is uniform then pullback and forward attraction
are equivalent. However in general the forward limit defining a nonautonomous
forward attractor is different from the pullback limit. In fact, the forward limit is
taken asymptotically in the future whereas the pullback limit is taken asymptotically
in the past. Moreover, the limiting objects obtained forward in time do not have the
same dynamical meaning at current time as the limiting objects obtained pullback
in time. For a more complete discussion about differences between pullback and
forward attractions, and in particular how to construct forward attractors the reader
is referred to the papers [47, 50].

The concept of attractor is closely related to that of absorbing sets, which is
defined below.

Definition 3.8. A family B = {B(t)}t∈R of nonempty subsets of X is said to be (pull-
back) absorbing for the process ϕ if for each t ∈R and every familyD= {D(t) : t ∈R}
of nonempty bounded subsets of X, there exists TD(t) > 0 such that

ϕ(t, t0,D(t0)) ⊂ B(t) for all t0 ≤ t−TD(t).

The absorption is uniform if TD(t) does not depend on the time variable t.

The existence of compact absorbing sets for a nonautonomous dynamical system
is the key to obtain the existence of pullback attractors, as stated in the following
theorem due to Caraballo et al. (see [11] for more details).

Theorem 3.1. Suppose that the process ϕ(·, ·, ·) has a familyB= {B(t)}t∈R of nonempty
compact subsets of X which is pullback absorbing for ϕ(·, ·, ·). Then ϕ(·, ·, ·) has a
global pullback attractor A = {A(t) : t ∈ R}, whose component subsets are defined
by

A(t) = Λ(B, t) :=
�

s≤t



�

τ≤s
ϕ(t,τ,B(τ))


 , t ∈ R.

Moreover, A is minimal in the sense that if Ã = {Ã(t)}t∈R is a family of closed sets
such that limτ→−∞ dist(ϕ(t,τ,B(τ)), Ã(t)) = 0, then A(t) ⊂ Ã(t).

The pullback attractor given in Theorem 3.1 is minimal with respect to set inclu-
sion (see [29]). However it may not be unique in general (see [10]). For example,
consider the following nonautonomous ODE

dx(t)
dt
= (−α+max{t,0}) x(t), (3.19)

which generates a process by setting ϕ(t, t0, x0)= x(t; t0, x0),where x(·; t0, x0) denotes
the unique solution to equation (3.19) satisfying x(t0; t0, x0) = x0. Let a(t) ≤ 0 and
b(t)≥ 0 be any entire solutions to equation (3.19) defined for all t ∈R, then the family
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A = {A(t)}t∈R defined by A(t) = [a(t),b(t)] satisfies all the conditions in Definition
3.6, and thus is a global pullback attractor for the process ϕ.

Similar to the autonomous case, in order to guarantee the uniqueness of global
pullback attractors, we need to impose additional hypotheses on the attractor such as
assuming the family {A(t)}t∈R is uniformly bounded (i.e., there exists a bounded set
B ⊂ X such that A(t) ⊂ B for all t ∈ R). It is not difficult to check in example (3.19)
that the unique uniformly bounded attractor is given by A(t) = {0}, for all t ∈ R.

In fact, if we assume in addition in Theorem 3.1 that A is uniformly bounded,
i.e., ∪t∈RA(t) is bounded, which means that there exists a bounded set B ⊂ X such
that A(t) ⊂ B for all t ∈ R, thenA is the unique pullback attractor with all properties
defined in Definition 3.6. A sufficient condition to ensure the uniform bounded-
ness ofA is that the family of compact absorbing sets in Theorem 3.1 is uniformly
bounded. The existence and uniqueness of pullback attractors can be summarized in
the following theorem.

Theorem 3.2. Suppose that the process ϕ(·, ·, ·) possesses a uniformly bounded fam-
ily B = {B(t)}t∈R of nonempty compact subsets of X which is pullback absorbing
for ϕ(·, ·, ·). Then ϕ(·, ·, ·) has a unique global pullback attractor A = {A(t) : t ∈ R},
whose component subsets are defined by

A(t) = Λ(B, t) :=
�

s≤t



�

τ≤s
ϕ(t,τ,B(τ))


 , t ∈ R.

Remark 3.5. There are other conditions to ensure the uniqueness of the pullback
attractor, such as requiring the attractor to belong to a certain class of set valued
functions which are attracted by the attractor (see [23]).

Remark 3.6. If the family B in Theorem 3.1 and 3.2 is in addition ϕ-positively in-
variant, then the components of the pullback attractor A = {A(t) : t ∈ R} are deter-
mined by

A(t) =
�

t0≤t
ϕ (t, t0,B(t0)) for each t ∈ R.

A pullback attractor consists of entire solutions, i.e., functions ξ : R → R such
that ξ(t) = ϕ(t, t0,ξ(t0)) for all (t, t0) ∈R2

≥. In special cases it consists of a single entire
solution. We will next state a theorem to obtain a pullback attractor that consists of
a single entire solution in the finite dimensional space Rd. Before that we first define
the following property that is required in the theorem.

Definition 3.9. A nonautonomous dynamical system ϕ is said to satisfy a uniform
strictly contracting property if for each R > 0, there exist positive constants K and
α such that

|ϕ(t, t0, x0)−ϕ(t, t0, y0)|2 ≤ Ke−α(t−t0) · |x0−y0|2 (3.20)

for all (t, t0) ∈ R2
≥ and x0, y0 ∈ B(0;R), the closed ball in Rd centered at the origin

with radius R > 0.
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This uniform strictly contracting property along with the existence of a pullback
absorbing set ensure the existence of a global attractor that consists of singleton sets
(i.e., a single entire solution) in both the forward and pullback senses, as stated in
the following theorem.

Theorem 3.3. Suppose that a process ϕ on Rd is uniform strictly contracting on
a ϕ-positively invariant pullback absorbing family B = {B(t) : t ∈ R} of nonempty
compact subsets ofRd. Then the process ϕ has a unique global forward and pullback
attractorA = {A(t) : t ∈ R} with component sets consisting of singleton sets, i.e., A(t)
= {ξ∗(t)} for each t ∈ R, where ξ∗ is an entire solution of the process.

The proof of Theorem 3.3 is done by constructing an appropriate Cauchy sequence
which converges to a unique limit. The reader is referred to [48, 49] for more details
about the proof.

3.2.2 Nonautonomous attractors for skew product flows

Let (θ,ψ) be a nonautonomous dynamical system over the metric spaces P (a base
space or a parameter space) and X (the phase space) with corresponding metrics dP
and dX , respectively. Consider its associated skew product semiflow π :R+0 ×P×X→
P×X defined by

π(t, (p, x)) := (θt(p),ψ(t, p, x)).

Then as it was shown in Subsection 3.1.2, π is an autonomous semi-dynamical sys-
tem on the extended product space X = P× X. Consequently the theory of global
attractors for autonomous semi-dynamical systems in Chapter 2 can be directly ap-
plied here. In fact, a global attractor for π is a nonempty compact subsetA of X that
is π–invariant, i.e., π(t,A) =A for all t ≥ 0 and

lim
t→+∞

distX(π(t,D),A) = 0,

for each bounded subset D of X.
Comparing to the global attractor for processes, the global attractor for skew

product flows is valuable only if it provides us with some more specific information
on the dynamics of an underlying system on the phase space X, as this is the space
where the evolution of any dynamical system takes place. In fact, when P is compact
and θ–invariant, the global attractor A of the autonomous semi-dynamical systems
π can be rewritten in the form

A =
�

p∈P
{p}×A(p), (3.21)

where A(p) is a compact subset of X for each p ∈ P. More precisely, A(p) = {x ∈ X :
(p, x) ∈A}, i.e., A(p) is the projection of the global attractor A on its second com-
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ponent. Therefore, this family of subsets {A(p)}p∈P of the phase space X serves as a
good candidate to provide information on the dynamics of an underlying system.

In addition, observe that the invariance property of the global attractorA implies
that π(t,A) =A for all t ≥ 0. In fact, it follows directly from (3.21) that

A =
�

p̃∈P
{ p̃}×A(p̃) =

�

p∈P
{θt(p)}×ψ(t, p,A(p)) = π(t,A),

which implies that ψ(t, p,A(p)) = A(θt(p)) for all t ≥ 0 and p ∈ P. This confirms that
the family of sets {A(p)}p∈P of the phase space X can better describe the dynamics of
a system than the global attractor on the extended spaceX, sinceX also includes the
base (or parameter) space P as a component, which usually does not have a physical
meaning similar to the state space component. For these reasons, in addition to the
global attractor for skew product flows, we also want to define other types of attrac-
tors consisting of families of compact subsets of the phase space X, that are similar
to the forward and pullback attractors for processes.

Definition 3.10. Let π = (θ,ψ) be a skew product flow on the metric space P×X. A
pullback attractor for π is a nonautonomous setA = {A(p) ⊂ X}p∈P such that

(i) A(p) is a nonempty, compact set for every p ∈ P;
(ii) A is invariant for the cocycle, i.e., ψ(t, p,A(p)) = A(θt(p)) for all t ≥ 0 and

p ∈ P;
(iii) pullback attracts the bounded subsets of X, i.e.,

lim
t→∞

distX(ψ(t,θ−t(p),D),A(p)) = 0 (3.22)

holds for every nonempty bounded subset D of X and p ∈ P.

Definition 3.11. Let π = (θ,ψ) be a skew product flow on the metric space P×X. A
forward attractor for π is a nonautonomous setA = {A(p) ⊂ X}p∈P such that

(i) A(p) is a nonempty, compact set for every p ∈ P;
(ii) A is invariant for the cocycle, i.e., ψ(t, p,A(p)) = A(θt(p)) for all t ≥ 0 and

p ∈ P;
(iii) forward attracts the bounded subsets of X, i.e.,

lim
t→+∞

distX(ψ(t, p,D),A(θt(p))) = 0 (3.23)

holds for every nonempty bounded subset D of X and p ∈ P.

Remark 3.7. As in the case of attractors for processes, there is no clear relationship
between the existence of forward and pullback attractors for skew product flows; one
can exist while the other does not. See, for instance, Kloeden and Lorenz [47, 50]
for a more detailed discussion.

If we assume further that the limits taken in (3.22) and (3.23) are uniform, in the
sense that
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lim
t→+∞

sup
p∈P

distX(ψ(t,θ−t(p),D),A(p)) = 0 (pullback),

lim
t→+∞

sup
p∈P

distX(ψ(t, p,D),A(θt(p))) = 0 (forward),

then we obtain another type of attractor, called uniform pullback attractor and uni-
form forward attractor, respectively. Similar to the idea of equivalence between
uniform pullback and forward attractions for processes, when an attractor for the
skew product flow is uniform (either pullback or forward), it will be both uniform
pullback and uniform forward, so one can simply refer to it as a uniform attractor.
For more details regarding relationships among different types of nonautonomous
attractors, the reader is referred to [24] and [51].

We next illustrate how to obtain attractors for the skew product flow. Consider
again the system (3.11) which can be written as

dx
dt
= −ax+ p0(t), x(t0) = x0, (t, t0) ∈ R2

+, (3.24)

where p0(t) := bsin t. In order to set the problem in the skew product framework, we
need to define (1) the base (parameter) space P, (2) the driving dynamical system
θt, and (3) the cocycle ψ. To this end, we define P by

P = {p0(t+ ·) : 0 ≤ t ≤ 2π},

define θt : P→ P by
θt(p)(·) = p(t+ ·) for all p ∈ P,

and define ψ(t, p, x0) by the solution to the IVP (3.24), which can be calculated
explicitly to be

ψ(t, p, x0) = x0e−a(t−t0)+ e−at
� t

t0
eas p(s)ds. (3.25)

At this point to estimate the pullback limit, we need to obtain first the expression
for ψ(t,θ−t(p), x0) and then evaluate the expression at the limit of t→∞. By (3.25)
we obtain that

ψ(t,θ−t(p), x0) = x0e−a(t−t0)+ e−at
� t

t0
easθ−t(p)(s)ds

= x0e−a(t−t0)+ e−at
� t

t0
eas p(s− t)ds

= x0e−a(t−t0)+

� 0

t0−t
eaτp(τ)dτ. (3.26)

Taking the limit of (3.26) at t→∞ yields

lim
t→+∞

ψ(t,θ−t(p), x0) =
� 0

−∞
eas p(s)ds.
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Denote by A(p) =
� 0
−∞ eas p(s)ds, then fibers of the pullback attractor for the skew

product flow are given by A(p) for all p ∈ P. As a result, the component subsets of
the pullback attractor for system (3.24) is given by A(θt(p0)) which can be calculated
as follows.

A(θt p0) =
� 0

−∞
easθt(p0)(s)ds = b

� 0

−∞
eas sin(t+ s)ds =

b(asin t− cos t)
a2+1

.

Observe that the above pullback convergence is actually uniform. Hence the pull-
back attractor is uniform and consequently is also a uniform forward attractor, and
a uniform attractor. In addition, the skew product flow possesses a global attractor
given by

A =
�

p∈P
{p}×A(p).

Remark 3.8. As it can be seen in examples (3.11) and (3.24), the skew product for-
mulation appears to be more complicated and less straightforward (from calculation
point of view) than the process formulation, although it provides more information
on the dynamics in the phase space. It is because of this reason that we will adopt the
process formulation instead of the skew formulation of nonautonomous dynamical
systems for the applications later in this chapter.

Despite the difference between the process formulation and the skew product for-
mulation of nonautonomous dynamical systems, the existence of a global pullback
attractor for both formulations depends on some absorbing property. The absorbing
property for processes was established in Definition 3.8. The corresponding absorb-
ing property for skew product flows will be defined next.

Definition 3.12. Let (θ,ψ) be a skew product flow on the metric space P× X. A
nonempty compact subset B of X is said to be pullback absorbing if for each
p ∈ P and every bounded subset D of X, there exists a T = T (p,D) > 0 such that
ψ(t,θ−t(p),D) ⊂ B for all t ≥ T .

The following theorem states the existence of pullback attractors for skew prod-
uct flows.

Theorem 3.4. Let (θ,ψ) be a skew product flow on a metric space P× X. Assume
that there exists a compact pullback absorbing set B for ψ such that

ψ(t, p,B) ⊂ B, for all t ≥ 0, p ∈ P. (3.27)

Then there exists a unique pullback attractorA with fibers in B determined by

A(p) =
�

τ≥0

�

t≥τ
ψ(t,θ−t(p),B), for all p ∈ P.

Moreover, if P is a compact metric space then
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lim
t→+∞

sup
p∈P

dist


ψ(t, p,D),

�

p∈P
A(p)


 = 0

for any bounded subset D of X.

When we have a skew product flow generated by a system of nonautonomous
differential equations whose vector field depends explicitly on the parameter of the
base space, a certain type of Lipschitz condition can allow us to prove that the fibers
of the pullback attractor consist only of a singleton which, in addition, forms an
entire solution of the system. This result is established as follows.

Consider the following equation in Rd

dx
dt
= f (p, x), (3.28)

with a driving system θ on a compact metric space P. Assume that (3.28) generates
a skew product flow (θ,ψ).

Theorem 3.5. If the vector field f is uniformly dissipative, i. e., for any p ∈ P and
x ∈ Rd there exist positive constants K and L such that

�x, f (p, x)� ≤ K −L|x|2,

then the skew product flow generated by (3.28) possesses a pullback attractor. In
addition, if the vector field f satisfies the following uniform one-sided Lipschitz
condition: there exists a positive constant L such that:

�x1− x2, f (p, x1)− f (p, x2)� ≤ −L|x1− x2|2, for all x1, x2 ∈ Rd, p ∈ P,

then the skew product flow generated by (3.28) possesses a unique pullback attractor
A that consists of singleton fibers, i.e., A(p) = {a(p)} for each p ∈ P. Moreover, the
mapping t �→ a(θt p) is an entire solution to (3.28) for each p ∈ P.

We have already shown by several simple examples for the process formulation
that a pullback attractor does not need to be a forward attractor, and vice versa.
Now we will discuss the relationship between pullback and forward attractors for
the skew product flow generated by nonautonomous differential equations, based
on the concept of global attractors for the associated autonomous semi-dynamical
system. In particular, when the base (parameter) space P is compact, we have the
following result from [51] (Propositions 3.30 and 3.31) and [19] (Theorem 3.4).

Theorem 3.6. Let (θ,ψ) be a skew product flow over the metric spaces P and X,
where P is compact. Let {π(t) : t � 0} be the associated skew product semiflow on
P×X with a global attractor A. ThenA = {A(p)}p∈P with A(p) = {x ∈ X : (x, p) ∈A}
is the pullback attractor for (θ,ψ).

The following result offers a converse statement, but requires additionally some
uniformity condition.
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Theorem 3.7. Suppose that {A(p)}p∈P is the pullback attractor of the skew product
flow (θ,ψ), and denote by {π(t) : t � 0} the associated skew product semiflow. Assume
that {A(p)}p∈P is uniformly attracting, i.e., there exists a compact subset K ⊂ X such
that, for all B ⊂ X bounded,

lim
t→+∞

sup
p∈P

dist(ψ(t,θ−t(p),B),K) = 0,

and that
�

p∈P A(p) is precompact in X. Then the set A associated with {A(p)}p∈P,
given by

A =
�

p∈P
{p}×A(p), (3.29)

is the global attractor for the semigroup {π(t) : t � 0}.

It has been mentioned several times in this chapter that the pullback attraction
does not necessarily imply forward attraction, and the forward attraction does not
necessarily imply pullback attraction. As a result, the pullback attractor and forward
attractor do no necessarily imply each other (see [47, 50] for more details).

3.3 Applications

In this section we will study the nonautonomous counterparts of the chemostat,
SIR and Lorenz–84 models presented in Chapter 2.

3.3.1 Nonautonomous chemostat model

In the simple chemostat model (2.10) – (2.11), the availability of the nutrient and
its supply rate are assumed to be fixed. However, the availability of a nutrient in a
natural system usually depends on the nutrient consumption rate and input nutri-
ent concentration, which may lead to a nonautonomous dynamical system. Another
assumption in the chemostat model (2.10) – (2.11) is that the flow rate is assumed
to be fast enough that it does not allow growth on the cell walls. Yet wall growth
does occur when the washout rate is not fast enough and may cause problems in
bio-reactors. In this subsection we study the chemostat models with a variable nu-
trient supplying rate or a variable input nutrient concentration, with or without wall
growth.

Denote by x(t) and y(t) the concentrations of the nutrient and the microorganism
at any specific time t. When I and D are both constant, equations (2.10) – (2.11)
describe the limited resource-consumer dynamics. Often, the microorganisms grow
not only in the growth medium, but also along the walls of the container. This is
either due to the ability of the microorganisms to stick to the walls of the container or



54 3 Nonautonomous dynamical systems

the flow rate is not fast enough to wash these organisms out of the system. Naturally,
we can regard the consumer population y(t) as an aggregate of two categories of
populations, one in the growth medium, denoted by y1(t), and the other on the walls
of the container, denoted by y2(t). These individuals may switch their categories at
any time, i.e., the microorganisms on the walls may join those in the growth medium
or the biomass in the medium may prefer walls. Let r1 and r2 represent the rates at
which the species stick on to and shear off from the walls, respectively, then r1y1(t)
and r2y2(t) represent the corresponding terms of species changing the categories.
Assume that the nutrient is equally available to both of the categories, therefore it is
assumed that both categories consume the same amount of nutrient and at the same
rate.

When the flow rate is low, the organisms may die naturally before being washed
out and thus washout is no longer the only prime factor of death. Denote by ν(> 0)
the collective death rate coefficient of y(t) representing all the aforementioned fac-
tors such as diseases, aging, etc. On the other hand, when the flow rate is small,
the dead biomass is not sent out of the system immediately and is subject to bacte-
rial decomposition which in turn leads to regeneration of the nutrient. Expecting not
100% recycling of the dead material but only a fraction, we let constant b ∈ (0,1) de-
scribe the fraction of dead biomass that is recycled. Note that only y1(t) contributes
to the material recycling of the dead biomass in the medium. Moreover, since the
microorganisms on the wall are not washed out of the system, the term −Dy2(t) is
not included in the equation representing the growth of y2(t).

All the parameters are same as those of system (2.10) - (2.11), but 0 < c ≤ a
replaces a as the growth rate coefficient of the consumer species. When I and D vary
in time, and there are no time delays in the system, the following model describes
the dynamics of chemostats with variable inputs and wall growth.

dx
dt
= D(t) (I(t)− x(t))−aU(x(t)) (y1(t)+y2(t))+bνy1(t), (3.30)

dy1
dt
= − (ν+D(t))y1(t)+ cU(x(t))y1(t)− r1y1(t)+ r2y2(t), (3.31)

dy2
dt
= −νy2(t)+ cU(x(t))y2(t)+ r1y1(t)− r2y2(t). (3.32)

We assume here that the consumption function follows the Michaelis-Menten or
Holling type-II form:

U(x) =
x
λ+ x

, (3.33)

where λ> 0 is the half-saturation constant [76]. We will provide some results for two
scenarios: a) when the nutrient supply rate D is time dependent but not I; b) when
I depends on t but not D. The reader is referred to [15, 17, 18] for more details and
the complete proofs of the results stated in this section.
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Variable nutrient supply rate

First we present the existence and uniqueness of a nonnegative and bounded
solution, given a nonnegative initial data.

Lemma 3.1. Assume that D : R → [dm,dM], where 0 < dm < dM < ∞, is
continuous and I(t) = I for all t ∈ R. Suppose also that

�
x0, y1,0, y2,0

� ∈ R3
+ :=

{(x, y1, y2) ∈ R3 : x ≥ 0, y1 ≥ 0, y2 ≥ 0}. Then all solutions to system (3.30)–(3.32)
corresponding to initial data in R3

+ are

(i) nonnegative for all t > t0;
(ii) uniformly bounded in R3

+.

Moreover, the nonautonomous dynamical system on R3
+ generated by the system of

ODEs (3.30)–(3.32) has a pullback attractorA = {A(t) : t ∈ R} in R3
+.

Proof. (i) By continuity each solution has to take value 0 before it reaches a nega-
tive value. With x = 0 and y1 ≥ 0, y2 ≥0, the ODE for x(t) reduces to

x� = D(t)I+bνy1,

and thus x(t) is strictly increasing at x = 0. With y1 = 0 and x ≥ 0, y2 ≥ 0, the reduced
ODE for y1(t) is

y�1 = r2y2 ≥ 0,

thus y1(t) is non-decreasing at y1 = 0. Similarly, y2 is non-decreasing at y2 = 0.
Therefore, (x(t), y1(t), y2(t)) ∈ R3

+ for any t.
(ii) Define �X(t)�1 := x(t) + y1(t) + y2(t) for X(t) = (x(t), y1(t), y2(t)) ∈ R3

+. Then
�X(t)�1 ≤ S (t) ≤ a

c �X(t)�1, where

S (t) = x(t)+
a
c

(y1(t)+y2(t)).

The time derivative of S (t) along solutions to (3.30)–(3.32) satisfies

dS (t)
dt
= D(t) [I− x(t)]−

�a
c

(ν+D(t))−bν
�
y1(t)− a

c
νy2(t)

≤ dMI−dmx(t)−
�a

c
(ν+dm)−bν

�
y1(t)− a

c
νy2(t)

Note that a
c (ν+ dm)− bν > a

c dm since a ≥ c and 0 < b < 1. Let µ := min{dm,ν},
then

dS (t)
dt
≤ dMI−µS (t).

If S (t0) < dM I
µ , then S (t) ≤ dM I

µ for all t ≥ t0. On the other hand, if S (t0) ≥ dM I
µ , then

S (t) will be non-increasing for all t ≥ t0 and thus S (t) ≤ S (t0). These imply that
�X(t)�1 is bounded above, i.e.,

�X(t)�1 ≤max
�

dMI
µ
, x(t0)+

a
c

(y1(t0)+y2(t0))
�
,
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for all t ≥ t0.

It follows that for every ε > 0 the nonempty compact set

Bε :=
�

(x, y1, y2) ∈ R3
+ : x+

a
c

(y1+y2) ≤ dMI
µ
+ε

�

is positively invariant and absorbing in R3
+. The nonautonomous dynamical system

on R3
+ generated by the ODE system (3.30)–(3.32) thus has a pullback attractor A

= {A(t) : t ∈ R}, consisting of nonempty compact subsets of R3
+ that are contained in

Bε. �

Now we will obtain more information about the internal structure of the pullback
attractor of the nonautonomous dynamical system generated by the ODE system
(3.30)–(3.32). First we make the following change of variables:

α(t) =
y1(t)

y1(t)+y2(t)
, z(t) = y1(t)+y2(t). (3.34)

System (3.30)–(3.32) then becomes

dx(t)
dt
= D(t)(I− x(t))− ax(t)

λ+ x(t)
z(t)+bνα(t)z(t), (3.35)

dz(t)
dt
= −νz(t)−D(t)α(t)z(t)+

cx(t)
λ+ x(t)

z(t), (3.36)

dα(t)
dt
= −D(t)α(t)(1−α(t))− r1α(t)+ r2(1−α(t)). (3.37)

Note that the steady state solution (I,0,0) of system (3.30)–(3.32) has no counterpart
for system (3.35)–(3.37), since α is not defined for it. On the other hand, (I,0) is a
steady state solution for the subsystem (3.35)–(3.36).

As the dynamics of α(t) = α(t; t0,α0) is uncoupled from x(t) and z(t) and satis-
fies the Riccati equation (3.37), we can study the behavior of α(·) first, and use this
information later on when we analyze the asymptotic behavior for the other compo-
nents of the solution. For any positive y1 and y2 we have 0 < α(t) < 1 for all t. Note
that α�|α=0 = r2 > 0 and α�|α=1 = −r1 < 0, and thus the interval (0,1) is positively
invariant. This is the biologically relevant region.

When D is a constant, equation (3.37) has a unique asymptotically stable steady
state. We investigate now the case in which D varies in time (e.g., periodically or
almost periodically) in a bounded positive interval D(t) ∈ [dm,dM] for all t ∈ R. In
such a situation we need to consider the pullback attractor Aα = {Aα(t) : t ∈ R} in
the interval (0,1). Such an attractor exists since the unit interval (0,1) is positively
invariant (see e.g., [51]), so its component subsets are given by

Aα(t) =
�

t0<t
α (t, t0, [0,1]) , ∀t ∈ R.
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In addition, these component subsets have the form

Aα =
�
α∗l (t),α∗u(t)

�
,

where α∗l (t) and α∗u(t) are entire bounded solutions of the Riccati equation. All other
bounded entire solutions of the Riccati equation (3.32) lie between α∗l (t) and α∗u(t).

We can use differential inequalities to obtain bounds on these entire solutions.
Indeed, denoting

β∗ =
r2

r1+ r2
, and γ∗ =

r2

r1+ r2+dM
,

it is not difficult to prove that

A(t) =
�
α∗l (t),α∗u(t)

�
⊂ �γ∗,β∗� .

To investigate the case where the pullback attractor consists of a single entire
solution, we need to find conditions under which

α∗l (t) ≡ α∗u(t), t ∈ R.

Suppose that they are not equal and consider their difference ∆α(t) = α∗u(t)−α∗l (t).
Then

d∆α(t)
dt

= D(t)
�
α∗u(t)+α∗l (t)

�
∆α(t)− (D(t)+ r1+ r2)∆α(t)

≤ dM ·2α∗u(t)∆α(t)− (dm+ r1+ r2)∆α(t)

≤
�

2dMr2

r1+ r2
−dm− r1− r2

�
∆α(t).

Thus

0 ≤ ∆α(t) ≤ e
�

2dMr2
r1+r2

−dm−r1−r2

�
(t−t0)
∆α(t0)→ 0 as t→∞,

(as well as when t0→−∞) provided

2dMr2

r1+ r2
−dm− r1− r2 < 0, (3.38)

which is equivalent to 2dMr2 < dm(r1 + r2) + (r1 + r2)2. To conclude, the pullback
attractor for the Riccati ODE (3.37) consists of a singleton entire solution, α∗(t),
provided (3.38) holds. Moreover, α∗(t) is also asymptotically stable in the forward
sense.

Remark 3.9. Since dm < dM , this holds, e.g., if dM(r2 − r1) < (r1 + r2)2. Inequality
(3.38) essentially puts a restriction on the width of the interval in which D(t) can
take its values, unless r1 > r2.

Now we can analyze the global dynamics of x(t) and z(t).
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Suppose that α∗(t) is the unique entire solution in the pullback attractor of the
Riccati ODE (3.37). Then α∗(t) ∈ �γ∗,β∗� ⊂ (0,1) for all t ∈ R. Moreover, for t
sufficiently large, x(t) and z(t) components of system (3.35)–(3.37) satisfy

dx(t)
dt
= D(t)(I− x(t))− ax(t)

λ+ x(t)
z(t)+bνα∗(t)z(t), (3.39)

dz(t)
dt
= −νz(t)−D(t)α∗(t)z(t)+

cx(t)
λ+ x(t)

z(t). (3.40)

System (3.39)–(3.40) has a steady state equilibrium (I,0). Hence (I,0,α∗(t)) is a
nonautonomous “equilibrium” solution of the system (3.35)–(3.37).

Theorem 3.8. Assume that D : R→ [dm,dM], with 0 < dm < dM < ∞, is contin-
uous, a ≥ c, b ∈ (0,1) and ν > 0. Then, system (3.39) - (3.40) possesses a pullback
attractorA = {A(t) : t ∈ R} inside the nonnegative quadrant. Moreover,

(i) When
ν+dmγ

∗ > c,

the axial steady state solution (I,0) is asymptotically stable in the nonnegative
quadrant and the pullback attractor A has a singleton component subset A(t) =
{(I,0)} for all t ∈ R.

(ii) When

ν+dMβ
∗ <

cdmI
λ(a− c+ ν+dM −bνβ∗)+dmI

,

the pullback attractorA also contains points strictly inside the positive quadrant
in addition to the point {(I,0)}.

Variable nutrition input rate

Now we assume that the nutrition input value I can vary continuously with time
while the consumption rate D is a constant. Similarly we assume that I is bounded
with positive values, in particular, I(t) ∈ [im, iM] for all t ∈ R, where 0 < im ≤ iM <
∞.

When D is a constant, I varies in time and there are no delays in time, the system
(3.30) - (3.32) with U taking the form (3.33) becomes

dx(t)
dt
= D (I(t)− x(t))− ax(t)

λ+ x(t)
(y1+y2)+bνy1(t), (3.41)

dy1(t)
dt
= − (ν+D)y1(t)+

cx(t)
λ+ x(t)

y1(t)− r1y1(t)+ r2y2(t), (3.42)

dy2(t)
dt
= −νy2(t)+

cx(t)
λ+ x(t)

y2(t)+ r1y1(t)− r2y2(t). (3.43)
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Lemma 3.2. Suppose that
�
x0, y1,0, y2,0

� ∈R3
+. Then, all solutions to system (3.41)–

(3.43) with initial value (x(t0), y1(t0), y2(t0)) =
�
x0, y1,0, y2,0

�
are

(i) nonnegative for all t > t0;
(ii) uniformly bounded in R3

+.

Moreover, the nonautonomous dynamical system on R3
+ generated by the system of

ODES (3.41)–(3.43) has a pullback attractorA = {A(t) : t ∈ R} in R3
+.

Proof. Similar to the proof of Lemma 3.1. �

Using the new variables z(t) and α(t) defined as in (3.34), equations (3.41)–(3.43)
become

dx(t)
dt
= D(I(t)− x(t))− ax(t)

λ+ x(t)
z(t)+bνα(t)z(t), (3.44)

dz(t)
dt
= −νz(t)−Dα(t)z(t)+

cx(t)
λ+ x(t)

z(t), (3.45)

dα(t)
dt
= −Dα(t)(1−α(t))− r1α(t)+ r2(1−α(t)). (3.46)

Equation (3.46) has a unique steady state solution

α∗ =
D+ r1+ r2−

�
(D+ r1+ r2)2−4Dr2

2D

which is asymptotically stable on (0,1). Hence, when t→∞, replacing α(t) by α∗
in equations (3.44) and (3.45), we have

dx(t)
dt
= D(I(t)− x(t))− ax(t)

λ+ x(t)
z(t)+bνα∗z(t), (3.47)

dz(t)
dt
= −νz(t)−Dα∗z(t)+

cx(t)
λ+ x(t)

z(t). (3.48)

For more details of the long term dynamics of the solutions to (3.47) - (3.48) we
establish the following theorem.

Theorem 3.9. Assume that I : R→ [im, iM], with 0 < im < iM <∞, is continuous,
a ≥ c, b ∈ (0,1) and ν > 0. Then system (3.47) - (3.48) has a pullback attractor
A = {A(t) : t ∈ R} inside the nonnegative quadrant. Moreover,

(i) when ν+Dα∗ > c, the entire solution (w∗(t),0) is asymptotically stable in R2
+

where

w∗(t) = De−Dt
� t

−∞
I(s)eDsds,

and the pullback attractorA has a singleton component subset A(t) = {(w∗(t),0)}
for all t ∈ R,
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(ii) when

ν+Dα∗ <
cDiM

λ(a− c+ ν−bνα∗+D)+DiM

the pullback attractorA also contains points strictly inside the positive quadrant
in addition to the set {(w∗(t),0)}.

Over-yielding in nonautonomous chemostats

An interesting feature related to nonautonomous chemostats and also other
nonautonomous population models in general, is the so called over-yielding effect
produced by temporal variation of one or more parameters in the model. For a given
amount of nutrient that is fed in a chemostat during a given period of time T , one
can compare the biomass production over the time period taking into account the
way the amount of nutrient is distributed over the time period. It is said that there
exists a biomass over-yielding when a time varying input produces more biomass
than a constant input. To illustrate the effect of over-yielding in nonautonomous
chemostats, we consider the chemostat model with wall growth and variable inputs
(3.30)-(3.32), rewritten also with the new variables as (3.35)-(3.37).

When D(t) = D is constant and I(·) is a non-constant T -periodic function with

1
T

� t+T

t
I(s)ds = Ī ,

a periodic solution of system (3.47) - (3.48) has to fulfill the equations

0 = D(Ī− x̄)−a
1
T

� t+T

t
U(x(s))z(s)ds+bγα∗z̄ , (3.49)

0 = −(γ+Dα∗)z̄+ c
1
T

� t+T

t
U(x(s))z(s)ds , (3.50)

where x̄, z̄ denote the average values of the variables x(·), z(·) over the period T .
Combining equations (3.49) and (3.50), one obtains the relation

D(Ī− x̄) =
�
a(γ+Dα∗)

c
−bγα∗

�
z̄ . (3.51)

One can also write from equation (3.48)

0 =
1
T

� t+T

t

z�(s)
z(s)

ds = −(γ+Dα∗)+ c
1
T

� t+T

t
U(x(s))ds .

As the function U(·) as defined in (3.33) is concave and increasing, one deduces the
inequality x̄ > x∗, where x∗ stands for the steady state of the variable x(·) with the
constant input I(t) = Ī. Similarly, x∗ satisfies the equality cU(x∗) = γ+Dα∗. One
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can then compare the corresponding biomass variables, by using equation (3.51), to
obtain �

bγα∗ − a(γ+Dα∗)
c

�
(z̄− z∗) > 0 .

We conclude that an over-yielding occurs when the condition

bcγα∗ > a(γ+Dα∗) (3.52)

is fulfilled. One can see that the nutrient recycling of the dead biomass (bγ � 0) is
essential to obtain an over-yielding.

In the special case where the wall growth is neglected, our system (3.30) - (3.32)
reduces to the system of two ODEs

dx(t)
dt
= D(t) [I(t)− x(t)]− ax(t)

λ+ x(t)
y(t), (3.53)

dy(t)
dt
= −D(t)y(t)+

ax(t)
λ+ x(t)

y(t). (3.54)

Assume now that I(·) = I is constant and D(·) is a non-constant T -periodic func-
tion with

1
T

� t+T

t
D(s)ds = D̄ .

From equations (3.53)-(3.54) a periodic solution has to fulfill

I = x(t)+y(t) (3.55)

0 =
1
T

� t+T

t

y�(s)
y(s)

ds = −D̄+a
1
T

� t+T

t
U(x(s))ds. (3.56)

From equation (3.56), one obtains, as before, the inequality x̄ > x∗ and thus ȳ < y∗.
Consequently over-yielding never occurs.

Remark 3.10. For the chemostat model with wall growth and periodic D(·), it is
still unknown whether an over-yielding is possible or not, although numerical sim-
ulations tend to show that it is not. For more general time varying inputs (i.e. not
necessarily periodic), one can also study the influence of the variations of the inputs
on the characteristics of the pullback attractor as can be observed in our previous
theorems 3.8 and 3.9.

3.3.2 Nonautonomous SIR model

Here we release the assumption that the total population is a constant, i.e., N(t) =
S (t)+ I(t)+R(t) can vary (either deterministically or randomly) with time. This can
be achieved in various ways, but here we consider the simplest situation, where
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the reproduction spam is modeled by a time-dependent function, Λ(t). To this end,
consider a temporal forcing term given by a continuous function Λ(t) : R→ R with
positive bounded values

Λ(t) ∈ [Λ1,Λ2], ∀t ∈ R, 0 < Λ1 ≤ Λ2.

With this time-varying force, system (2.12) – (2.14) becomes

dS
dt
= Λ(t)− β

N
S I− νS , (3.57)

dI
dt
=
β

N
S I− νI−γI, (3.58)

dR
dt
= γI− νR. (3.59)

For simplicity write u(t) := (S (t), I(t),R(t)) and u0 = (S 0, I0,R0).

Lemma 3.3. Suppose that u0 = (S 0, I0,R0) ∈ R3
+. Then, the solution to system

(3.57)–(3.59) with initial value u(t0) = (S (t0), I(t0),R(t0)) = u0 is defined globally
in time and is nonnegative for all t ≥ t0.

Proof. The proof follows a similar argument to the proof of Lemma 3.1. �

Thanks to Lemma 3.3 we can define a process on R3
+ by

ϕ(t, t0,u0) = u(t; t0,u0), for u0 ∈ R3
+ and t ≥ t0, (3.60)

where u(t; t0,u0) is the solution to (3.57)–(3.59) corresponding to the initial value
u0. Next we prove that this process possesses a pullback attractor with respect to
bounded subsets.

Lemma 3.4. Assume 2ν >max{γ,1} and γ > β. Then, for any initial value u0 ∈ R3
+,

the corresponding solution to (3.57)–(3.59) satisfies

|u(t; t0,u0)|2 ≤ e−κ(t−t0)|u0|2+ e−κt
� t

−∞
eκsΛ2(s)ds

for all t ≥ t0, provided

κ =min{2ν−γ,2ν−1,2ν+γ−β} > 0.

Moreover, the family D0 = {D0(t) : t ∈ R} given by D0(t) = B(0,ρκ(t))∩R3
+, where

ρκ(t) is the nonnegative constant

ρ2
κ(t) = 1+ νe−κt

� t

−∞
eκsΛ2(s)ds,

is a pullback absorbing family for the process ϕ.
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Proof. First, multiplying (3.57) by S , (3.58) by I, (3.59) by R and summing them
up we obtain

d
dt
|u(t)|2 = 2Λ(t)S −2ν|u(t)|2+2γIR−2γI2−2β

�S 2I
N
− S I2

N

�
.

Since
2Λ(t)S ≤ Λ2(t)+S 2, 2γIR ≤ γI2+γR2,

on account that 0 ≤ S
N
,

I
N
≤ 1, we deduce

d
dt
|u(t)|2+ κ|u(t)|2 ≤ Λ2(t) ≤ Λ2

2.

Multiplying by eκt and integrating between t0 and t

eκt |u(t)|2 ≤ eκt0 |u0|+
� t

t0
eκsΛ2(s)ds

≤ eκt0 |u0|+
� t

−∞
eκsΛ2(s)ds.

Let D ⊂ R3
+ be bounded. Then there exists d > 0 such that |u0| ≤ d for all u0 ∈ D.

By Lemma 3.4 we deduce for t0 ≤ t and u0 ∈ D,

|ϕ(t, t0,u0)|2 ≤ e−κteκt0 |u0|2+ e−κt
� t

−∞
eκsΛ2(s)ds

≤ e−κteκt0d2+ e−κt
� t

−∞
eκsΛ2(s)ds.

Denoting T (t,D) = κ−1 log(eκtd−2), then

|ϕ(t, t0,u0)|2 ≤ 1+ e−κt
� t

−∞
eκsΛ2(s)ds,

for all t0 ≤ T (t,D) and all u0 ∈ D.
Consequently, the familyD0 is pullback absorbing for the process ϕ. �

These results enable us to conclude with the existence of the pullback attractor
for our nonautonomous SIR model.

Theorem 3.10. Under the assumptions in Lemma 3.4 the process ϕ previously de-
fined in R3

+ possesses a pullback attractorA.
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3.3.3 Nonautonomous Lorenz-84 model

In the simple Lorenz-84 model (2.17) – (2.19), the forcing terms F and G are
assumed to be constant. To make the model more realistic, we allow the forcing
terms to vary over time, resulting in the following nonautonomous Lorenz model:

dx
dt
= −ax−y2− z2+aF(t), (3.61)

dy
dt
= −y+ xy−bxz+G(t), (3.62)

dz
dt
= −z+bxy+ xz, (3.63)

The nonautonomous terms F(·) and G(·) can be periodic, almost periodic or even
belong to a type of functions more general than almost periodic, as in [46]. To
illustrate the theory of attractors for the process formalism, we will consider very
general nonautonomous terms. Indeed, we will assume that the mappings F,G :R �→
R are continuously differentiable and satisfy

� t

−∞
elsF2(s)ds < +∞,

� t

−∞
elsG2(s)ds < +∞, ∀t ∈ R,

where l := min{a,1}.
First we need to construct the process generated by (3.61)-(3.63). It is easy to

check that the right hand side of system (3.61)-(3.63) defines a vector field which is
continuously differentiable. Thus, the standard theory of existence and uniqueness
of local solutions for systems of ordinary differential equations guarantees the exis-
tence of local solutions for the initial value problems associated to (3.61)-(3.63). The
next theorem will ensure that the local solutions can be extended to a global one de-
fined for all t ∈R. For simplicity, denote by u(t) := (x(t), y(t),z(t)) and u0 = (x0, y0,z0)

Lemma 3.5. Assume that a > 0 and b ∈ R. Then for any initial condition u0 ∈ R3

and any initial time t0 ∈ R, the solution u(·) := u(·; t0,u0) of the IVP associated to
(3.61)-(3.63) satisfies

|u(t; t0,u0)|2 ≤ e−l(t−t0) |u0|2+ae−lt
� t

−∞
elsF2(s)ds+ e−lt

� t

−∞
elsG2(s)ds, (3.64)

for all t ≥ t0, where l := min{a,1}.

Proof. We immediately deduce that

d
dt
|u(t)|2 = −2(ax2+y2+ z2)+2axF(t)+2yG(t),

and, consequently,
d
dt
|u(t)|2+ l |u(t)|2 ≤ aF2(t)+G2(t). (3.65)
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Multiplying (3.65) by elt, we obtain that

d
dt

�
elt |u(t)|2

�
≤ aeltF2(t)+ eltG2(t).

Integrating between t0 and t

elt |u(t)|2 ≤ elt0 |u0|2+a
� t

t0
elsF2(s)ds+

� t

t0
elsG2(s)ds

≤ elt0 |u0|2+a
� t

−∞
elsF2(s)ds+

� t

−∞
elsG2(s)ds,

whence (3.64) follows. �

Thanks to Lemma 3.5 we can define a process on R3 by

ϕ(t, t0,u0) = u(t; t0,u0) for u0 ∈ R3 and t ≥ t0. (3.66)

Considering now the universe of fixed nonempty bounded subsets of R3, we will
be able to prove that there exists a pullback absorbing family for the process ϕ(·, ·, ·).

Theorem 3.11. Assume that a> 0 and b ∈R. Let F,G satisfy (4.69). Then, the family
D0 = {D0(t) : t ∈ R} defined by D0(t) = B (0,ρl(t)), where ρl(t) is given by

ρ2
l (t) = 1+ae−lt

� t

−∞
elsF2(s)ds+ e−lt

� t

−∞
elsG2(s)ds, ∀t ∈ R,

is a pullback absorbing family for the process ϕ(·, ·, ·). Furthermore, there exists the
pullback attractor for the process ϕ.

Proof. Let D ⊂ R3 be bounded. Then, there exists d > 0 such that |u0| ≤ d for all
u0 ∈ D. Thanks to Lemma 4.2, we deduce that for every t0 ≤ t and any u0 ∈ D,

|ϕ(t, t0,u0)|2 ≤ e−ltelt0 |u0|2+ae−lt
� t

−∞
elsF2(s)ds+ e−lt

� t

−∞
elsG2(s)ds

≤ e−ltelt0d2+ae−lt
� t

−∞
elsF2(s)ds+ e−lt

� t

−∞
elsG2(s)ds.

If we set T (t,D) := l−1 log(eltd−2), we have

|ϕ(t, t0,u0)|2 ≤ 1+ae−lt
� t

−∞
elsF2(s)ds+ e−lt

� t

−∞
elsG2(s)ds,

for all t0 ≤ T (t,D) and for all u0 ∈ D.
Consequently the family D0 = {D0(t) : t ∈ R} defined by D0(t) =

B (0,ρl(t)) is pullback absorbing for the process ϕ, and thanks to Theorem 3.1 the
process defined in (3.66) possesses a pullback attractor. �
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Remark 3.11. A more detailed analysis concerning the structure of the pullback at-
tractor for the nonautonomous Lorenz-84 model can be found in [1]. More precisely,
one can see how the properties of the nonautonomous terms (periodicity, almost pe-
riodicity or a property called more general than almost periodicity by Kloeden and
Rodrigues in [46]) in the model are inherited by the pullback attractor. Also an esti-
mate of the Hausdorff dimension of the pullback attractor is constructed in [1], for
which the skew product flow formalism has to be used. However, we do not include
more details in this work due to the page limit. The reader is referred to the paper
[1] for more details.



Chapter 4

Random dynamical systems

In this chapter we will introduce methods and techniques to analyze models with
stochasticity or randomness. In particular we will establish the framework of ran-
dom dynamical systems and introduce the concept of random attractors. To make
the content more accessible to readers from the applied sciences and engineering,
we start from the motivation of generalizing the concept of nonautonomous pullback
attractors to the stochastic context.

4.1 Noise is present almost everywhere

It has been well understood that noise, also referred to as randomness or stochas-
ticity, presents in most of the real world phenomena. Therefore modeling such phe-
nomena by systems of deterministic differential equations is merely a simplistic ap-
proximation. One question then arises naturally, does the approximating determin-
istic system behave similarly to or differently from the real system? Furthermore, if
we take into account the noisy disturbance and model the phenomena by systems
of stochastic differential equations or random differential equations, then what are
the effects induced by noise in comparison with the corresponding deterministic
approximations?

Another question of great interest and importance is the type of stochastic pro-
cesses that best describe the noise. There are many different choices of the noise
suitable for different applications, such as Brownian motion, fractional Brownian
motion, Poisson noise, Lévy noise, etc. On the other hand, there are different ways
to include the noise term, e.g., as an additional term to a deterministic system, in
the Itô or the Stratonovich sense, or as random parameters or functions of stochastic
processes. It is worth mentioning that different types of noise or different ways of
including the noise may yield different results while analyzing the long-time behav-
ior of the system. In this work we will not justify which is the most suitable type of
noise to model a certain phenomenon. Instead, we will illustrate, by using simple
examples, different results produced by the inclusion of different types of noise.

67
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Due to the limitation of the length of this book, it is impossible even just to
analyze existence, uniqueness and stability of solutions for all possible inclusion
of different noises. Here we will develop a set of theories that require a minimum
amount of knowledge on stochastic differential equations, and present the most basic
and necessary results only. The best candidate for this purpose, no doubt, is the
theory of random attractors which is a natural though nontrivial generalization of
skew product flows introduced in Chapter 3.

It is worth mentioning that the theories of pullback attractors for nonautonomous
and random dynamical systems were originally developed in the opposite way of
what is organized in this work. The first studies on pullback attractors were done in
the stochastic context at the beginning of the 90’s, where the attractor was termed as
“random” [28, 29, 72]. But it was only around the end of that decade when the first
papers containing the concept of pullback attractors appeared published ([22, 45]).
Nevertheless, with both concepts available today, introducing random attractors af-
ter pullback attractors is more logical and more straightforward for the reader.

In the rest of this Chapter we will first introduce the basic tools for the analysis
of random dynamical systems and then apply them to random counterparts of the
systems discussed in Chapters 2 and 3. We will also discuss briefly an interesting
topic on the effects produced by the noise in stabilizing or destabilizing deterministic
systems.

4.2 Formulation of Random Dynamical System and Random

Attractor

When the time-dependent forcing is random, the pullback attractor introduced in
Chapter 3 then becomes a random pullback attractor or random attractor for short.
The framework introduced in Section 3.2 allows us to show that where the parameter
space is a probability space P =Ω, for almost all realizations ω ∈Ω, the evolution in
the state space X of a stochastic system from time t0 < t to time t can be described by
a two-parameter family of transformations ϕ(t, t0,ω). It is then natural to adopt the
pullback approach described in Section 3.2 in an ω−parametrized version, to obtain
the analog of a pullback attractor in the stochastic context. Such a generalization,
however, needs additional characterizations, as the resulting object

�
t∈R A(t,ω) does

not exhibit any relation between different realizations ω. For example, from an ex-
perimentalist point of view, for an experiment to be repeatable, there has to be a
reasonable description for its random aspects. These random aspects may change in
time, and thus the noise has to be modeled as a time-dependent stochastic process
with certain known properties.

Representing mathematically such a stochastic process starts with a probability
space (Ω,F ,P), whereF is aσ−algebra of measurable subsets ofΩ, called “events”,
and P is the probability measure. To track the noise effect by time, we need to
connect each realization, i.e., each state ω of the random environment at time t = 0
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with its state after a time of t has elapsed. Denoting this connection by θtω and
setting θ0ω = ω establishes a mapping θt :Ω→Ω for all times t. As a result, instead
of describing a random ordinary differential equation (RODE) as

d f
dt
= f (t,ω, x), (4.1)

it is more accurate to consider

d f
dt
= f (θtω, x). (4.2)

In fact, equation (4.1) is a simple differential equation depending on only one ran-
dom parameter ω at all time, while (4.2) takes into account the time evolution of
the random parameter as well. Moreover, as will be shown later in this chapter,
RODEs of the form (4.2) also arise from a suitable change of variables in particular
stochastic differential equations.

In this chapter we will consider two types of noise that have been widely used in
engineering and the applied sciences: the white noise and the real noise. When the
random aspect has no memory of the past, is not correlated with itself, and at each
time the probability of obtaining a specific value x ∈ R is the same as obtaining −x,
it can be described by the white noise, commonly denoted as Wt. White noise has
been widely used in engineering applications, where the notation refers to a signal
(or process), named in analogy to white light, with equal energy over all frequency
bands. When the random aspect is investigated in a pathwise sense instead of sta-
tistically, it can be described by the real noise, commonly expressed as a function
of the flow θtω, e.g., D(θtω). The use of real noise is well justified for many appli-
cations in the applied sciences such as biology and ecology, when population (must
be non-negative) dynamics are studied.

The consideration of the white noise yields systems of stochastic differential
equations (SDEs), while the consideration of the real noise yields systems of ran-
dom differential equations (RDEs). In some cases where the white noise has a spe-
cial structure, SDEs could be transformed into RDEs by suitable change of vari-
ables. In this chapter we will focus on the RDEs and SDEs whose solutions gener-
ate a random dynamical system (RDS). Roughly speaking, a RDS is essentially a
nonautonomous dynamical system formulated as a skew product flow with the base
space Ω being a probability space rather than a metric space. The driving system,
θ = (θt)t∈R on Ω is now a dynamical system satisfying some measurability instead
of continuity conditions in the base space variables.

In practice, the mapping (t,ω) �→ θtω is required to be measurable, and to satisfy
the one-parameter group property θt+τ = θt ◦ θτ for any t and τ, along with θ0 = IdΩ.
Such requirements lead to a time-dependent family θ = {θt}t∈R of invertible trans-
formations of Ω that keeps track of the noise. Furthermore, a stationary condition
required such that the statistics of the external noise are invariant under θt. Mathe-
matically, this means that the probability measure P is preserved by θt, i.e., θtP = P.
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In summary these properties of θt result in a driving dynamical system defined as
follows.

Definition 4.1. Let (Ω,F ,P) be a probability space and θ = (θt)t∈R be a flow on Ω
which is defined as a mapping θ : R×Ω→ Ω satisfying

(i) θ0ω = ω for all ω ∈ Ω;
(ii) θt+τω = θt ◦ θτω for all t,τ ∈ T.
(iii) the mapping (t,ω) �→ θtω is (B(R)×F ,F )-measurable and θtP= P for all t ∈R.

Then the quadruple (Ω,F ,P,θ) is called a driving dynamical system.

With the definition of driving dynamical system, we are ready to introduce the
definition of RDS.

Definition 4.2. Let (Ω,F ,P) be a probability space and let X = Rd. A random dy-
namical system (θ,ψ) on X consists of a driving dynamical system θ = {θt}t∈R acting
on the probability space (Ω,F ,P) and a cocycle mapping ψ : R+0 ×Ω×X→ X satis-
fying

(i) initial condition: ψ(0,ω, x) = x for all ω ∈ Ω and x ∈ X,
(ii) cocycle property: ψ(t+ s,ω, x) = ψ(t,θsω,ψ(s,ω, x)) for all t, s ∈ R+0 ,ω ∈ Ω and

x ∈ X.
(iii) measurability: (t,ω, x) �→ ψ(t,ω, x) is measurable,
(iv) continuity: x �→ ψ(t,ω, x) is continuous for all (t,ω) ∈ R×Ω.

Remark 4.1. In the above definition we assume X = Rd because we are mainly in-
terested in RDS on finite dimensional spaces in this book, but in general X could be
any metric space.

To make latter presentation more accessible for a wider audience, we first con-
sider the canonical representation of the driving system θ on the probability space
Ω that is based on Wiener process. Recall that an m-dimensional two-sided Wiener
process is a stochastic process, i.e., a mapping W·(·) : R×Ω→ Rm satisfying the
following properties:

(i) W0(ω) = 0 for all ω ∈ Ω.
(ii) Wt −Ws is a Gaussian random variable with zero mean value and variance t− s,

for all t ≥ s,
(iii) W possesses independent increments, i.e., if s1 < t1 ≤ s2 < t2 · · · sk < tk then Wt1 −

Ws1 ,Wt2 −Ws2 , · · · ,Wtk −Wsk are independent random variables.
(iv) W has continuous paths with probability one, i.e. for almost all ω ∈ Ω, the map-

ping t ∈ R �→Wt(ω) is continuous.

Alternatively, we can define the two-sided Wiener process as two independent
Wiener processes pasted together Wt and W−t for t ≥ 0.

When a RDS is generated by an Itô stochastic differential equation driven by
an m-dimensional two-sided Wiener process Wt defined for t ∈ R, then the prob-
ability space can be identified with the canonical space of continuous mappings
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Ω = C0(R,Rm), i.e., every event ω ∈ Ω is a continuous functions ω : R→ Rm such
that ω(0) = 0 and θ is defined by the “Wiener shift”

θtω(·) = ω(t+ ·)−ω(t).

Moreover, we can identify Wt(ω) = ω(t) for every ω ∈ Ω. Some other examples of
driving systems and RDS can be found in Arnold [3].

The definition of attractor for an RDS requires the definition of random sets.

Definition 4.3. Let (Ω,F ,P) be a probability space. A random set C on X = Rd is
a measurable subset of X ×Ω with respect to the product σ-algebra of the Borel
σ-algebra of X and F .

A random set can be regarded as a family of sets parametrized by the random
parameter ω and satisfies some measurability property. More precisely, a random
set C can be identified by the family of its ω-fibers C(ω), defined by

C(ω) = {x ∈ X : (x,ω) ∈C}, ω ∈ Ω.

When a random set C ⊂ X×Ω has closed fibers, it is said to be a closed random set
if and only if for every x ∈ X the mapping

ω ∈ Ω→ d(x,C(ω)) ∈ [0,+∞)

is measurable (see Castaing and Valadier [21, Chapter 2]). Similarly, when the fibers
of C are compact, C is said to be a compact random set. On the other hand, an open
random set is a set U ⊂ X×Ω such that its complementary set Uc = (X×Ω) \U is a
closed random set.

Definition 4.4. A bounded random set K(ω) ⊂ X is said to be tempered with respect
to (θt)t∈R if for a.e. ω ∈ Ω,

lim
t→∞

e−βt sup
x∈K(θ−tω)

�x�X = 0, for all β > 0;

a random variable ω �→ r(ω) ∈ R is said to be tempered with respect to (θt)t∈R if for
a.e. ω ∈ Ω,

lim
t→∞

e−βt sup
t∈R
|r(θ−tω)| = 0, for all β > 0.

Now we can define the forward and pullback random attractors based on the concept
similar to skew product flows. Only the basic contents needed for the applications
later this chapter are presented here. For more details the reader is referred to the
recent survey by Crauel and Kloeden [31].

Definition 4.5. Let (θ,ψ) be an RDS on X and let B be a family of random sets. A
compact random setA ⊂ X×Ω is said to be a random pullback attractor for B if

(i) it is strictly invariant, i.e., ψ(t,ω,A(ω)) =A(θtω) for every t ≥ 0, P-a.s.
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(ii) it attracts all the sets of the universe B in the pullback sense (i.e.A is a pullback
attracting set for B):

lim
t→+∞

dist(ψ(t,θ−tω,B(θ−tω)),A(ω)) = 0, P− a.s., for every B ∈ B.

The pullback invariance of the random attractor is illustrated in Figure 4.1.

Fig. 4.1: Pullback invariance of the random attractor and pullback attraction of ran-
dom sets.

It is said that the random setA ⊂ X×Ω is a random forward attractor for B if the
convergence in (ii) is forward, i.e.,

lim
t→+∞

dist(ψ(t,ω,B(ω)),A(θtω) = 0, P−a.s., ∀B ∈ B.

Similar to deterministic nonautonomous systems, both forward and pullback ran-
dom attractors can be used to study the long term behavior of a random dynamical
system. But there are surprising differences between them and technical complica-
tions in studying the differences, as randomness always allows the possibility of
exceptional null sets. However, attractors of RDS have much stronger uniqueness
properties than those of general nonautonomous systems. For more details on RDS
that are not covered in this book, the reader is referred to the monograph by Arnold
[3].

Remark 4.2. As in the deterministic nonautonomous framework, there are examples
of pullback attractors of RDS which are not forward attractors and vice versa. How-
ever, the construction of such an example needs more sophisticated calculations and
techniques than in the deterministic case.
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Similar to the theory of nonautonomous pullback attractors, the existence of a
random attractor relies on the existence of a pullback absorbing set, which can be
defined following the same manner as the definition of pullback absorbing sets for
a cocycle (see Definition 3.8).

Definition 4.6. A random set K ∈B is said to be pullback absorbing for the universe
B if for every B ∈ B and ω ∈ Ω, there exists T (B,ω) > 0 such that

ψ(t,θ−t(ω),B(θ−t(ω))) ⊂ K(ω), for all t ≥ T (B,ω).

In a general phase space, an absorbing compact set is clearly an attracting compact
set while the opposite is not necessarily true. However, for the special space X = Rd

considered in all of the applications in this book, a compact attracting set is also
a compact absorbing set. In fact, the closure of an ε-neighborhood of a compact
attracting set, is absorbing and compact.

Now we are ready to establish a necessary and sufficient condition ensuring the
existence of random pullback attractor.

Theorem 4.1. (Existence of random attractor: necessary & sufficient condition) Let
(θ,ψ) be an RDS on X and let B be a family of random sets. Then, there exists a
random pullback attractor A for B if and only if there exists a compact random
set K which is attracting for B. Furthermore, there exists a unique minimal random
pullback attractorAB for B.

The above theorem presents an elegant result, however from the application point
of view, it is more effective to have a sufficient condition which ensures the existence
of random attractors, stated as follows.

Theorem 4.2. (Existence of random attractor: sufficient condition) Let (θ,ψ) be an
RDS on X and let B be a family of random sets. Assume that there exists a compact
random set K which is absorbing for B. Then, there exists a random pullback at-
tractor A for B. Moreover, this is the unique minimal random pullback attractor AB
for B.

Analogous results ensuring the existence of a random forward attractor are still
not available up to date. However, it is possible to develop a different theory in
which a certain type of pullback attractor is also forward attractor, and vice versa.
Thanks to the θt-invariance of the probability measure P, for any ε > 0

P{ω ∈ Ω : dist((ψ(t,θ−t(ω),B(θ−t(ω))),A(ω) ≥ ε}
= P{ω ∈ Ω : dist((ψ(t,ω,B(ω)),A(θtω) ≥ ε}.

Since P–almost sure convergence implies convergence in probability, then a random
pullback attractor also converges forward, but only in the weaker sense of conver-
gence in probability. The same argument states that a random forward attractor is
also a pullback attractor, but only in probability. This gives rise to a new type of
random attractors which are also forward attractors and are termed as “attractors in
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probability” or “weak attractors”. The reader is referred to [5] for more details on
this topic.

The random attractor, while exists, is closely related to the universe B of random
sets to be attracted. For this reason, one RDS can have different pullback random
attractors, each of which associated to a different universe. It is then interesting to
discover if there is any relationship among these attractors. One interesting result
along this line can be found in [26], stated as follows.

Theorem 4.3. Let (θ,ψ) be an RDS on X and let B be the family of all compact
deterministic subsets of X (i.e., if D ∈ B then D(ω) = D0, which is a compact set,
for all ω ∈ Ω). Assume that there exists a compact deterministic set K which is
attracting for B. Then, there exists a random pullback attractor A for B, and this
attractor is unique in the sense that if Ã is a random pullback attractor for every
compact determinist set, then A = Ã, P-a.s. Furthermore, every random compact,
invariant set is a subset ofA, P-almost surely.

As an immediate consequence we deduce that ifB is an arbitrary universe of random
sets for which an RDS (θ,ψ) possesses a random attractor AB, then as this random
set is invariant, we have thatAB ⊂A, P-a.s. Futhermore, if the universe B contains
every compact deterministic set, thenAB =A, P-a.s.

An interesting point to be highlighted here is that the large class of random at-
tractors which can exist associated to different universes can be reduced to just one
unique attractor. In summary, if an RDS possesses an attractor for the universe of
compact deterministic sets, then for any other universe B of random sets there are
only three possibilities:

(a) There exists no random pullback attractor for the universe B.
(b) There exists a random pullback attractor AB for the universe B and is unique,

thenAB =A, P-a.s. (when B contains the compact deterministic sets)
(c) There exists a random pullback attractorAB for the universe B but is not unique,

thenAB ⊂A, P-a.s.

4.2.1 Some properties of the random attractor

In this section we will discuss some important properties of the random pullback
attractor for an RDS (θ,ψ) on the phase space X. First of all, the random attractor
associated to the universe of compact deterministic subsets of X will be called the
global random attractor in what follows and this is the largest random pullback
attractor that an RDS may have, at light of the arguments stated in the previous
subsection.

Recall first the definition of ω-limit set of a random set B, analogous to the ω-
limit set defined in the nonautonomous framework, is given by

Γ(B,ω) =
�

T≥0

�

t≥T
ψ(t,θ−t(ω),B(θ−t(ω)). (4.3)
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The set defined by (4.3) is also characterized as the set of points x ∈ X such that
there exists sequences tn→ +∞, bn ∈ B(θ−tn (ω)), n ∈ N such that

x = lim
n→∞
ψ(tn,θ−tn (ω),bn).

The ω−limit set Γ(B,ω) define in (4.3) is always forward invariant, but not
strictly invariant in general. A particular case that Γ(B,ω) is also strict invariant
happens when B is attracted by some compact random set. We next elaborate some
properties of the structure of the global random attractor. Unfortunately, it is im-
possible to make the following contents less abstract. But to provide necessary in-
formation to the readers who are keen to get a deeper understanding of the global
random attractor, we still include the most typical results whose proofs can be found
in Crauel [26, 27]. Note skipping the following results will not affect the understand-
ing of the applications to be studied later.

Theorem 4.4. Let (θ,ψ) be an RDS on the phase space X, and assume that there
exists the global random attractor ω �→A(ω). Then,

(i) A is measurable with respect to the past of ψ, i.e., for every x ∈ X, the mapping
ω �→ dist(x,A(ω)) is measurable with respect to the σ-algebra

F − = σ{ψ(s,θ−t(ω), x) : x ∈ X,0 ≤ s ≤ t} ⊂ F .

(ii) Γ(B,ω) ⊂A(ω), P-a.s., for every random set B attracted byA, in particular, for
every compact deterministic set B.

(iii) A(ω) = ∪Γ(K,ω), where the union is taken over all compact deterministic sub-
sets K ⊂ X.

(v) the global random attractor is connected P-a.s.
(vi) if θ is ergodic (see e.g. Arnold [3]) then A(ω) = Γ(K,ω) for every compact de-

terministic K ⊂ X satisfying that P{A(ω) ⊂ K} > 0.

In order to characterize a random attractor for a universe B, the following result
was established in Crauel [27].

Theorem 4.5. Let (θ,ψ) be an RDS on the phase space X, and assume that there
exists a random pullback attractorA(ω) for the universe B. Then

(i) the omega limit set Γ(B,ω) of any B ∈B is a subset of the attractor, i.e. Γ(B,ω) ⊂
A(ω).

(ii) the minimal attractor for B is given by

AB(ω) =
�

B∈B
Γ(B,ω).

Furthermore, when the RDS satisfies a strictly uniformly contracting property, i.e.,
there exists K > 0 such that

�ψ(t,ω, x0)−ψ(t,ω, y0)�X ≤ e−Kt �x0−y0�X
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for all t ≥ 0, ω ∈ Ω and x0, y0 ∈ X, then the random attractor consists of singleton
subsetsA(ω) = {A(ω)}.

4.2.2 Generation of random dynamical systems

The theory of random dynamical systems allows us to analyze the asymptotic
behavior of stochastic models based on every realization of the system rather than
statistically in the mean or mean square sense. Hence the main concern for applying
the theory of RDS to a stochastic model is to know when the stochastic model gen-
erates an RDS. To make the presentation less abstract, we will develop the theory in
X = Rd, which is sufficient for the study of stochastic models formed by systems of
differential equations, either random differential equations or stochastic differential
equations. The underlying theory, indeed, could be carried out in a more general
metric space if necessary.

Two types of stochastic models will be discussed. In the first type of models, the
noise appears as random parameters expressed as continuous, temporally varying,
and bounded functions of the flow θtω. The resulting systems are random differen-
tial equations in the form of (4.2), that have been used in biological and ecological
applications. In the second type of models, the noise is included as a random pertur-
bation to the deterministic models, expressed by terms involving white noise. The
resulting systems are then Itô or Stratonovich stochastic differential equations which
have been widely used in engineering applications. In this book we mainly focus on
stochastic differential equations with special structured white noise, e.g., additive or
multiplicative white noise, that can be transformed into random differential equa-
tions with random parameters in the form of (4.2). More precisely, we will study
stochastic models that can be described directly or indirectly by the formulation

dx(t)
dt
= f (θtω, x), (4.4)

where θ = {θt}t∈R is a measurable and measure-preserving dynamical system acting
on the probability space (Ω,F ,P).

The generation of an RDS by the solutions to an IVP associated to (4.4) can be
carried out as follows. Denote by x(t; t0,ω, x0) the global solution to the IVP

dx(t)
dt
= f (θtω, x), x(t0) = x0

for t ≥ t0, x0 ∈ X, and define

ψ(t,ω, x0) := x(t;0,ω, x0). (4.5)

Then, it is straightforward to check that

ψ(t− t0,θt0ω, x0) = x(t− t0;0,θt0ω, x0) = x(t; t0,ω, x0),
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and thus
ψ(t,θt0ω, x0) = x(t+ t0; t0,ω, x0).

Observe that in the cocycle expression ψ(t,θt0ω, x0) the variable t represents the
elapsed time since the initial time t0. Assuming that the vector field f satisfies suit-
able conditions to ensure the existence and uniqueness of a global solution, the
definition for ψ in (4.5) allows us to verify that all conditions in Definition 4.2 are
fulfilled, and therefore an RDS has been successfully generated.

The next goal is to show how a stochastic differential equation can be trans-
formed into a random differential equation of the type (4.2). Moreover, we want to
show that the RDS generated by the solution to the random differential equation
after transformation is homeomorphic to the RDS generated by the solution to the
stochastic equation before transformation. To this end, a brief review of the required
knowledge on stochastic differential equations is provided below.

4.2.3 A brief introduction to stochastic differential equations

Let (Wt)t∈R be a standard Brownian motion or one dimensional Wiener process
defined on the (canonical, if necessary) probability space (Ω,F ,P). A traditional
way to model random perturbation to a deterministic system

dx(t)
dt
= f (t, x), t, x ∈ R, (4.6)

is to include a white noise term in the system and consider the stochastic system

dx
dt
= f (t, x)+σ(t, x)

dWt

dt
, t, x ∈ R. (4.7)

Note that the derivative of the Brownian motion, often referred to as the white noise,
is only a formal notation (as Wt is nowhere differentiable) although it is commonly
used in engineering applications. Equation (4.7) can be presented more rigorously
as

dx(t) = f (t, x)dt+σ(t, x)dWt, t, x ∈ R.
A more general inclusion of the noise, e.g.,

dx
dt
= f
�
t, x,

dWt

dt

�
, t, x ∈ R,

can be approximated by a system in the form (4.7) by using the Taylor formula.
The differential equation (4.7) is only meaningful while being written as the fol-

lowing integral equation

x(t) = x(0)+
� t

0
f (s, x(s))ds+

� t

0
σ(s, x(s))dWs, t ≥ 0. (4.8)
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The first integral in (4.8) is a regular deterministic integral and exists, for instance,
when f is continuous. But the second integral in (4.8), which is a stochastic integral
with respect to the Wiener process, is completely different. Recall that for every
fixed ω ∈ Ω, the path t ∈ R �→Wt(ω) is continuous, but is not of bounded variation
on any time interval [t1, t2]. Thus although every sample path of Wt is continuous,
it cannot be used as an integrator function to define any Riemann-Stieltjes integral
with respect to the Wiener process. In fact a stochastic integral has to be defined as
a limit in L2(Ω,F ,P;R). Detailed construction of stochastic integrals can be found
in many references in probability, e.g., [2, 64]; in what follows we only discuss the
difficulties in defining the stochastic integrals. These difficulties make the random
dynamical system approach, while applicable, a powerful alternative to the proba-
bilistic approaches which rely heavily on stochastic integrals.

For simplicity of exposition, consider the integral
� T

0 Ws dWs and suppose that it
can be calculated by using Riemann-Stieltjes sums. If this integral made sense, and
could be defined pathwise, then, at least formally its value should be

� T

0
Ws dWs =

1
2

�
W2

T −W2
0

�
=

1
2

W2
T . (4.9)

Choose a sequence of partitions (∆n) of [0,T ],

∆n = {0 = tn
0 < tn

1 < ... < tn
n = T },

such that
δn := max

0≤k≤n−1
(tn

k+1− tn
k )

n→∞−→ 0.

Let a ∈ [0,1], denote by τnk := atn
k + (1− a)tn

k−1, and consider the corresponding
Riemann-Stieltjes sums

S n =

n�

k=1

Wτnk (Wtnk
−Wtnk−1

). (4.10)

Then, by using the decomposition

S n =
W2

T
2
− 1

2

n�

k=1

(Wtnk
−Wtnk−1

)2+

n�

k=1

(Wτnk −Wtnk−1
)2

+

n�

k=1

(Wtnk
−Wτnk )(Wτnk −Wtnk−1

),

it is not difficult to check that

lim
n→∞

S n =
W2

T
2
− (1−2a)T

2
in L2(Ω,F ,P;R),

or equivalently
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lim
n→∞

�

Ω

�������
S n−



W2
T

2
− (1−2a)T

2




�������

2

dP(ω) = 0.

Therefore defining
� T

0 Ws dWs as a limit in mean square is dependent on the choice
of the intermediate point τnk , and, consequently, dependent on the value of a.

For each a ∈ [0,1], denote by Ia(t) the stochastic integral induced by the
“Riemann-Stieltjes sums” (4.10) corresponding to τnk := atn

k + (1− a)tn
k−1. Then we

have

Ia(t) =
W2

t
2
− (1−2a)t

2
,

which achieves different values for different choice of a. This property also holds
true for a general integrand f (t,Wt) instead of just Wt. When a = 1/2, i.e., the mid-
dle point in each interval of the partition is chosen, the resulting integral is called a
Stratonovich stochastic integral (Stratonovich integral in short), with the integrator
usually denoted by ◦dWt. It is worth mentioning that the differentiation properties
of Stratonovich integrals follow the classical rules in calculus. When a = 0, i.e., the
left point of each interval of partition is chosen, the resulting integral is called Itô
stochastic integral (Itô integral in short), with the integrator denoted simply by dWt.
The classical rules of calculus do not hold any more for Itô integrals; the differen-
tiation of Itô integrals requires Itô’s Calculus. But on the other hand, Itô integrals
possess nice properties concerning measurability, such as the martingale property,
and the expectation of any Itô integral is always 0.

Note that general Itô and Stratonovich integrals over finite time can be converted
between each other according to the formula

� T

t0
f (t,Xt)◦dWt =

� T

t0
f (t,Xt)dWt +

1
2

� T

t0

∂ f
∂X

(t,Xt) f (t,Xt)dt,

which guarantees that both types of integrals provide solutions with equivalent
behaviors within finite period of time. However, this is not necessarily true for
long time behavior, i.e., when T → ∞ or t0 → −∞. For example, one SDE with
Stratonovich integrals can be stable while an otherwise identical SDE with Itô in-
tegrals is not, and vice versa. This will be discussed further in Section 4.4. The
readers who are interested in a rigorous construction of the Itô integral are referred
to the books by Arnold [2] or Oksendal [64]. We next introduce the Itô formula, the
stochastic calculus counterpart of the chain rule in classical deterministic calculus,
that allows the conversion between an Itô SDE and a Stratonovich SDE.

Let (Ω,F ,P) be a complete probability space, and let {Wt}t∈R be a one dimen-
sional two-sided Wiener process. Denote by {Ft}t∈R the family of σ–algebras given
by the filtration Ft = σ{Ws : s ≤ t}. Denote by Lp

Ft
(0,T ), p = 1,2 the linear space of

measurable processes φ : [0,T ]×Ω→ R such that for each t ∈ [0,T ] the mapping
φ(t, ·) is Ft-measurable (i.e., Ft-adapted), and

� T
0 |φ(s)|p ds <∞ P-a.s. Then we have

the following result.
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Theorem 4.6. (Itô’s formula) Let X0 be a random variable which is F0-measurable,
b ∈L1

Ft
(0,T ) andσ ∈L2

Ft
(0,T ). Denote by Xt the stochastic process {Ft}-measurable

for any t ∈ [0,T ] defined by

Xt = X0+

� t

0
b(s)ds+

� t

0
σ(s)dWs for all t ∈ [0,T ], (4.11)

where the integral of b is in the pathwise sense. Let Y(t, x) ∈ C1,2([0,T ]×R) be a
real-valued function which is differentiable in t and twice differentiable in x. Then

Y(t,Xt) = Y(0,X0)+
� t

0
Ys(s,Xs)ds+

� t

0
Yx(s,Xs)b(s)ds (4.12)

+

� t

0
Yx(s,Xs)σ(s)dWs+

1
2

� t

0
Yxx(s,Xs)σ2(s)ds for all t ∈ [0,T ].

Remark 4.3. Note that the expression for the Itô formula (4.12) contains an addi-

tional term
1
2
� t

0 Yxx(s,Xs)σ2(s)ds comparing to the stochastic integral otherwise
calculated by the deterministic chain rule of differentiation. This additional term,
however, does not appear if the stochastic equation (4.11) is in the Stratonovich
sense, i.e.,

Xt = X0+

� t

0
b(s)ds+

� t

0
σ(s)◦dWs for all t ∈ [0,T ].

We next recall the definitions of stochastic differential equations and their solu-
tions. For T > 0, assume that the mappings b : [0,T ]×R→ R and σ : [0,T ]×R→ R
be measurable, and the random variable ξ is F0-measurable with values in R.

A (Itô) stochastic differential equations is properly interpreted as



dX(t) = b(t,X(t))dt+σ(t,X(t))dWt, in [0,T ],

X(0) = ξ.
(4.13)

Definition 4.7. A stochastic process {X(t)}t∈[0,T ] defined on the probability space
(Ω,F ,P) is said to be a solution to (4.13) if it is a continuous and {Ft}-adapted
process such that

(i) {b(t,X(t))}t∈[0,T ] ∈L1
Ft

(0,T ) and {σ(t,X(t))}t∈[0,T ] ∈L2
Ft

(0,T ),
(ii) it holds

X(t) = ξ+
� t

0
b(s,X(s))ds+

� t

0
σ(s,X(s))dWs for all t ∈ [0,T ], P−a.s.

A Stratonovich stochastic differential equations is properly interpreted as



dX(t) = b(t,X(t))dt+σ(t,X(t))◦dWt, in [0,T ],

X(0) = ξ,
(4.14)
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with an equivalent integral formulation

X(t) = ξ+
� t

0
b(s,X(s))ds+

� t

0
σ(s,X(s))◦dWs for all t ∈ [0,T ]. P−a.s. (4.15)

Ifσ(t,X) is differentiable with respect its second variable X, then the Stratonovich
SDE (4.15) is equivalent to the following Itô SDE (see, e.g., [78])

X(t) = ξ+
� t

0
b(s,X(s))ds+

1
2

� t

0
σX(s,X(s))σ(s,X(s))ds+

� t

0
σ(s,X(s))dWs.

(4.16)
The contents presented above cover SDEs in general forms and thus required

some background in probability theory. The SDE applications considered in this
book, however, are much simpler. As the emphasis of this chapter is the theory of
random dynamical systems, we only focus on the SDEs whose solutions generate
RDS. In particular, we will consider SDEs with additive white noise such as

dx = f (x)dt+adWt, a ∈ R,

or SDEs with linear multiplicative noise such as

dx = f (x)dt+σxdWt, σ ∈ R. (4.17)

By applying the formula (4.16) we can easily derive that the Itô SDE (4.17) is
equivalent to the following Stratonovich SDE

dx =
�

f (x)− σ
2

2
x
�

dt+σx◦dWt. (4.18)

Thus, when studying SDEs with linear multiplicative noise, either Itô’s or Stratonovich’s
formulation could be adopted.

4.2.4 Global asymptotic behavior of SDEs: conjugation of RDS

In this section we discuss the global asymptotic behavior of random dynamical
systems generated by stochastic differential equations. The local asymptotic behav-
ior in the neighborhood of equilibria has been extensively studied in the literature
(see e.g., [57, 60, 61]), but will not be commented here. We are interested in analyz-
ing the global behavior of SDEs by the theory of random dynamical systems.

The “prerequisite” for applying the theory of RDS to study SDEs is to show that
solutions to an underlying SDE generate an RDS. The main technique is to trans-
form the SDE into an equivalent random differential equation by a homeomorphism,
which is referred to as the conjugation of random dynamical systems. The chal-
lenges of using this transformation technique lie in the fact that an explicit expres-
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sion for such a homeomorphism is needed, but difficult or impossible to construct
explicitly for specific SDEs system from real world applications. In other words,
although we can prove that such a homeomorphism exists, an explicit expression
which allows us to work directly with the solutions of both equations (random and
stochastic) may not be available. For more details about the abstract aspects of this
statement, the reader is referred to the paper by Imkeller and Schmalfuß [40].

Remark 4.4. The conjugation of RDS may work for more general SDEs than just
the SDEs with additive or linear multiplicative noise. But for stochastic partial dif-
ferential equations (SPDEs) the existence of conjugation is unknown for most cases
except the special SPDEs with additive or linear multiplicative noise.

We next introduce one special type of stochastic process, the Ornstein-Uhlenbeck
process, that has been widely used in the literature to obtain conjugation of RDS.
Consider the one-dimensional stochastic differential equation

dz(t) = −λz(t)dt+dWt (4.19)

for some λ > 0. Equation (4.19) has a special stationary solution known as the sta-
tionary Ornstein-Uhlenbeck (OU) process. The OU process has several nice prop-
erties proved by Caraballo et al. in [20], which have been extensively used in latter
studies of conjugation of RDS. The properties are stated in the following Proposi-
tion.

Proposition 4.1. Let λ be a positive number. There exists a {θt}t∈R-invariant subset
Ω ∈ F of Ω = C0(R,R) (set of continuous functions which vanish at zero) of full
measure such that for ω ∈ Ω,

(i)

lim
t→±∞

|ω(t)|
t
= 0;

(ii) the random variable given by

z∗(ω) := −λ
� 0

−∞
eλτω(τ)dτ

is well defined;
(iii) the mapping

(t,ω) �→ z∗(θtω) = −λ
� 0

−∞
eλτθtω(τ)dτ

= −λ
� 0

−∞
eλτω(t+τ)dτ+ω(t)

(4.20)

is a stationary solution of (4.19) with continuous trajectories satisfying
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lim
t→±∞

|z∗(θtω)|
|t| = 0, lim

t→±∞
1
t

� t

0
z∗(θτω)dτ = 0,

lim
t→±∞

1
t

� t

0
|z∗(θτω)|dτ = E|z∗| <∞,

(4.21)

where E denotes the expectation.

Remark 4.5. While the OU process is used for transformation, the initial probability
space Ω will be changed to the probability space Ω given in Proposition 4.1, but still
denoted by Ω if the context is clear.

The proposition below stating the conjugation of two random dynamical systems
was also proved by Caraballo et al. in [20].

Proposition 4.2. Let ψ be a random dynamical system on a phase space X. Suppose
that the mapping T : Ω×X→ X possesses the following properties:

(i) for fixed ω ∈ Ω, the mapping T (ω, ·) is a homeomorphism on X;
(ii) for fixed x ∈ X, the mappings T (·, x), T−1(·, x) are measurable.

Then the mapping

(t,ω, x)→ φ(t,ω, x) := T−1(θtω,ψ(t,ω,T (ω, x))) (4.22)

defines a (conjugated) random dynamical system.

We next illustrate how to prove an SDE with additive noise or linear multiplica-
tive noise generates an RDS. To show how the technique work for both Itô SDE and
Stratonovich SDE, we will present one example of Itô SDE with additive noise and
one example for Stratonovich SDE with linear multiplicative noise.

SDE with additive noise

Consider a stochastic differential equation with additive noise of the form

dx(t,ω) = f (x)dt+dWt, x(0,ω) = x0 ∈ R. (4.23)

Assume that f is locally Lipschitz or continuously differentiable, such that solutions
to (4.23) exists. We will perform the change of variable

y(t,ω) = x(t,ω)− z∗(θtω),

where z∗(θtω) is defined as in (4.20). First observe that at the initial time t = 0 it
holds

y(0,ω) = x(0,ω)− z∗(ω) = x0− z∗(ω).

Then noticing that Wt(ω) = ω(t) we obtain
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dy(t,ω) = dx(t,ω)−dz∗(θtω)
= f (x(t,ω))+dWt(ω)− �−λz∗(θtω)dt+dWt(ω)

�

=
�
f (x(t,ω))+λz∗(θtω)

�
dt

=
�
f (y(t,ω)+ z∗(θtω))+λz∗(θtω)

�
dt,

i.e.,
dy(t,ω)

dt
= f (y(t,ω)+ z∗(θtω))+λz∗(θtω). (4.24)

Equation (4.24) is indeed a random differential equation without white noise to
which the theory of RDS can be applied directly. If the assumptions on the function
f ensure that equation (4.24) generates an RDS ψ, then we can apply Proposition 4.2
to obtain a conjugated RDS for the original SDE (4.23). In fact, the mapping T :
Ω×X→ X defined by

T (ω, x) = x− z∗(ω)

clearly satisfies assumptions in Proposition 4.2. Hence by Proposition 4.2

φ(t,ω, x0) := T−1(θtω,ψ(t,ω,T (ω, x0)))
= T−1(θtω, y(t;ω, x0− z∗(ω)))
= y(t;ω, x0− z∗(ω))+ z∗(θtω)
= x(t;ω, x0)

is an RDS for the original SDE (4.23).

SDE with linear multiplicative noise

Consider a Stratonovich SDE with linear multiplicative noise in the form

dx = f (x)dt+σx◦dWt, x(0;ω) = x0. (4.25)

We will perform the change of variable

y(t,ω) = e−σz∗(θtω)x(t,ω), (4.26)

where z∗(θtω) is defined as in (4.20). First notice that y(0;ω) = x0e−σz(ω). Then due
to classical chain rules (which can be applied directly to Stratonovich integrals)

dy(t,ω) = e−σz∗(θtω)dx(t,ω)−σe−σz∗(θtω)x(t,ω)◦dz∗(θtω)
= e−σz∗(θtω) ( f (x(t,ω))dt+σx(t,ω)◦dWt(ω))
−σe−σz∗(θtω)x(t,ω)◦ �−λz∗(θtω)dt+dWt(ω)

�

= e−σz∗(θtω) � f (x(t,ω))+λσz∗(θtω)x(t,ω)
�

dt,

=
�
e−σz∗(θtω) f (eσz∗(θtω)y(t,ω))+λσz∗(θtω)y(t,ω)

�
dt,
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i.e.,
dy(t,ω)

dt
= e−σz∗(θtω) f (eσz∗(θtω)y(t,ω))+λσz∗(θtω)y(t,ω). (4.27)

Assume that solutions to the random differential equation (4.27) generate an RDS
ψ, then we can construct a conjugated RDS for the original equation (4.25). In fact,
define the homeomorphism T : Ω×X→ X by

T (ω, x) = e−σz∗(ω)x, (4.28)

whose inverse is given by
T−1(ω, x) = eσz∗(ω)x.

Then T fulfills assumptions in Lemma 4.2 and, as a result, the mapping

φ(t,ω, x0) := T−1(θtω,ψ(t,ω,T (ω, x0)))
= T−1(θtω, y(t,ω, x0e−σz∗(ω)))
= eσz∗(θtω)y(t,ω, x0e−σz∗(ω))
= x(t,ω, x0),

defines an RDS for the original equation (4.25).
For the applications to be considered in the next section, whenever an underlying

SDE system contains additive or linear multiplicative noise terms, the same proce-
dure as introduced above will be used. More precisely, we will first transform the
SDE into an RDE without white noise by performing a suitable change of variable
and analyze the resulting RDE to confirm its solutions generate an RDS. Then we
will use Proposition 4.2 to obtain that the solutions to the original equation generate
a conjugated RDS. Thereby the theory of RDS can be adopted to analyze the long
term behavior of both RDSs.

Remark 4.6. For simplicity of exposition, the transformation technique was illus-
trated by the simplest one-dimensional SDE with a one dimensional Brownian mo-
tion, in the space X = R. However, similar analysis can also be carried out for a
system of stochastic differential equations and with an m-dimensional Wiener pro-
cess (see, e.g. [2, 64]). The state space can also be a general metric space instead of
R, including infinite-dimensional spaces where stochastic partial differential equa-
tions are included.

Remark 4.7. We have discussed only the situations of additive and multiplicative
linear noises because we can obtain explicitly the conjugated random dynamical
systems after the transformation. However, it is possible to consider a more general
multiplicative noise such as a Lipschitz function multiplied by the Wiener process.
In this case, it can be proved that a conjugated RDS can be constructed by using
the solution of an ordinary differential equation whose existence is known but the
explicit expression can be hardly obtained (see Imkeller and Schmalfuß [40] for
more details).
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4.3 Applications

In this section we will study random/stochastic versions of the chemostat, SIR
and Lorenz model introduced in the previous chapters.

4.3.1 Random chemostat

As mentioned in Chapter 3, chemostat models in reality are neither autonomous
nor deterministic. They are affected by physical or chemical inputs with noise,
caused by environmental perturbations, internal variability, randomly fluctuating
parameters, measurement errors, etc. This motivates the study of chemostat models
with randomly fluctuating input parameters, including the nutrient supplying rate D
and the nutrient supplying concentration I. From a biological point of view, for an
experiment to be repeatable, one has to have a reasonable description of its random
aspects. These aspects may change in time and thus the noise can be modeled as a
time-dependent stochastic process with certain known properties.

Recall that representing mathematically such a stochastic process starts with a
probability space (Ω,F ,P), and to connect the state ω ∈ Ω of the random environ-
ment with its state after a time t has elapsed, we need a family of time-dependent
maps {θt : Ω→ Ω} that keeps track of the noise. Here we formulate the two input
parameters D and I as D(θtω) and I(θtω), respectively. In addition, the random pa-
rameters D(θtω) and I(θtω) are assumed to be continuous and bounded. This is a
natural formalism to model the realistic stochastic fluctuations of a biological sys-
tem caused by its interaction with the external environment, because the parameters
in dynamical systems of biological interest are inherently positive and bounded (see
[16] for more details).

Bounded noise can be modeled in various ways. For example in [4], given a
stochastic process Zt such as an Ornstein-Uhlenbeck process, the stochastic process

ζ(Zt) := ζ0
�
1−2ε

Zt

1+Z2
t

�
,

where ζ0 and ε are positive constants with ε ∈ (0,1), takes values in the interval
ζ0[1− ε,1+ ε] and tends to peak around ζ0(1± ε). It is thus suitable for a noisy
switching scenario. In another example, the stochastic process

η(Zt) := η0
�
1− 2ε
π

arctanZt
�
,

where η0 and ε are positive constants with ε ∈ (0,1), takes values in the interval
η0[1− ε,1+ ε], and is centered on η0. In the theory of random dynamical systems
the driving noise process Zt(ω) is replaced by a canonical driving system θtω. This
simplification allows a better understanding of the path-wise approach to model
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noise: a system influenced by stochastic processes for each single realization ω can
be interpreted as wandering along a path θtω in Ω and thus may provide additional
statistical/geological information to the modeler.

Our objective is to study the evolution of concentrations of the nutrient and mi-
croorganism when the input parameters are random and wall growth is taken into
account, which can be described by the following random system:

x�(t) = D(θtω) (I(θtω)− x(t))−a
x(t)

m+ x(t)
(y1(t)+y2(t))+bνy1(t), (4.29)

y�1(t) = − (ν+D(θtω))y1(t)+ c
x(t)

m+ x(t)
y1(t)− r1y1(t)+ r2y2(t), (4.30)

y�2(t) = −νy2(t)+ c
x(t)

m+ x(t)
y2(t)+ r1y1(t)− r2y2(t), (4.31)

where 0 < c ≤ a is the growth rate coefficient of the consumer species. In particular,
we assume that the inputs are perturbed by real noise, i.e., D(θtω) and I(θtω) are
continuous and essentially bounded:

D(θtω) ∈ d · [1−ε,1+ε], I(θtω) ∈ i · [1−ε,1+ε], d > 0, i > 0, ε < 1.

We first state that equations (4.29)-(4.31) generates a random dynamical system,
and the random dynamical system has a random attractor. Letting

R3
+ = {(x, y,z) ∈ R3 : x ≥ 0, y ≥ 0,z ≥ 0}, u(t) = (x(t), y1(t), y2(t))

we have the following lemma which can be proved by standard techniques.

Theorem 4.7. For anyω ∈Ω, any t0 ∈R, and any initial data u0 := (x(t0), y1(t0), y2(t0)) ∈
R3
+, system (4.29)-(4.31) admits a unique bounded solution u(·; t0,ω,u0) ∈C([t0,∞),R3

+)
with u(t0; t0,ω,u0) = u0. Moreover the solution generates a random dynamical sys-
tem ψ(t,ω, ·) defined as

ψ(t,ω,u0) = u(t;0,ω,u0), ∀t ≥ 0, u0 ∈ R3
+, ω ∈ Ω.

Moreover, the RDS ψ(t,ω, ·) possesses a global random attractor.

Proof. Denote by u(t;ω,u0) = ψ(t,ω,u0) the solution of system (4.29)-(4.31) satis-
fying u(0;ω,u0) = u0. Then for u0 := u0(θ−tω) ∈ B(θ−tω), (B ∈D(R3

+), the universe
of tempered random sets)

�ψ(t,θ−tωu0)�1 = �u(t;θ−tω,u0(θ−tω))�1 ≤ s(t;θ−tω, s0(θ−tω)),

where s(t) := x(t)+ a
c (y1(t)+y2(t)). Since a ≥ c and 0 < b < 1,

a
c

(ν+d(1−ε)−bν) =
a
c

d(1−ε)+
�a

c
−b
�
ν >

a
c

d(1−ε).
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Therefore by letting λ :=min{d(1−ε),ν} we obtain

ds(t)
dt
≤ di(1+ε)2−λs(t). (4.32)

According to inequality (4.32),

s(t,ω) ≤ s0e−λt +di(1+ε)2/λ. (4.33)

Substituting ω by θ−tω in (4.33), we obtain

s(t;θ−tω, s0(θ−tω)) ≤ e−λt sup
(x,y1,y2)∈B(θ−tω)

�
x+

a
c

(y1+y2)
�
+

di(1+ε)2

λ
.

Therefore for any � > 0, there exists TB(ω) such that when t > TB,

�u(t;θ−tω,u0)�1 = x(t;θ−tω,u0)+y1(t;θ−tω,u0)+y2(t;θ−tω,u0)
≤ di(1+ε)2/λ+ �,

for all u0 ∈ B(θ−tω). Define

K�(ω) = {(x, y1, y2) ∈ R3
+ : x+y1+y2 ≤ di(1+ε)2/λ+ �},

then K�(ω) is positively invariant, and is absorbing in R3
+.

It follows from the discussion above that the random dynamical system generated
by system (4.29)-(4.31) possesses a random attractor A = {A(ω) : ω ∈ Ω}, consist-
ing of nonempty compact random subsets of R3

+ contained in K�(ω). Next we will
discussion the geometric structure of the random attractor of the RDS generated by
(4.29)-(4.31). �

To obtain more detailed information on the internal structure of the pullback
attractor, we make the following change of variables:

y(t) = y1(t)+y2(t); γ(t) =
y1(t)
y(t)
. (4.34)

System (4.29)-(4.31) then becomes

dx(t)
dt
= D(θtω)(I(θtω)− x(t))− ax(t)

m+ x(t)
y(t)+bνγ(t)y(t), (4.35)

dy(t)
dt
= −νy(t)−D(θtω)γ(t)y(t)+

cx(t)
m+ x(t)

y(t), (4.36)

dγ(t)
dt
= −D(θtω)γ(t)(1−γ(t))− r1γ(t)+ r2(1−γ(t)). (4.37)

By definition, γ(t) represents the portion of microorganism that attaches to the wall.
Noting that the dynamics of γ(t) = γ(t;ω,γ0) is uncoupled with x(t) and y(t), we can
thus study the dynamics of γ(t) independently.
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It can be proved that equation (4.37) has a pullback attractor Aγ = {Aγ(ω)}ω∈Ω
with its component subsets given by

Aγ(ω) =
�

t≥0
γ(t;θ−tω, [0,1]).

These component subsets have the form

Aγ(θtω) = [γl(θtω),γu(θtω)],

where γl(θtω) and γu(θtω) are entire bounded solutions of equation (4.37). All other
bounded entire solutions of (4.37) lie between these two. We next estimate bounds
of these entire solutions by using differential inequalities.

On the one hand, since γ(t) ≤ 1 and D(θtω) > 0, we have

γ�(t) = D(θtω)(γ2(t)−γ(t))− (r1+ r2)γ(t)+ r2

≤ −(r1+ r2)γ(t)+ r2.

On the other hand,

γ�(t) = D(θtω)γ2(t)− (D(θtω)+ r1+ r2)γ(t)+ r2

≥ −(d(1+ε)+ r1+ r2)γ(t)+ r2.

Let α(t) and β(t) satisfy

α�(t) = −(d(1+ε)+ r1+ r2)α(t)+ r2, α(0) = γ(0), (4.38)
β�(t) = −(r1+ r2)β(t)+ r2, β(0) = γ(0). (4.39)

Then α(t) ≤ γ(t) ≤ β(t) and [γl(θtω),γu(θtω)] ⊆ [α∗,β∗], where

α∗ =
r2

r1+ r2+d(1+ε)
, β∗ =

r2

r1+ r2
(4.40)

are asymptotically stable steady states for (4.38) and (4.39) respectively. In sum-
mary,

Aγ(ω) = [γl(ω),γu(ω)] ⊆ �α∗,β∗� .
We provide the sufficient condition for A to consist of only a single entire solution
in the next theorem.

Theorem 4.8. The pullback attractorA associated to the random dynamical system
γ(t,ω, ·) generated by (4.37) consists of a single entire solution, denoted by γ∗(θtω),
provided

2r2d(1+ε) < (r1+ r2+d(1−ε))(r1+ r2).

Note that this sufficient condition is equivalent to

dε <
(r1+ r2)2+d(r1+ r2)

r1+3r2
,
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which essentially represents the restriction on the magnitude of noise on D. The
long term dynamics of x(t) and y(t) are given in the following theorem.

Theorem 4.9. Given a ≥ c, 0 < b < 1, ν > 0, assume that D(θtω) and I(θtω) are
continuous and essentially bounded, with d(1−ε) ≤ D(θtω) ≤ d(1+ε) and i(1−ε) ≤
I(θtω) ≤ i(1+ ε). Then, system (4.35)-(4.36) has a pullback attractor A = {A(ω) :
ω ∈ Ω} inside the nonnegative quadrant. Moreover, letting

x∗(ω) =
� 0

−∞
D(θsω)I(θsω)e−

� 0
s D(θτω)dτds, (4.41)

(i) the pullback attractor A has a singleton component subset A(ω) = {(x∗(ω),0)}
provided

ν+d(1−ε)α∗ ≥ c,

(ii)the pullback attractorA also contains points strictly inside the positive quadrant
in addition to the singleton solution {(x∗(ω),0)} provided

ac2di(1−ε)2 >
�
mc(aν+ad(1+ε)− cbνβ∗)+acdi(1−ε)2

�
· (ν+d(1+ε)β∗).

(4.42)

4.3.2 Random and stochastic SIR

In this section, a random and a stochastic version of the SIR model analyzed in
the previous chapters will be considered. In particular, we will first consider an SIR
model described by a system of random differential equations whose coefficients
contain real noise perturbation, i.e., bounded and continuous functions of θtω. Then
we consider an SIR model described by a system of stochastic differential equations
obtained from perturbing the deterministic SIR model by a white noise. Differences
between the SDE model and the RDE model will be commented from modeling
and analysis point of view. The techniques on construction of conjugated random
dynamical systems introduced in Subsection 4.2.4 will be illustrated by the SDE
SIR system. For a more detailed analysis the reader is referred to [12].

Random SIR with real noise

The total population S + I +R was assumed to be a constant in the autonomous
SIR model (2.12) – (2.14). This is due to the same constant birth rate and death rate
for all the groups, which is not realistic. Here we will release this assumption and
assume a total random reproduction spam, modeled by Λ(θtω) with

Λ(θtω) ∈ Λ[1−ε,1+ε], Λ > 0, ε ∈ (0,1). (4.43)

This assumption results in a system of random differential equations:
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dS
dt

(t,ω) = Λ(θtω)− νS (t)−βS (t) I(t)
N(t)

, (4.44)

dI
dt

(t,ω) = −(ν+γ)I(t)+β
S (t) I(t)

N(t)
, (4.45)

dR
dt

(t,ω) = γI(t)− νR(t), (4.46)

where ν, β, γ are positive constants which represent the death rate, the infection rate
and the removal rate, respectively, and N(t)= S (t)+ I(t)+R(t) is the total population.

Remark 4.8. A more general model could be considered, in which more parameters
are modeled to be random. But for simplicity of exposition, we only discuss the
simplest RDE system (4.44) – (4.46). The analysis to be adopted, however, can be
applied to a general RDE system with more random parameters.

First of all we prove that solutions corresponding to nonnegative initial condi-
tions remain nonnegative, stated as below.

Lemma 4.1. The setR3
+ = {(S , I,R) ∈R3 : S ≥ 0, I ≥ 0,R≥ 0} is positively invariant

for the system (4.44)–(4.46), for each fixed ω ∈ Ω.

Proof. It is not difficult to check that the vector field, at the boundary of R3
+, points

toward the inside of R3
+. In fact, on the plane S = 0 we have S � > 0, the plane I = 0

is invariant since on it we have I� = 0 while on R = 0 we have R� ≥ 0. The positive
S -semi axis is invariant, and in addition we have:

dS (t,ω)
dt

= Λ(θtω)− νS (t),

which can be solved to obtain explicitly

S (t,ω) = S 0e−ν(t−t0)+ e−νt
� t

t0
Λ(θsω)eνsds. (4.47)

Notice that last term in (4.47) is bounded,

Λ(1−ε)νe−νt
� t

t0
eνsds ≤ e−νt

� t

t0
Λ(θsω)eνsds ≤ Λ(1+ε)νe−νt

� t

t0
eνsds,

i.e.,

Λ(1−ε)(1− e−ν(t−t0)) ≤ e−νt
� t

t0
Λ(θsω)eνsds ≤ Λ(1+ε)(1− e−ν(t−t0)).

Thus if the system starts on the positive R−semi axis, the solution will enter the
plane I = 0, while on the positive I−semi axis S � > 0 and R� > 0. �

Observe that replacing ω by θ−tω in (4.47) and setting t0 = 0 gives
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S (t;ω,S 0) = S 0e−νt +
� 0

−t
Λ(θpω)eνpdp, (4.48)

which, for t→∞, pullback converges to

S ∗(ω) :=
� 0

−∞
Λ(θpω)eνpdp. (4.49)

Note that S ∗(ω) is positive and bounded. In fact, for any ω ∈ Ω, we have:

Λ(1−ε) ≤ S ∗(ω) ≤ Λ(1+ε). (4.50)

The generation of an RDS by the solutions to (4.44) – (4.46) is stated as follows.

Theorem 4.10. For anyω ∈Ω, any t0 ∈R and any initial data u0 = (S (t0), I(t0),R(t0)) ∈
R3
+, system (4.44) – (4.46) admits a unique nonnegative and bounded solution

u(·; t0,ω,u0) ∈ C([t0,+∞),R3
+) with u(t0; t0,ω,u0) = u0, provided that (4.43) is satis-

fied. Moreover the solution generates a random dynamical system ψ(t,ω, ·) defined
as

ψ(t,ω,u0) = u(t;0,ω,u0), ∀t ≥ 0,u0 ∈ R3
+,ω ∈ Ω.

Proof. The system can be rewritten as

du(t)
dt
= f(u,θtω),

where f(u,θtω) is vector-valued function composed of the right hand sides of (4.44)-
(4.46). Since Λ(θtω) is continuous with respect to t, the function f(·,θtω) ∈ C(R3

+ ×
[t0,+∞),R3

+) and is continuously differentiable with respect to u. Then, by classical
results of ODEs system (4.44)-(4.46) possesses a unique local solution.

Summing the equations of the system we arrive at

dN
dt

(t,ω) = Λ(θtω)− νN(t),

whose solution satisfying N(t0) = N0 is given by

N(t; t0,ω,N0) = N0e−ν(t−t0)+ e−νt
� t

t0
Λ(θsω)eνsds. (4.51)

As in the proof of the previous lemma we have

Λ(1−ε)+ [N0−Λ(1−ε)]e−ν(t−t0) ≤ N(t; t0,ω,N0) ≤ Λ(1+ε)+ [N0−Λ(1+ε)]e−ν(t−t0),
(4.52)

which implies that the solutions are bounded. Furthermore, the forward and back-
ward limits of N(t; t0,ω,N0) satisfy, respectively,

lim
t→+∞

N(t; t0,ω,N0) ∈ [Λ(1−ε),Λ(1+ε)], ∀t0 ∈ R,
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and

lim
t0→−∞

N(t; t0,ω,N0) ∈ [Λ(1−ε),Λ(1+ε)], ∀t ∈ R.

Then the local solution can be extended to a global solution u(·; t0,ω,u0) ∈C1([t0,∞),R3
+).

It is clear that
u(t+ t0; t0,ω,u0) = u(t;0,θt0ω,u0),

for all t0 ∈ R, t ≥ 0, ω ∈ Ω, u0 ∈ R3
+. Then we can define a map ψ(t,ω, ·) that is a

random dynamical system by

ψ(t,ω,u0) = u(t;0,ω,u0), ∀t ≥ 0,u0 ∈ R3
+,ω ∈ Ω.

�

Theorem 4.11. For each ω ∈ Ω there exists a tempered bounded closed random
absorbing set K(ω) ∈D(R3

+) of the random dynamical system {ψ(t,ω, ·)}t≥0,ω∈Ω such
that for any B ∈D(R3

+) and each ω ∈ Ω there exists a TB(ω) > 0 such that

ψ(t,θ−tω,B(θ−tω)) ⊂ K(ω), ∀t ≥ TB(ω).

Moreover, for any 0 < η < Λ(1−ε), the set K(ω) can be chosen as the deterministic
set

Kη := {(S , I,R) ∈ R3
+ : Λ(1−ε)−η ≤ S + I+R ≤ Λ(1+ε)+η},

for all ω ∈ Ω .

Proof. Using (4.51) and (4.52) we deduce that N�(t,ω) ≤ 0 on N = Λ(1+ε)+η, and
N�(t,ω)≥ 0 on N =Λ(1−ε)−η for all η ∈ [0,Λ(1−ε)). Then Kη is positively invariant
for η ∈ [0,Λ(1−ε)). Suppose that N0 ≥ Λ(1+ε)+η (the other case is similar), then

N(t; t0,ω,N0) ≤ N0(ω)e−ν(t−t0)+Λ(1+ε)[1− e−ν(t−t0)].

Replacing ω by θ−tω gives

N(t;θ−tω,N0(θ−tω)) ≤ sup
N0∈B(θ−tω)

N0 e−ν(t−t0)+Λ(1+ε)[1− e−ν(t−t0)]. (4.53)

Hence there exists a time TB(ω) such that for t > TB(ω), ψ(t,θ−tω,u0) ∈ Kη for all
u0 ∈ B(θ−tω). That is, the set Kη is compact absorbing for all η ∈ (0,Λ(1− ε)), and
absorbs all tempered random sets of R3

+ and in particular its bounded sets. �

As a result of Theorem 4.10 and Theorem 4.53 we obtain

Theorem 4.12. The random dynamical system generated by system (4.44)–(4.46)
possesses a global random attractor.

The reader is referred to Caraballo and Colucci [12] for additional analysis on the
structure of the random attractor and individual dynamics of the three components.
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Stochastic SIR with white noise

Similar to the random system (4.44) – (4.46), we assume that the production
spam parameter, Λ, is perturbed by noise. Instead of real noise, we now consider the
effect of white noise. There are different ways to introduce the white noise into an
ODE system, such as perturbing one or more parameters in an ODE system by an
additive noise. Such types of perturbation, though widely used in the literature, are
not always legitimate. For example assuming that the parameter Λ is perturbed by
some additive white noise σẆ(t), then the system (4.44) – (4.46) would become

dS =
�
Λ− νS (t)−βS (t) I(t)

N(t)

�
dt+σdWt, (4.54)

dI =
�
−(ν+γ)I(t)+β

S (t) I(t)
N(t)

�
dt, (4.55)

dR =
�
γI(t)− νR(t)

�
dt. (4.56)

and it is straightforward check that equation (4.54) does not preserve the positive-
ness of the variable S and, as a consequence, the population of S may become
negative and hence the model is not realistic.

A proper choice of white noise perturbation should at least ensures the non-
negativeness of solutions while population models are considered. Though not fully
justified, to illustrate the conjugation of RDS, we introduce multiplicative white
noise of Stratonovich type for equations (4.54) – (4.56) to obtain

dS =
�
Λ− νS (t)−βS (t) I(t)

N(t)

�
dt+σS ◦dW(t), (4.57)

dI =
�
−(ν+γ)I(t)+β

S (t) I(t)
N(t)

�
dt+σI ◦dW(t), (4.58)

dR =
�
γI(t)− νR(t)

�
dt+σR◦dW(t), (4.59)

For simplicity, we assume that the noise intensity is the same in all the equations
but it does not make a substantial difference if we consider a different noise inten-
sity in each equation. The same technique still apply, only with more complicated
calculations.

Following similar arguments used for the random SIR model, solutions corre-
sponding to nonnegative initial data will remain nonnegative, ensured by the mul-
tiplicative type of noise structure. We will next transform the stochastic equations
(4.57) – (4.59) into random differential equations random coefficients but without
white noise. To this end, we consider the Ornstein-Uhlenbeck process

z∗(θtω) = −
0�

−∞

esθtω(s)ds, t ∈ R, ω ∈ Ω0, (4.60)



4.3 Applications 95

which is the stationary solution to (4.19) for λ = 1.
According to the techniques introduced in the subsection 4.2.4, perform the fol-

lowing change of variables

S̃ (t) = S (t)e−σz∗(θtω), Ĩ(t) = I(t)e−σz∗(θtω), R̃(t) = R(t)e−σz∗(θtω).

Then system (4.57) – (4.59) become

dS̃
dt

(t,ω) = Λe−σz∗ − νS̃ (t)−β S̃ (t) Ĩ(t)
Ñ(t)

+σS̃ z∗, (4.61)

dĨ
dt

(t,ω) = −(ν+γ)Ĩ(t)+β
S̃ (t) Ĩ(t)

Ñ(t)
+σĨz∗, (4.62)

dR̃
dt

(t,ω) = γĨ(t)− νR̃(t)+σR̃z∗. (4.63)

Note that adding equations (4.61) – (4.63) results in

dÑ
dt

(t,ω) = Λe−σz∗ − νÑ(t)+σÑz∗ = Λe−σz∗ − (ν−σz∗)Ñ. (4.64)

The equation (4.64) has a nontrivial random solution that is both forward and pull-
back attracting. In fact, for any initial datum N0 we have:

N(t;ω,N0) = N0e−
� t
0 [ν−σz∗(θsω)]ds+

� t

0
Λe−σz∗(θsω)e

� t
s [ν−σz∗(θτω)]dτds,

and replacing ω by θ−tω we obtain

N(t;θ−tω,N0) = N0e−
� 0
−t[ν−σz∗(θpω)]dp+

� 0

−t
Λe−σz∗(θpω)e−

� 0
p [ν−σz∗(θqω)]dqdp,

which pullback converges to

N∗(ω) = Λ
� 0

−∞
e−σz∗(θpω)e−

� 0
p [ν−σz∗(θqω)]dqdp (4.65)

as t→ +∞.
Observe that N∗(ω) is well defined thanks to Proposition 4.1 because the inte-

grand behaves like eνp for p→−∞ and

z∗(θpω)
p
,

1
p

� 0

p
z∗(θqω)dq→ 0, for p→−∞.

Some comments are made below on differences between the random SIR model
and the stochastic SIR model.



96 4 Random dynamical systems

• The stochastic differential system with white noise (4.57) – (4.59) can be trans-
formed to an equivalent random differential system with unbounded random co-
efficients, while the random system with real noise (4.54) – (4.56) has bounded
random coefficients.

• The differential equation describing the behavior of the total population N(t) =
S (t)+ I(t)+R(t) is similar in both cases and provides us with a stationary process
that pullback and forward attracting any other solution. However, an important
difference is that in the random system (4.54) – (4.56), this stationary process
is bounded, what allows for a posterior control of this process to validate the
underlying model. While in the stochastic system (4.57) – (4.59) we are not able
to obtain such posterior estimates and the corresponding additional information.

• The system with real noise, (4.54) – (4.56), preserves the form and structure of
the underlying model. In other words, if we replace the random parameter Λ(θtω)
by another random parameter with a special structure, the model is not a priori
affected. While in the stochastic system (4.54) – (4.56) if there is a change in the
noise structure, the underlying model may need to be redeveloped, even just to
preserve the positiveness of solutions.

4.3.3 Stochastic Lorenz models

In the simplest autonomous Lorenz-84 model (2.17) – (2.19), the forcing terms
F and G are assumed to be constant. To make the model more realistic, we allowed
the forcing terms to vary with respect to time, resulting in a nonautonomous Lorenz
model studied in Chapter 3. Now we will study the model in which the forcing terms
may vary randomly in time, described by the following system of RDEs with real
noise:

dx
dt
= −ax−y2− z2+aF(θtω), (4.66)

dy
dt
= −y+ xy−bxz+G(θtω), (4.67)

dz
dt
= −z+bxy+ xz. (4.68)

In the system (4.66) – (4.68), the time dependence of the forcing terms is defined
by a metric dynamical system (θt)t∈R on the probability space (Ω,F ,P). By analysis
analog to those performed in the nonautonomous Lorenz model (2.17) – (2.19), the
existence of a random attractor for the RDS generated by the system (4.66) – (4.68)
can also be obtained. To this end we assume that the mappings F,G : Ω �→ R are
measurable and for every fixed ω ∈ Ω, the mappings t ∈ R �→ F(θtω) and t ∈ R �→
G(θtω) are continuous, and satisfy

� t

−∞
elsF2(θsω)ds < +∞,

� t

−∞
elsG2(θsω)ds < +∞ ∀t ∈ R, ω ∈ Ω (4.69)
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where l := min{a,1}.
The first step is to construct the cocycle generated by (4.66)-(4.68). It is straight-

forward to check that the right hand sides of equations (4.66)-(4.68) define a vector
field which is continuous with respect to t and locally Lipschitz with respect to the
other variables. Thus, the existence and uniqueness of maximal solutions to the ini-
tial value problems associated to (4.66)-(4.68) is guaranteed by the results in Chap-
ter 1. The next theorem ensures that the maximal solutions are also defined globally
in time. For simplicity, denote by u(t) := (x(t), y(t),z(t)) and u0 := (x0, y0,z0).

Lemma 4.2. Assume that a > 0 and b ∈ R. Then for any initial condition u0 ∈ R3

and any initial time t0 ∈ R, the solution u(·) := u(·, t0,ω,u0) of the IVP associated to
(4.66)-(4.68) satisfies

|u(t, t0,ω,u0)|2 ≤ e−l(t−t0) |u0|2+ae−lt
� t

−∞
elsF2(θsω)ds+ e−lt

� t

−∞
elsG2(θsω)ds,

(4.70)
for all t ≥ t0, where l := min{a,1}.

Proof. We immediately deduce that

d
dt
|u(t)|2 = −2(ax2+y2+ z2)+2axF(θtω)+2yG(θtω),

and, consequently,

d
dt
|u(t)|2+ l |u(t)|2 ≤ aF2(θtω)+G2(θtω). (4.71)

Multiplying (4.71) by elt, we obtain that

d
dt

�
elt |u(t)|2

�
≤ aeltF2(θtω)+ eltG2(θtω).

Integrating between t0 and t

elt |u(t)|2 ≤ elt0 |u0|2+a
� t

t0
elsF2(θsω)ds+

� t

t0
elsG2(θsω)ds (4.72)

≤ elt0 |u0|2+a
� t

−∞
elsF2(θsω)ds+

� t

−∞
elsG2(θsω)ds,

whence (4.70) follows. �

Thanks to Lemma 4.2 we can define the cocycle on R3 by

ψ(t,ω,u0) = u(t;0,ω,u0) for u0 ∈ R3, t ≥ 0.

Considering now the universe of tempered random subsets of R3, we will be able
to prove that there exists a pullback absorbing family for the cocycle ψ(·, ·, ·).
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Theorem 4.13. Assume a > 0 and b ∈ R. Let F,G satisfy (4.69). Then, the family
D0 = {D0(ω) : ω ∈ Ω} defined by D0(ω) = B (0,ρl(ω)), where ρl(ω) is given by

ρ2
l (ω) = 1+a

� 0

−∞
elsF2(θsω)ds+

� 0

−∞
elsG2(θsω)ds, ∀t ∈ R, (4.73)

is a pullback absorbing family for the cocycle ψ(·, ·, ·). Furthermore, there exists a
pullback random attractor for ψ.

Proof. LetD = {D(ω) : ω ∈ Ω} be a tempered random set. Then,

lim
t→∞

e−βt sup
u0∈D(θ−tω)

|u0| = 0, for all β > 0;

Then, pick u0 ∈ D(ω). Thanks to Lemma 4.2, we can deduce that

|ψ(t,ω,u0)|2 ≤ e−lt |u0(ω)|2+ae−lt
� t

−∞
elsF2(θsω)ds+ e−lt

� t

−∞
elsG2(θsω)ds

≤ e−lt |u0(ω)|2+ae−lt
� t

−∞
elsF2(θsω)ds+ e−lt

� t

−∞
elsG2(θsω)ds.

Replacing ω by θ−tω, and performing a suitable change of variable in the integrals
results in

|ψ(t,θ−tω,u0(θ−tω))|2 ≤ e−lt |u0(θ−tω)|2+ae−lt
� t

−∞
elsF2(θs−tω)ds

+ e−lt
� t

−∞
elsG2(θs−tω)ds

≤ e−lt |u0(θ−tω)|2+a
� 0

−∞
elsF2(θsω)ds+

� 0

−∞
elsG2(θsω)ds

Taking limit when t goes to +∞ and on account of the temperedness of the family
D, we easily obtain the pullback absorption of the family D0 and therefore the
existence of the pullback random attractor is proved. �

Remark 4.9. Although we have considered a random version for the Lorenz-84
model so that we have coherent autonomous, nonautonomous and random varia-
tions of the same system, we would like to mention that in the paper [73], Schmalfuß
considered a different stochastic Lorenz model. More precisely, a stochastic version
with multiplicative linear Stratonovich noise is analyzed. The technique made use of
the transformation from a stochastic differential equation into a random differential
system by mean of the Ornstein-Uhlenbeck process as we have done in the previous
stochastic SIR model. Moreover, the study of the finite dimensionality of the ran-
dom attractor was carried out in the paper [73], which went beyond the objectives
of the present work.
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4.4 Stabilization of dynamical systems

It is clear that the analyzing a stochastic system is more challenging than an-
alyzing its deterministic counterparts, and may requires more techniques than the
classical theory of ODE. Hence, very often the study of a stochastic model is done
by analyzing a deterministic approximation of the model. One question then arises
naturally, is there any difference between the long time behavior of solutions to
the stochastic model and its deterministic counterpart? If there is a difference, how
to quantify it? Along this line of research one interesting and important topic is
the stabilization effects induced by the noise, which is closely related to controlla-
bility problems and many other applications in applied sciences and engineering.
Many studies have been done regarding the stabilization effects of noise by different
methods, but here we only discuss those related to the theory of random dynamical
systems. In particular, we illustrate the stabilization effects of noise by using simple
examples, which can serve as motivation for more complicated situations.

In the following examples, we will show that when a deterministic ODE is per-
turbed by a linear multiplicative white noise, the random dynamical system gener-
ated by the resulting SDE may have a “smaller” random attractor than the global
attractor associated to the original deterministic equation. Such behavior can be re-
garded as a “stabilization” effect produced by the noise, that can happen not only
to equilibrium points but also to attractors. The existence of such a “stabilization”
effect, moreover, may depend on the type of stochastic integral considered. More
precisely, the global attractor of an ODE can be different from the random attractor
of its corresponding Itô SDE, but very similar to the random attractor of its corre-
sponding Stratonovich SDE. Similarly, when a deterministic ODE is perturbed by
an additive white noise, the random attractor for the resulting SDE may be a random
singleton set while the global attractor for the original ODE is a compact interval.

Consider the following simple one-dimensional differential equation

dx
dt
= x(1− x2), (4.74)

which has three equilibrium points, {−1,0,1}, among which 0 unstable and the oth-
ers are asymptotically stable. In addition, the global attractor exists for this equation
and is given by the compact interval K = [−1,1]. We next investigate the stability of
SDEs obtained from perturbing (4.74) by different types of noise.

Itô’s perturbation

Including a multiplicative noise in (4.74) results in the Itô SDE

dx = x(1− x2)dt+σxdWt, (4.75)



100 4 Random dynamical systems

where σ ∈ R is a constant and Wt is the standard and canonical two-sided Brownian
motion (Wiener process). We will prove that the Itô SDE (4.75) generates an RDS
which possesses a global random attractor A given by A(ω) = {0} for every ω ∈
Ω, provided the intensity of the noise is large enough. In other words, the random
attractor is just one fixed equilibrium (also called a random fixed point). This implies
that the equilibrium 0 has been stabilized and the attractor has also been stabilized
in some sense.

To analyze equation (4.75) by using the theory of RDS, we first consider its
equivalent Stratonovich formulation

dx =
��

1− σ
2

2

�
x− x3

�
dt+σx◦dWt. (4.76)

Performing the change of variables (4.26) (corresponding to the conjugation (4.28)),
by using the OU process z∗ in (4.20) with λ = 1, we obtain y(t) = x(t)e−σz∗(θt(ω)) and
the associated random differential equation

dy
dt
=

�
1− σ

2

2
+σz∗(θtω)

�
y− e2σz∗(θtω)y3. (4.77)

Equation (4.77) generates a random dynamical system given by

ψ(t,ω, y0) = y(t;0,ω, y0), (4.78)

where, as usual, y(·; s,ω, y0) denotes the solution to (4.77) such that at the initial
time t = 0 takes the value y0.

Observe that equation (4.77) is of Benouilli type, hence can be solved by standard
integration methods to obtain

1
y2(t;0,ω, y0)

=
1
y20

e−(2−σ2)t−2σ
� t
0 z∗(θsω)ds

+2
� t

0
e−2(t−s)+2σz∗(θsω)−2σ

� t
s z∗(θrω)drds, (4.79)

which gives an explicit expression of the cocycle ψ.
Choose σ large enough so that σ2 > 2. Then, it follows from (4.79) that

1
y2(t;0,ω, y0)

≥ 1
y20

e−(2−σ2)t−2σ
� t
0 z∗(θsω)ds, (4.80)

and replacing ω by θ−tω with a suitable change of variable in the integral in the
exponent,

1
y2(t;0,θ−tω, y0)

≥ 1
y20

e−(2−σ2)t−2σ
� 0
−t z∗(θsω)ds. (4.81)
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Consequently, taking limits as t→ +∞ in both equations (4.80) and (4.81), at light
of the properties of the OU process in Proposition 4.1, we deduce that the right hand
sides in both expressions go to +∞, and therefore

lim
t→∞
y2(t;0,ω, y0) = 0 and lim

t→∞
y2(t;0,θ−tω, y0) = 0.

Therefore for the corresponding RDS we have

lim
t→∞
ψ(t,ω, y0) = 0 and lim

t→∞
ψ(t,θ−tω, y0) = 0.

It is then straightforward to see that the RDS ψ has a random pullback attractor A
with each component set A(ω) = 0. Moreover this set also attracts any solution in
the forward sense.

Stratonovich perturbation

Now consider the perturbation of (4.74) by multiplicative white noise in the
Stratonovich sense

dx = x(1− x2)dt+σx◦dWt. (4.82)

The expression for y(t;0,ω, y0) is given explicitly by

1
y2(t;0,ω, y0)

=
1
y20

e−2t−2σ
� t
0 z∗(θsω)ds

+2
� t

0
e−2(t−s)+2σz∗(θsω)−2σ

� t
s z∗(θrω)dr ds, (4.83)

whenever y0 � 0 and y(t;0,ω,0) = 0. Thanks to the properties of the OU process
z∗, the first term on the right hand side of (4.83) goes to zero when t goes to ∞ no
matter how large or small σ is. Then, replacing ω by θ−tω in (4.83), and performing
a suitable change of variables in each integral, we obtain

1
y2(t;0,θ−tω, y0)

=
1
y20

e−2t−2σ
� 0
−t z∗(θsω)ds

+2
� 0

−t
e2s+2σz∗(θsω)−2σ

� 0
s z∗(θrω)dr ds. (4.84)

Consequently, taking limit when t goes to∞ in (4.84) gives

lim
t→+∞

1
y2(t;0,θ−tω, y0)

= 2
� 0

−∞
e2s+2σz∗(θsω)−2σ

� 0
s z∗(θrω)dr ds.

Denote by
1

a(ω)
:= 2
� 0

−∞
e2s+2σz∗(θsω)−2σ

� 0
s z∗(θrω)dr ds.



102 4 Random dynamical systems

Then it is clear that the random pullback attractor A for this system is given by
A(ω) = [−a(ω)1/2,a(ω)1/2], which possesses the same geometrical structure of the
global attractor for the deterministic ODE (4.74). Notice also that, by standard com-
putations, it is not difficult to show that zero is still an unstable equilibrium of
the stochastic equation, so the instability of the null solution persists under such
a Stratonovich linear multiplicative white noise perturbation.

Additive noise

Last consider the following SDE obtained from perturbing the ODE (4.74) by an
additive white noise:

dx = x(1− x2)dt+dWt. (4.85)

System (4.85) has been studied in details in [30] where it was proved that the
random attractor was just a single fixed point. More precisely, Crauel and Flandoli
proved that the SDE (4.85) possesses a random attractor A(ω) whose component
sets are singleton sets, i.e., A(ω) = {α(ω)}, where α(·) is a random variable. In this
situation the unstable fixed point 0 has been eliminated by the noise, and the global
attractor of the deterministic equation (4.74), namely the interval [−1,1], has “col-
lapsed” to a random attractor formed by a random fixed point. In other words, one
could say that additive noise in (4.85) has produced a stabilization effect on the
attractor of its deterministic counterpart (4.74).

It is worth mentioning that it is also possible to show an effect of the noise in the
sense that, while a deterministic ODE does not have a global attractor, after includ-
ing a noise term, the resulting SDE can have a random attractor. As an illustrative
and simple example, consider the initial value problem

dx(t)
dt
= x(t)+1, x(0) = x0 ∈ R (4.86)

The solution to (4.86) is

x(t;0, x0) = −1+ (x0+1)et, (4.87)

and the dynamical system generated by (4.86) does not possess a global attractor.
Adding a linear Itô noise to the equation (4.86) results in

dx(t) = (x(t)+1)dt+σx(t)dWt, x(t0) = x0, (4.88)

whereσ ∈R. Then it is straightforward to check that the equation (4.88) generates an
RDS. In fact, we can first transform (4.88) into an equivalent Stratonovish stochastic
equation

dx(t) =
�
(1− σ

2

2
)x(t)+1

�
dt+σx(t)◦dWt, x(t0) = x0. (4.89)
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A change of variables by using the standard OU process could still be done,
and will transform (4.89) to a random differential equation, to which the theory of
RDS can be applied. But here we present a different technique, which at first sight
may seem much easier and straightforward, but as a trade-off does not provide a
conjugated random dynamical system. To this end, perform the change of variables

y(t) = e−σWt(ω)x(t), (4.90)

to obtain the random equation

dy(t)
dt
=

�
1− σ

2

2

�
y(t)+ e−σWt(ω), y(t0) = y0 = e−σWt0 (ω)x0, (4.91)

whose solution is explicitly given by

y(t; t0,ω, y0) = e(1−σ2
2 )(t−t0)e−σWt0 (ω)x0+ e(1−σ2

2 )t
� t

t0
e−(1−σ2

2 )re−σWr(ω)dr. (4.92)

Therefore, the RDS ψ(t,ω, ·) generated by the random equation (4.91) can be defined
by

ψ(t,ω, x0) = eσWt(ω)y(t;0,ω, x0).

Choose σ so that 1− σ2

2 < 0. Then taking limits t0→−∞ in (4.92) results in

lim
t0→−∞

y(t; t0,ω, y0) = e(1−σ2
2 )t
� t

−∞
e−(1−σ2

2 )re−σWr(ω)dr,

and consequently

lim
t0→−∞

eσWt(ω)y(t; t0,ω, y0) = e(1−σ2
2 )teσWt(ω)

� t

−∞
e−(1−σ2

2 )re−σWr(ω)dr.

Denote by

A(ω) =
� 0

−∞
e−(1−σ2

2 )re−σWr(ω)dr.

Then it is straightforward to check that x(t,ω) :=A(θtω) is a stationary solution of
(4.89) and

A(θtω) = e(1−σ2
2 )teσWt(ω)

� t

−∞
e−(1−σ2

2 )re−σWr(ω)dr.

Note that although the transformation (4.90) does not provide a conjugated ran-
dom dynamical system, since every solution to the stochastic equation (4.89) is also
a solution to the random equation (4.91), all solutions to the stochastic system (4.89)
will approach in the pullback sense to the random attractor possessed by the random
system(4.91). Therefore,A(ω) is a also non-trivial random attractor for (4.88) which
proves that Itô’s noise may also cause stabilization to a random attractor.
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[6] Henk Broer, Carles Simó, and Renato Vitolo. Bifurcations and strange at-
tractors in the Lorenz-84 climate model with seasonal forcing. Nonlinearity,
15(4):1205–1267, 2002.

[7] Henk Broer and Renato Vitolo. Dynamical systems modeling of low-
frequency variability in low-order atmospheric models. Discrete Contin. Dyn.
Syst. Ser. B, 10(2-3):401–419, 2008.

[8] Henry R. Bungay and M. L. Bungay. Microbial interactions in continuous
culture. Advances in Applied Microbiology, 10:269–290, 1968.

[9] Peter J. Cameron. Introduction to algebra. Oxford University Press, Oxford,
second edition, 2008.

[10] T. Caraballo and J. A. Langa. On the upper semicontinuity of cocycle attractors
for non-autonomous and random dynamical systems. Dyn. Contin. Discrete
Impuls. Syst. Ser. A Math. Anal., 10(4):491–513, 2003.

[11] T. Caraballo, G. Łukaszewicz, and J. Real. Pullback attractors for asymp-
totically compact non-autonomous dynamical systems. Nonlinear Anal.,
64(3):484–498, 2006.

[12] Tomás Caraballo and Renato Colucci. A comparison between random and
stochastic modeling for a sir model. Commun. Pure Appl. Anal., 16(1), 2017.

[13] Tomás Caraballo, Renato Colucci, and Xiaoying Han. Non-autonomous dy-
namics of a semi-Kolmogorov population model with periodic forcing. Non-
linear Anal. Real World Appl., 31:661–680, 2016.

[14] Tomás Caraballo, Renato Colucci, and Xiaoying Han. Predation with indirect
effects in fluctuating environments. Nonlinear Dynam., 84(1):115–126, 2016.

[15] Tomás Caraballo, Xiaoying Han, and Peter Kloeden. Chemostats with time-
dependent inputs and wall growth. Appl. Math. Inf. Sci., 9(5):2283–2296,
2015.

[16] Tomás Caraballo, Xiaoying Han, and Peter E. Kloeden. Chemostats with ran-
dom inputs and wall growth. Math. Methods Appl. Sci., 38(16):3538–3550,
2015.

[17] Tomás Caraballo, Xiaoying Han, and Peter E. Kloeden. Nonautonomous
chemostats with variable delays. SIAM J. Math. Anal., 47(3):2178–2199, 2015.



References 105

[18] Tomás Caraballo, Xiaoying Han, Peter E. Kloeden, and Alain Rapaport. Dy-
namics of nonautonomous chemostat models. In Continuous and distributed
systems. II, volume 30 of Stud. Syst. Decis. Control, pages 103–120. Springer,
Cham, 2015.

[19] Tomás Caraballo, Juan C. Jara, José A. Langa, and Zhenxin Liu. Morse decom-
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