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The revised Enskog theory for a classical system of hard spheres provides a unified description
of both fluid and crystal states over a wide range of densities and wavelengths. However, practical
applications of this theory have been limited to fluid states near equilibrium. We propose here a
simpler kinetic model that retains its essential physical and mathematical features, but which admits
practical application to complex dynamical phenomena. This is illustrated by a calculation of the
rheological properties of the fluid phase under shear flow. Good agreement is obtained in comparison
with corresponding Monte Carlo simulation results. [S0031-9007(96)00873-3]

PACS numbers: 47.50.+d, 05.20.Dd, 05.60.+w, 83.50.Ax

The prototype realistic theory for dynamical propertiesdeveloped for the fluid phase it has been recognized re-
of a many-body system is the Boltzmann kinetic theory.cently that it admits the exact equilibrium crystal state as
It has a strong basis in fundamental theory, and transpovtell [6]. Linear response studies of crystal states (elas-
properties calculated from it for states near equilibrium argic constants, transport coefficients) based on the RET are
in excellent agreement with experimental studies for rarjust beginning. In summary, the RET provides a uni-
efied gases. Application of the Boltzmann kinetic equatiorfied description of fluid, crystal, and metastable states for
for more complex states has been limited until relativelythe hard sphere system near and far from equilibrium,
recently. During the past decade Monte Carlo simulatiorfor length scales extending from hydrodynamics to less
methods have been developed and applied with remarkabtkan the correlation length (hard sphere diameter). Thus,
success [1]. Complementary analytic studies of states faall of the interesting phenomena noted above can be ad-
from equilibrium have been obtained from simplified ki- dressed using the RET; we know of no other theory with a
netic models based on the Boltzmann equation [2]. In seveomparable scope.
eral cases, comparisons of the kinetic model results with Application of the RET has been limited almost exclu-
Monte Carlo simulation confirm the accuracy of the modelsively to fluid states near equilibrium. During the past
theories even far from equilibrium [3]. year, new Monte Carlo simulation methods similar to

The limitation of the Boltzmann equation to low den- those for the Boltzmann equation have been developed
sity excludes its application to many of the most inter-for the RET [7,8]. However, as yet there has been no
esting phenomena: dense fluid transport, short wavelengtinetic model for the RET to allow complementary ana-
dynamics, kinetics of freezing, crystal elasticity and transdytic studies as in the Boltzmann case. The purpose here
port, kinetics of metastable states, and dynamics of amois to fill this gap by proposing a practical kinetic model
phous solid states. In spite of a great effort over the paghat preserves all of the interesting qualitative features of
30 years, the only successful extension of the Boltzmanthe RET with the same domain of applicability. Together
equation to high densities has been for the special caseith the new Monte Carlo methods, both qualitative and
of hard spheres. This theory was developed by van Beiguantitative aspects of high density complex phenomena,
jeren and Ernst [4] and is known as the revised Enskogreviously prohibitively difficult, can be addressed in de-
theory (RET) because of its similarity to an earlier ki- tail. An example is provided here using the state of uni-
netic theory of Enskog. The RET is asymptotically exactform shear flow, widely studied by molecular dynamics
at short times for a wide class of initial conditions andsimulation [9] but with little theoretical support at the fi-
consequently has na priori limitations on the density nite densities of interest.
or space scale of the phenomena to be studied. In prac- The RET describes the time evolution of the one particle
tice it extrapolates to long times as well. For examplereduced distribution functionf(r, v, r), for the position
it provides a good description of the dynamic structureand velocity variablds, v),
factor as a function of wavelength and frequency, includ-
ing both kinetic and hydrodynamic regimes, except at the
highest densities near freezing [5]. While the RET was (0, + v -V, + m 'V, -F)f = J[f], @)
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whereF is an external force (possibly nonconservative)temperature of the nonequilibrium state. A projection

andJ[f] is the collision operator, operator for this olrthonormal set is given WFX =
o, ~ ~ Pa(V)Pe(v) (Yo, py X). To construct the kinetic model,
ISl v.0) = o fd"lf‘m O -go g the RET collision operator/[f] first is decomposed

into the two partsJ[f] = (1 — P)J[f] + PJ[f]. The
X [x(r,r — aln)f@,v,0)f(c — o,v{,1)  second term on the right side represents contributions
from collisions to the fluxes in the local conservation
— X+ oln)f (e v.0)f e + o.vi.0) s it vanishes for the Boltzmann collision operator but
(2)  is nonzero for the RET and gives the collisional transfer
Hereg=v — v, v =v — (0 - g)o, vi =v; + (o - parts of the heat and momentum fluxes. It is necessary
g)o, o is the hard sphere diamet®|x) is the Heaviside to retain this term in any approximate model in order
step function, and/Q) denotes a solid angle integration to describe transport at moderate and high densities, and
for the unit vectore. Finally, y(r,ri|n) is the local to preserve the correct stationary equilibrium distribution
equilibrium pair correlation functional for a nonuniform for the crystal phase. The first term on the right side
system with density:(r, 1) = [dv f(r,v,1). of this decomposition does not contribute directly to
It is clear that obtaining controlled approximate solu-the conservation laws and vanishes for both the crystal
tions to (1) is a formidable problem. In the spirit of ki- and fluid equilibrium states. The simplest choice is
netic models for the Boltzmann equation, we propose tdl — P)J[f]1— —v(1 — P)f = —v(f — n¢¢), where
replace (2) with a simpler form that preserves the esser+ is a velocity independent collision frequency and
tial properties of the RET. These properties include (1use has been made of the prope®f = n¢,. The
local conservation laws for mass, energy, and momentunkinetic model we propose is therefoigf] — —v(f —
(2) the exact equilibrium stationary state for both fluidn¢e) + PJ[f]. Further analysis of the last term on the
and crystal phases; (3) an accurate description of strugight side shows it can be expressed in terms of the
tural effects on small space scales; and (4) a qualitativelgollisional transfer parts of the average heat figir, 1),
correct prediction of density dependencies. To construgand pressure tensoPj;(r,¢), so that the model kinetic
such a model from the RET, consider an orthonormal se¢quation reads
of functions, ., constructed from the sét, v, v*} with

the scalar product 0, +v- -V, + m 'V F)f = —v(f — ney)
(Wrar Y15) = ] v eV WP(V) = Sap, —BedDi0;P; + 5(BmY? = 3)(V - a° + PGa;U; )]
32 ~ (4)
ptv) = (B2 emnir, @) - |
2 The collisional transfer fluxegy“(r,7) and P;;(r, 1), are

wherev = v — U is the velocity relative to the average the same nonlinear functionals of the distribution function
local flow velocity U(r,t) and (kg8) "' = T(r,t) is the  f as those obtained from the RET,

|
m 1 ™~ PaN PaNV LN
Pii(r, 1) = 703f d/\fdv[dvlfdﬂ O - g) (o - g)zaiaj
: 0

X y[r — (1 — No,r + dAoln]fc — (1 — Do, v,t)f(r + Ao, v, 1), (5)

Q“(r 1) = %ffolcmfdvfdvlfdn 06 2@ - 2'C - 56

X x[r — (1 = No,r + Ao|n]fc — (1 — Vo, v,0)f(xr + Ao, vy, 1), (6)

I
whereG = %(v + v;) — U . These terms vanish in the that has allowed so much progress at the Boltzmann level
low density limit so only the first term on the right using the low density kinetic model.
side survives and the familiar Bhatnagar-Gross-Krook It is easily verified that (4) leads to the same local
(BGK) kinetic model for the Boltzmann equation [10] is conservation laws for mass, energy, and momentum as
recovered. From the model (4), the problem of solving ahose obtained from the RET. It is also verified that a
kinetic theory withr,v, and ¢ as independent variables stationary solution is given by (r)¢(v), where ¢(v)
can be transformed to a problem of determining onlyis the Maxwellian distribution, in the absence of external
fields depending on and:. This is the key simplification forces. In this casq‘(r, ¢) vanishes, the velocity integrals
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in (5) can be performed, and (4) reduces to Recently, a class ohonlinear transport coefficients

Ve Ven(r) = — BY;0;P associated with the pressure tensor for a fluid in shear

) ! flow has been calculated from the RET [14], and we have
compared their density dependence with that obtained
from the kinetic model for these more complex properties
describing states farther from equilibrium. Again the
X ng(r,Ong(r — o). (7)  method is a straightforward application of the Chapman-

The right side is a functional of,(r) that is related to Enskog method to Burnett order, a formidable task for

the gradient of the one particle direct correlation functionN® RET but quite direct for the kinetic model. ~For
c1(rn,), so that (7) can be simplified t§, In n,(r) = example, the second viscometric function at small shear
S/ r s

V,ci(rln,). This is an identity for the special case of ates obtained from (4) is

= V'O’Z] dQ o x(r,r — olny)

a uniform density (fluid phase). More generally, it is ¥, = lima ?(P.. — Pyy)

a well-known equation from density functional theory a=0

determining the equilibrium density for an inhomogenous = —nkgT 1287 (Xn*)z[l + 4w )(n*} Q)
system (crystal phase) [11]. Similar attempts to extend 525 5

the BGK model to a description of two phases haveyhere ¢ is the shear rate (in units of). Again, the
occurred in the study of the lattice Boltzmann equationgensity dependence is found to be in qualitative agreement
This is the discrete (in space, time, and velocity) analogyith that from the RET (both are polynomials ipn*
of the Boltzmann equation, for which the correspondingof degree three). At the above density:df = 0.54 the
BGK kinetic model can be written. As in (4) an additional kinetic model overestimateB,(a) by 50%. These results
term like Pj;(r,7) has been added to describe both gasndicate that the approximations leading to the kinetic
and fluid phases [12]. However, such equations argnodel preserve the qualitative density dependence of the
structurally much simpler than the RET, without energyhard sphere fluid, even in a semiquantitative way.
conservation, the functional (r,ri|n), or the broken  \we now consider an application of the kinetic model
symmetry crystal phase. to a problem of nonlinear transport for which analytic
A first test of the kinetic model is its prediction studies using the RET have not been possible to date. The
of structural effects for states near equilibrium. Thestate considered is uniform shear flow. The macroscopic
primary features of the linearized RET are a mean fieldstate is characterized by constant temperature and pressure,
force determined from the gradient of the two pointand a flow fieldU, = ay. The shear rate is a control
direct correlation functiong,(|Ir — r'l), and wavelength  parameter that can be chosen to drive the system arbitrarily
dependent matrix elements of the linearized collisionfar from equilibrium. The viscous heating from this
operator in the subspace spanned {byv,v*}. These shearis compensated by an external nonconservative force.
features are retained in the linearized form of (4) as We”Th|S state has been studied extensively via molecular
To i”UStrate, the mean field force arises from |inearizati0ndynamics Computer simulation to illustrate rheological
of the functionaly (r,r;|») in (5), leading to a term effects in simple atomic systems. In particular, it has
5 R F) been shown that the shear viscosity becomes a function
- Bo fdﬂ on(r + o) — ) [x(r.r + oln)]  of the shear ratey(a) for states far from equilibrium.
N - . N .
The only firm theoretical results for this function have
= — BV[ea(Ir = x']) = xO(r = r'| = 0)], (8)  been obtained from the Boltzmann equation for the special
case of Maxwell molecules [15]; no results have been

where the right side defines the effective force. This termobtalineol from the RET as yet due to the complexity of

in the linear kinetic equation is responsible for featuresthe calculations involved. In contrast, it is straightforward

of the dynamic structure factor such as de Gennes na o study this problem using the above kinetic model. The

rowing. To test dynamical effects near equilibrium asleading shear rate dependencerg®) is found from the

well, the thermal conductivity, shear viscosity, and bulkCh man-Ensk xpansion to suner Burnett order to b
viscosity have been computed from (4) by applying the ap SKOg expansion 1o supe ett orderto be

Chapman-Enskog method to Navier-Stokes order [13].M = 70 _ a2y~!

The parameter is chosen to assure that the low density 75 nB

shear viscosity is the same as that from the Boltzmann 4 87 ., 1670 (19 27 -2
equation,» = nkgT xy/np, Where 5z is the Boltzmann X [? TR L ?(7 ?>( n’)
shear viscosity. As an example, the density dependence 512 ‘ 4096 ‘

of the shear viscosity is found to bg = 5y '[1 + 3375 7 (yn*)® — 39375 77'2()(”*)4] (10)

(4m/15)yn* + (647/75) (xn*)?]. This represents well
the qualitative dependence of the RET (both are polynoAt low and intermediate densities the coefficientadfis
mials in yn* of degree two, where* = no?), with a  negative, representing shear thinning. However, the term
maximum underestimate of aba2f% atn™ = 0.54. proportional to(yn*)* is positive so there is a qualitative
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problem by providing a closely related description with the
same potential, and demonstrated its practical application
in several examples including some for which the RET is
intractable. The quantitative discrepancies of the model
are expected from the analogous studies of the Boltzmann
equation for low density gas dynamics. In the latter case,
this compromise has proved worthwhile as most informa-
tion about the qualitative properties of transport far from
equilibrium have been obtained from such models. We be-
lieve the kinetic model presented here will provide similar
access to an even more interesting class of nonequilibrium
phenomena at high densities heretofore unexplored. Also,
the model can be extended to include the case of inelastic
collisions [16] and applied to fast granular flows.
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