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Path Integral Solution of the Kramers Problem
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An iterative method to generate a discrete path integral solution of the Kramers problem is presented.
It is based on a straightforward derivation of the functional formalism from the underlying Langevin
equations. The method is rather simple and systematic and allows us to analytically evaluate the
short time propagator up to and including terms of fourth order in a time incrementhis means a
significant reduction of the number of time stefshat are necessary to obtain convergent results for a
given net increment = N7. [S0031-9007(96)02050-9]

PACS numbers: 05.40.+j, 02.50.Ey

Path integral representations are commonly used in studf a Brownian particle moving in a potentidll (x). It
ies of physical problems whose dynamics are described iis governed by the Fokker-Planck equation (also called
terms of Schrédinger, Fokker-Planck, or Langevin equathe Klein-Kramers equation) for the probability density of
tions [1]. The starting point for their derivation is the fact finding the particle at time at positionx with velocity v.
that the propagator for a finite tintecan be factored into In dimensionless variables it reads
a product ofV propagators, each one propagating the sys- g p(x,v,1) = [—vd, — G(x)d, + yd,(v + £d,)]
tem for a shorter time interval = /N,

X P(x,v,t), 4
P(q,7]1q°) = [ dqV ! f dq'P(q,71q" ") Wh_ere_y is the friction coefficiente is a measure of the
noise intensityG(x) = —U’(x), and the prime denotes
--P(q",71q"), (1) differentiation with respect ta.. It may be noted that

this equation, first applied to investigate the Brownian
motion [3] and the rates of chemical reactions [4], is
ow largely employed, in various generalized forms, in
hysics, chemistry, and biology to study systems driven
noise and friction [5]. We also note that the diffusion

whereq” = {q1,...,9,}. The above equation is actually
exact for any number of time slicds The only advantage
of breaking up the propagator according to Eq. (1) is tha;
we can use on the right-hand side of this equation, inste

i+1 iy i imati
of theiflxact rl;ropagatd?(q .714q"), its approximation matrix associated with Eq. (4) does not possess an inverse.
Py, 7lq), The latter property implies that the integration measure of
P 71q") = Pey(q "', 71q) + o(z*"!), (2) the standard path integral representation available in the
literature for the multidimensional Fokker-Planck equation
becomes a singulaé{function-like) quantity. This makes
impossible the numerical evaluation of the path integral
o N—1 1 N-1 and hinders considerably obtaining explicit solutions or
Plg.t1q) = ] q f dq Pa(q.71q" ) approximations of the Wenzel-Kramers-Brillouin type.
1 0 k1 ark In the present Letter we outline a method for gener-
- Pw(g,Tlq") + O /NT),  (3) ating pregise discrete path integral representationg of the
expresses the distribution function for any (arbitrary) timepropagator, which is applicable regardless of whether the
t in terms of the known short time propagator. diffusion matrix is singular or not. One might, at first,
For many years the path integral has provided a powerfubelieve that this issue should have been settled long ago,
formal tool for deriving both perturbative and nonperturba-mainly because of its continuous usefulness in many prob-
tive systematic approximations in quantum and statisticalems ranging from chemical physics to communication the-
mechanics. Numerical applications have also become irery. To the best of our knowledge, however, there are no
creasingly important during the last decade and have oftegeneral path integral solutions of such a type, other than
led to new physical results not obtainable by other meanthose derived by splitting the original operatbrinto a
[2]. Until recently, however, this approach failed to treatlinear contributionL, and an anharmonic correctidn,
stochastic processes with noninvertible diffusion matricesand approximating each short time evolution operator by
as there were no discrete path integral representations far product of exponentials [6]. The disadvantage of this
these processes, mainly due to the “singularity” problenmapproach is that its utility is generally restricted to the
associated with the integration measure. casek = 2. Although formally possible to construct, any
Here we will deal with one of the most extensively higher order approximants involve either polynomials of
studied models of such a type, the so-called Kramersrderk of the operatord., and L, [7] or negative coef-
model. The dynamics described by the model is thaficients [8], making them rather impractical for stochastic

which needs to be valid at least to first ordetrink = 1).
The discrete path integral thus obtained,
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processes. In practice, though, one would like for the shontate the integrals correspond to those trajectories which

time propagators to be accurate for an order as highas minimize the exponent in Eg. (8) under the conditions

possible, in order to keep the number of integration varix(t) = x,v(z) = v, x(0) = xo, v(0) = v [10]. For finite

ables in Eq. (3) as small as possible (for a given net timeye, a numerical evaluation of the path integral is generally

incrementr). We also note that it is the singularity of the required. Numerical implementation of Eq. (8) is a far

diffusion matrix which prevents us from making use of anfrom simple task.

efficient power series expansion formalism developed in a Here, we suggest an alternative procedure which con-

recent series of papers by Drozdov [9]. sists of two steps. The first step is to obtain an approxi-
Our aim is to lift this restriction and to providesys- mate solution, for a short time, of the stochastic process

tematicstrategy that permits thenalytic evaluatiorof the  Q(r) = (X(¢), V(¢)). The most common method of doing

short time propagator at least to fourth ordetrinThe key  so relies on the integration of the Langevin equations

idea is the same as in the formal (continuous time) path infrom #; = i7 to #; + 7 and the expansion of the drift co-

tegral method which is based on a straightforward derivaefficients in a Taylor series about the prepo@dt:;) =

tion of the functional formalism from Langevin equations (X(z;), V(z;)) [11]. When applied to Eq. (5) this yields

without the necessity of introducing noncommuting op- 4T

erators into the discussion [10]. To keep the presenta-x(;;, + 7) = X; + ] dsV(s),

tion simple we restrict ourselves to Eq. (4). At the end 1

we shall indicate the steps needed to adapt the method to LitT

an arbitrary (either additive or multiplicative) multidimen- Vi +7)=Vi - Y[t ds V(s)

sional §tochastic process. The Langevin equations associ- G(m> T (9
ated with Eq. (4) read + Z t_' f ds[X(s) — X;]"
X=V, V+yV-G6X) =f0, (5 mmo M
wheref(z) is a Gaussian white noise normalized to + [t ds f(s),
(FO)=0,  (fOf(s) =2ye8(t = 5), (6) ’
and where capitals are used in order to distinguish the stg¥here we setQ; = Q(r;) and G" = G"(x;). The

chastic variable€X, V) from those in Eq. (4). The con- abovq equations are ther_1 solved iteratively by using the
tinuous time path integral solution for the above process i§llowing recurrence relations:

easily obtained by using Eq. (5) to transform the probabil- titr

ity density functional for the noise, which is given by Xt + 1) =X; + /; ds Vig-1)(s),

i

I N S
PLf(n] = Cex;{ yovm fo ds f (s)] O v+ =v - 'yfr‘ ds Vie-1)(s)

with C being a normalization constant, to the probability k=1 G(’m> i+ (10)
density functional for the coordinaie 3 7 ] ds[Xu-1)(s) — Xi]"
— . t;
— 1 ! m_2+7 /
Plx(t)] = CJs[x(1)] exp[ e /;) ds N f ds £(s).
ti

X [+ yx — G(x)]2}~ (8)  In this Letter we will not go beyond fourth order in

Neglecting terms of order higher thafl, one obtains
The integrand in Eq. (8) is understood to be evaluated

at the times, while J/[x(r)] denotes the Jacobian of the Xiv1 — x¢(X;, Vi, 7) = Y,
transformatlpn over the same time inter(@l ) from Fhe Vier — va(X;, Vi, 7) = Upsy
f(¢) realizations to thec(r) realizations. In the limit of
vanishingly small noiseye — 0, Eq. (8) can be evaluated where the quantities;(X;,V;,7) and v,(X;,V;, 7) are
by the method of steepest descents. The paths which dongiven by the expressions
7.2 7.3
xX, Vi,1) =X; + 7V; + T(Gi —yVi) + g[?’zvi - yG; + V;G/]

(11)

4
+ ;—4[y26i — Y3V, + GG, — 2yV)) + VG,
> S (12)
vaXi, Vi, 1) = Vi + 7(Gi = yVi) + Ty Vi = ¥Gi + ViG1 + £[¥’Gi = ¥*Vi + Gi(Gi = 2yVi) + VIG]]
4
n ;—4[y4v,- — Y3G: + GI(3y2V: — 29G; + ViG!) + ViG'(3G; — 4yV;) + V3G!"],
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and(Y;+1, U;+1) stand for also Gaussian with correlation properties [11]
Fp, =0,
Vo = Fi#) = yFa(r) + (07 + GDF3(), e v
S S\7T — S
2 / (Fn(9)Fa(r)) = 278 m! Z i'ln—i)!(m+i+1)
Uit1 = Fo(r) = yFi(7) + (y* + G))Fa(7) Cois0 '
~ (7" + 2yGYFs(7) b= (16)
. Using Egs. (6) and (16) shows after lengthy but simple
+ G [ ds Fi(s)[Fi(s) + 2sVi]  (13) cglculations that the first cumulants of the noise terms are
2 Jy given by
with Yie) =0, (Uin) = vlwie7) = 2261,
T I 12 151
— 2 3
Fm(T) ‘/;) dtm‘/;) dtm—l L dtl]() dt()f(l()) <Yi2+l> = o'xx(q') = §y£73<1 — Zy7>’
(14) Y U: = . 17
Equation (11) relates the two sets of variables iU = o3 7) (17)
(X, Vn,... Xi,Vi) and  (Yn,Uy,...,Y1,Up).  As _ ym_z[l R 4G():|’
the functions involved in Eq. (11) are all evaluated at 12 '
the prepoint(X;, V;), the Jacobian of the transformation (U2 = oryy(xi, v, 7)
is equal to unity in this case. Therefore, the short time il veme e
propagator of the discretizéd, V) realization reads _ 2787[1 — yr + sz(zyz + G
3 L

Puw(xit1,vir1, 7l xi,vi) = Rwy(yir1,uiv1,7), (15)

1 3 3 / i :|
. - o . - —7 4y’ + 5vG; — 3v;Gy) |,
whereR is the probability distribution of the fluctuating 12" 4y L viGi)

terms(Y, U). while all cumulants of higher order than 2 vanish. The

Thus, the second step of the present method is thkatter property implies that the pair stochastic process
derivation of the statistical properties of these terms(Y,U) remains Gaussian up to and including terms of
Since f(¢) is Gaussian and has a zero mean, f'e are | orderr*. This immediately yields

_ Oy (X, 0i,T) Oo(xi, T)
Payxit1, vivt, 7l xivi) = [d720 (xi,vi, 7] 2 expl — 2 g — xalxg, v, 1) P+
20(x;,v;, 7) o(xi,v;, 7)
X [xiv1 — xa(xi,vi, )] [vier — valxi, vi, 7) — vslxi, 7)]
Uxx(T) 2
[vit1 — valxi,vi,7) — vs(x, 7)), (18)

- 20(x;, v, 7)

where o (x;,v;,7) = 05 (7)o (xi, 05, 7) — 02, (xi,7), | Gaussian corrections are needed. The latter complicates
and where the matrix elements;; and the average considerably the analytic evaluation of the short time
vs(x;, 7) are given by Eqg. (17). It will also be recalled propagator. Beyond these limits, however, the procedure
that the quantities,(x;, v;, 7) andv,(x;, v;, 7) are given outlined above preserves its significance as a convenient
by Eq. (12). starting point for constructing higher order stochastic
As evidenced by Eq. (17), the range of validity of the Runge-Kutta algorithms.
above approximation for the propagator is rather sensitive Substitution of Eq. (18) into Eq. (3) yields the discrete
to the friction coefficient. The time incrementshould path integral representation of the Kramers problem we
always be taken small enough in the high friction limit are looking for. This representation is indeed rigorous and
v — o so that the integration measure remains positiveprovides a powerful tool for obtaining both perturbative
and may be taken large enough otherwise. We alsand nonperturbative approximations. But its strength and
note that the utility of the present technique in derivinglimitations when treating systematically nonlinear systems
precise and easily evaluatable short time propagatorsave yet to be explored. From a computational point
for Eq. (4) is restricted to3 = k = 4. For lower k  of view, however, the discrete path integral already has
the matrix elements,,(7) becomes equal to zero and much to offer. The advantages of the present solution
the singularity problem is met in this case. While for become more evident if one compares it with the con-
k = 5, higher order cumulants of the pair stochastictinuous time integral representation, Eq. (8). The latter
process(Y,U) are no longer equal to zero and non-is purely formal and, therefore, no simpler to implement
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numerically than the original Fokker-Planck equationservation that this equation is the same as the Ito sto-
[Eq. (4)]. In contrast, the discrete path integral permitschastic equation but with the drift vectdr; replaced by
one to devise very efficient algorithms for numerical G; + %BkjakBij-
simulations which cannot be developed in terms of par- We acknowledge the support of the Direccién Gen-
tial [Eq. (4)] or stochastic [Eq. (5)] differential equations. eral de Investigacion Cieflica y Técnica of Spain for fi-
For example, a powerful method could be based on theancial support (A.N.D.) and for Project No. PB95-0536
global (Monte Carlo sampling) techniques available for(M. M.).
the evaluation of multidimensional integrals [12]. The
most appealing feature of this approach is that it does not
require explicit reference to the distribution function and
thus avoids storing large matrices. As, however, storage
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