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The current document has been prepared according to the guidelines 
of the University of Seville as regards submitting a PhD thesis as a 
collection of journal papers. Hence, the scientific statements herein 
comprise the following sections: 

 
1. Abbreviations. 

2. Publications and merits of the PhD candidate. 

3. Summary. 

4. Introduction and state-of-the-art. 

5. Objectives. 

6. Brief description of Results and a Discussion, highlighting main 
achievements and outcomes. 

7. Conclusions. 

8. References. 

9. Appendix I, containing journal articles on which the PhD thesis is 
based. All were published in scientific journals indexed in Journal 
Citation reports (JCR) database. 

10. Appendix II, containing a manuscript under submission 
addressing the effects of phosphorylation of cytochrome c at 
position 48. 

11. Appendix III, corresponding to another manuscript in preparation 
that focuses on the characterization of a phosphomimetic 
mutant of cytochrome c at position 97. 
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ANP32B  Acidic nuclear phosphoprotein 32B 

Apaf-1   Apoptosis Protease Activation Factor-1 

ATP   Adenosine triphosphate 

BID   BH3-interacting domain death agonist 

CARD   Caspase recruitment domain 

CL   Cardiolipin 

CI   Complex I 

CII   Complex II 

CII   Complex III 

CIV   Complex IV 

CV   Complex V 

Cc   Cytochrome c 

Cc1   Cytochrome c1  

CcO   Cytochrome c oxidase 

CLT   Cytotoxic T lymphocytes 

EPR   Electron paramagnetic resonance 

ETC   Electron transport chain 

EXAFS    Extended X-ray absorption fine structure  

FADH2   Reduced flavin adenine dinucleotide 

Hig1   Hypoxia-induced gene 1  

HIGD   Hypoxia inducible domain family 

HIGD1A   HIG1 hypoxia inducible domain family 1A 

HIGD2A   HIG1 hypoxia inducible domain family 2A 

IMM   Inner mitochondrial membrane. 

ITC   Isothermal titration calorimetry 

KD   Equilibrium dissociation constant 

MD   Molecular dynamics 

NADH   Reduced nicotinamide adenine dinucleotide 

nBID   Amino terminal fragment of BID protein 
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NMR   Nuclear Magnetic Resonance 

pCMF   p-carboxymethyl-L-phenylalanine 

PTMs   Post-translational modifications 

PCD   Programmed Cell Death 

PDB   Protein Data Bank 

PTR   Phosphotyrosine 

PTK   Protein tyrosine kinases 

Q   Coenzyme Q10 

Rcfs   Respiratory supercomplex factors 

Rcf1   Respiratory supercomplex factor 1 

Rcf2   Respiratory supercomplex factor 2 

RIP1   Kinase activity of receptor-interacting protein 1 

RIP3   Kinase activity of receptor-interacting protein 3 

ROS   Reactive oxygen species 

SEP   Phosphoserine 

SET   SET nuclear oncogene 

tBID   Truncate BID protein 

TCA   Tricarboxylic acid 

TPO   Phosphothreonine  

TNF   Tumour necrosis factor 

TNF1   Tumour necrosis factor receptor 1 

WT   Wild-type 

XAS   X-ray spectra absorption  
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Post-translational modifications often modulate protein function. 
Actually, phosphorylation of cytochrome c occurs in vivo at threonine 28, 
serine 47 and tyrosines 48 and 97. Phosphorylation of the two latters, in 
particular, is related to a wide range of human diseases as cytochrome c 
plays a pleiotropic role serving as an electron carrier in the respiratory 
electron transfer and acting as a cell death signal at the onset of 
apoptosis. The effect that phosphorylation of threonine 28 and serine 47 
bears on the physiological functions of this protein remains concealed.  

The low yield of phosphorylated cytochrome c purification from cell 
extracts makes its analysis challenging. Also the specific kinases acting on 
the protein remain unknown. Hence, it has resorted to mutations to 
mimic targeted phosphorylation. Here, we have replaced threonine 28 
and serine 47 by aspartate. And the analysis of tyrosine 48 and 97 
phosphorylation has been performed by using the non-canonical amino 
acid p-carboxymethyl-L-phenylalanine (pCMF), which is a close 
phosphorylation mimic of tyrosine. 

Noteworthy, the Y48pCMF mutation significantly lowers the value for the 
alkaline transition pKa of oxidized cytochrome c. The negative charges at 
positions 28 and 48 cause a decrease in the midpoint redox potential 
value of 30 mV and 60 mV, respectively, and lower the affinity towards 
the distal site of cytochrome c1 in complex III. However, the 
phosphomimic variants at position 28, 47 and 48 are more efficient as 
electron donors to cytochrome c oxidase than the wild-type species. 
Concerning the role of cytochrome c in programmed cell death, negative 
charges at positions 48 and 97 hinder its ability to triger caspase-3 
activation. In addition, any modification of residue 47 affects the pro-
apoptotic function of cytochrome c. 

In summary, phosphorylation of cytochrome c modulates its distinct 
functions depending on the targeted residue, and can thus be the basis 
to understand an ample set of molecular diseases. 
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5.1 Post-translational modifications 

Post-translational modifications (PTMs) constitute an excellent 
mechanism to increase the functional diversity of proteins. These 
changes occur after ribosomal RNA translation and include covalent 
addition of complex molecules, chemical groups, proteins/peptides, 
cleavage and amino acid modification (Figure 1). PTMs are present in 
both, eukaryotes and prokaryotes. However, they are less common in the 
last, and mostly being of a different nature (Szymanski and Wren, 2005; 
Dell et al., 2010).  PTMs are one of the most important gears for cell 
metabolism modulation. Indeed, they are involved in the regulation of 
gene expression, signal transduction, protein-protein interaction, cell-cell 
interaction and communication between the intracellular and 
extracellular environment (Deribe et al., 2010). Protein PTM flaws are 
related to several developmental disorders and human diseases (Wang et 
al., 2014). 

 

Figure 1. PTMs mechanisms presented in cell. 
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5.1.1 Phosphorylation 

Phosphorylation has been termed ‘the PTM of choice’ for cell signal 
transduction systems because it provides a rapid and accurate 
transmission from cell-surface receptors to the nucleus. Protein 
phosphorylation consists in the addition of a phosphate group through 
an ester bond, generally by a kinase.  

The residues that are preferably phosphorylated are serine, 
threonine and tyrosine in a 1000:100:1 ratio, respectively. Tyrosine 
phosphorylation is the most frequent in intercellular signaling and 
regulation despite showing the lowest ratio (Hunter, 2009). The reason is 
the successful evolution of phosphotyrosine (PTR)-binding domains in 
combination with most protein tyrosine kinases (PTK) substrates having a 
very low basal level of tyrosine phosphorylation, essential for a signaling 
system (Liu and Nash, 2012). Furthermore, the aromatic side chain of PTR 
affords a significantly greater binding energy than the aliphatic side chain 
of phosphoserine (SEP) or phosphothreonine (TPO) because the 
phosphate on tyrosine is linked to the O4 position of the phenolic ring, 
which it lies much further away from the peptide backbone than the 
phosphate on the β-OH groups of serine and threonine.  

Tyrosine kinases are critical mediators of intracellular signaling and 
intracellular responses to extracellular signaling. Perturbations in 
tyrosine phosphorylation underlie many human diseases in particular, 
cancer and neurodegenerative diseases associated with microtubule-
associated protein Tau (Sefton et al., 1980; Bhaskar et al., 2010; Ingley, 
2012). 

Histidine, arginine and lysine residues also may undergo 
phosphorylation (Cieśla et al., 2011). In fact, histidine phosphorylation 
forms a regulatory mechanism in prokaryotes and occurs to the extent of 
6% of total in higher eukarya; but it is chemically unstable (Puttick et al., 
2008).  
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This work is focused on the regulatory role of SEP, TPO and PTR in 
the transient interactions mediated by cytochrome c, a moonlighting 
protein. 

5.2 Transient protein-protein redox interactions 

Protein-protein interactions play an essential role in cell metabolism. 
These interactions can be classified by their composition (homo- and 
hetero-oligomeric complexes), affinity (non-obligate and obligate 
complexes) and life time (transient and permanent complexes) (Nooren 
and Thornton, 2003).  

Transient interactions can be further subdivided into strong and 
weak complexes. Strong transient interactions are stabilized by binding 
of an effector molecule and have a dissociation constant (KD) in the 
nanomolar range. On the other hand, weak transient interactions are 
characterized by a KD in the micromolar range and lifetimes of seconds 
(Perkins et al., 2010).  

Electron transfer complexes are excellent examples of weak transient 
interactions, where high turnover rates is required and the lifetimes are 
even shorter than seconds (Drepper et al., 1997; Czapla et al., 2013). In 
addition, electron carriers display a certain degree of “promiscuity” due 
to their surfaces being often recognized by multiple partners (Schreiber 
and Keating 2011; Cruz-Gallardo et al., 2012). However, their redox 
centers are usually close to a hydrophobic patch that optimizes the 
electron transfer between redox partners (Crowley et al., 2001; Nogués 
et al., 2003; Díaz-Moreno et al., 2005; Monari et al., 2012). Post-
translational modifications can affect the redox centers or the interaction 
surfaces of proteins (Ly et al., 2012). 

5.3 Cellular respiration 

Cellular respiration encompasses the processes that lead to the 
production of energy, in form of adenosine 5’-triphosphate (ATP) (Figure 
2a). Two types of cellular respiration are described according to the 
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presence of oxygen: aerobic - if oxygen is present - and anaerobic. In 
eukaryotic cells, respiration is carried out in the cytoplasm and 
mitochondria. Mitochondria generate most of the chemical energy in 
aerobic cells using the end product of glycolysis (pyruvate) for the 
reactions of the tricarboxylic acid (TCA) cycle in their matrix and, later, 
through the oxidative phosphorylation, which occurs in the inner 
mitochondrial membrane (Figure 2b). 

Oxidative phosphorylation relies on the electron transport chain 
(ETC), and it is the last step in aerobic respiration (Hatefi, 2015). The 
oxidation of metabolites in TCA cycle yields molecules containing highly 
energetic electrons, responsible for electron-motive force. In the ETC, the 
electron-motive force is transduced into the proton-motive force that 
leads to generation of ATP. The ETC comprises four transmembrane 
complexes: complex I (CI; NADH-Q oxidoreductase), complex II (CII; 
succinate-Q reductase), complex III (CIII; Q-cytochrome c 
oxidoreductase), and complex IV (CIV; cytochrome c oxidase). In addition, 
ETC can be complemented with auxiliary enzymes, such as the electron-
transferring flavoprotein Q oxidoreductase, glycerophosphate 
dehydrogenase and dihydroorotate dehydrogenase (Lenaz and Genova, 
2010). The electron flow across the ETC is coupled to the transport of 
protons across the inner mitochondrial membrane, except within 
complex II, which is not a proton pump. Electrons from reduced 
nicotinamide adenine dinucleotide (NADH) are transferred to CI, and 
subsequently to CIII by the reduced form of coenzyme Q10 (Q), a 
hydrophobic quinone that diffuses rapidly within the inner mitochondrial 
membrane. CII is an auxiliary complex which connects the TCA cycle with 
ETC, transferring electrons from reduced flavin adenine dinucleotide 
(FADH2) generated upon succinate oxidation to Q. Cytochrome c (Cc), a 
small soluble heme protein, shuttles electrons from CIII to CIV, the final 
component in the chain and the one that catalyzes the reduction of O2 
(Figure 2).  

The proper working and regulation of the mitochondrial ETC is 
essential for energy production and cell detoxification. Consequently, its 
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malfunction is related to several mitochondrial diseases and aging (Storz, 
2007; Gao et al., 2008; Liesa and Shirihai, 2013) 

 
 

Figure 2. Cellular respiration and oxidative phosphorylation process. a) 
Respiration is an important cellular process that uses glucose and oxygen 
to create adenosine triphosphate (ATP), the cell main energy source. b) 
Oxidative phosphorylation. Five protein transmembrane complexes are 
involved in this process: The complex I (CI), complex II (CII), complex III 
(CIII), complex IV (CIV), and complex V (IV). Coenzyme Q10 (Q) and 
cytochrome c (Cc) shuttle electrons from CI to CIII and from CIII to CIV, 
respectively. IMM: Inner mitochondrial membrane. 

 

5.3.1 Respiratory supercomplexes 

The organization and dynamics of the protein components of the ETC 
is a matter of debate (Genova et al., 2008). Three models have been 
proposed to explain their behaviour in the membrane (Figure 3). On one 
hand, the fluid model proposes that diffusional motions of the distinct 
membrane protein components are free and independent (Hackenbrock 
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et al., 1986). In contrast, the solid model claims the existence of 
mitochondrial supercomplexes, assemblies formed by the stable 
association between respiratory complexes CI, CII, CIII and CIV (Chance 
and Williams, 1955; Yu and Yu, 1980; Hochman et al., 1985; Lenaz and 
Genova, 2012; Lapuente-Brun et al., 2013). The assemblage of 
mitochondrial supercomplexes is strictly dependent on metabolic needs 
(Ramírez-Aguilar et al., 2011). Finally, the plasticity model consists on a 
balanced distribution between free respiratory complexes and 
supercomplexes (Acín-Pérez et al., 2008; Acín-Perez and Enriquez, 2014).  

Supercomplex formation occurs in animals, plants, fungi and bacteria 
(Berry and Trumpower, 1985; Schägger and Pfeiffer, 2000; Eubel et al., 
2004; Krause et al., 2004a).  Most supercomplexes comprise CI, CII, CIII 
and CIV, except in the specific case of Saccharomyces cerevisiae, where 
supercomplexes lack CI (Schägger, 2002; Krause et al., 2004b; Acín-Pérez 
et al., 2008). Supercomplexes containing CI to CIV are also named 
respirasomes, since they can transfer directly electrons from NADH to 
oxygen (Schägger and Pfeiffer, 2000; Dudkina et al., 2011). Respiratory 
supercomplexes provide efficiency to the electron transport during the 
oxidative phosphorylation, thereby minimizing the generation of reactive 
oxygen species (ROS) (Genova and Lenaz, 2014). 

Respiratory supercomplex factors (Rcfs), which are proteins that 
mediate the association of the ETC complexes under hypoxia, have been 
described in mammals and yeasts. In yeast, these factors are respiratory 
supercomplex factor 1 (Rcf1, formerly Aim31) and respiratory 
supercomplex factor 2 (Rcf2, formerly Aim38), both being members of 
the conserved hypoxia-induced gene 1 (Hig1) protein family. They 
mediate the formation of the CIII/CIV supercomplex (Strogolova et al., 
2012; Vukotic et al., 2012). Rcf1 has two human orthologous: the HIG1 
hypoxia inducible domain family 1A (HIGD1A) and the HIG1 hypoxia 
inducible domain family 2A (HIGD2A) (Shoubridge, 2012). HIGD2A is 
necessary for the assembly of the C1/CIII2/CIV supercomplex (Chen et al., 
2012). HIGD1a is a positively regulator of cytochrome c oxidase (CcO), 
and plays a role in the modulation of cell survival and tumor growth 



 
 

27 
 

(Ameri et al., 2015; Hayashi et al., 2015). In addition, some studies 
suggest a putative stabilization of CI/CIII and CIII/CIV supercomplexes by 
the mobile carriers Q and Cc, respectively (Acín-Pérez et al., 2008; 
Enriquez and Lenaz, 2014).  
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Figure 3. Schematic representation of models for the organization of 
respiratory complexes organization. a) Fluid b) solid and c) plasticity 
models. For the plasticity model, all supercomplexes that are described 
in the literature are represented.  

 

5.4 Cytochrome c 

Cytochrome c (Cc) is a small soluble heme protein (ca. 12 kDa, 104 
amino acids) located in the mitochondrial intermembrane space under 
homestotatic conditions (Delivani and Martin, 2006). Cc has a globular 
structure with four α-helices and a heme group, which is covalently 
bound by Cys14 and Cys17 (Figure 4a). The heme group is wrapped 
within a hydrophobic pocket, though part of the cofactor is exposed to 
the solvent (Figure 4b). This conformation allows the electron transfer 
between Cc and its redox partners.  

The iron ion of heme group is essential for the activity of Cc and 
shows two redox forms in the native protein, a ferric (FeIII) oxidized state 
and a ferrous one (FeII) (Rackovsky and Goldstein, 1984; Brown and 
Borutaite, 2008). At physiological pH values, the heme iron ion is 
hexacoordinated, with His18 and Met80 providing the axial ligands (Banci 
et al., 1997). For the oxidized form, at least five distinct configurations 
can exist within the range of pH values from 1 to 12. These result from 
changes in heme axial coordination and/or in protein folding (Boffi et al., 
2001, Ying et al., 2009). The transformation from the physiological state 
III into state IV upon a pH increase is called the alkaline transition, which 
involves the replacement of Met80 as an axial ligand by Lys72, Lys73, or 
Lys79 (Wilson and Greenwood, 1996; Assfalg et al., 2003) (Figure 4a).  
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Figure 4. Tridimensional structure of human Cc. a) Ribbon 
representation of the solution NMR structure of human Cc (Protein Data 
Bank, PDB, code 1J3S (Jeng et al., 2002)). The Fe atom of the heme group 
is colored in red. The two axial ligands of heme group (His18 and Met80), 
Lys72, 73 and 79 are also shown. The four α-helix are denoted as α1, α2, 
α3 and α4. b) Surface representation of human Cc showing the portion 
of heme group (colored in green) exposed to solvent.  

 

Cc plays a double role in the cellular metabolism. Under homeostasis, 
Cc acts as electron carrier between CIII and CIV. The redox reactions 
between Cc and its partners cytochrome c1 (Cc1), from CIII, and CIV have 
been characterized by time-resolved spectroscopy and steady-state 
enzyme kinetic analyses (Yu et al., 1973; Speck et al., 1984; Esposti and 
Lenaz, 1991; Konermann et al., 1997; Trouillard et al., 2011). These 
studies showed multiphasic kinetic traces that suggested the presence of 
additional binding sites for Cc on its partners. Recently, Moreno-Beltrán 
and co-workers reported two binding sites of Cc in Cc1 using nuclear 
magnetic resonance (NMR) and isothermal titration calorimetry (ITC) 
(Moreno-Beltrán et al., 2014; 2015). The first one, named proximal site, is 
a catalytic site suitable for transfers of electrons between both 
hemeproteins. It corresponds to the binary complex conformation 
determined by X-ray diffraction in yeast (Lange and Hunte, 2002). The 
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second, called distal site, locates close to the Rieske subunit and 
facilitates the turnover and sliding mechanism of Cc molecules. In its 
turn, CIV also shows two binding sites: a productive or catalytic site and a 
non-productive binding site (Osheroff et al, 1983; Moreno-Beltrán et al, 
2015). The presence of secondary binding sites for Cc in CIII and CIV 
suggest a “restrained diffusion pathway” for Cc molecules carrying 
electrons between the two respiratory complexes (Moreno-Beltrán et al., 
2014, 2015). 

Under stress conditions, Cc releases to cytosol and nucleus to 
interact with several targets (Zou et al., 1999; Martínez-Fábregas et al, 
2013, 2014a, 2014b; González-Arzola et al., 2015). In the cytosol, Cc acts 
as an inducer of programmed cell death (PCD) by activating the caspase 
cascade (Desagher and Martinou, 2000; Jiang and Wang, 2004; Ow et al., 
2008) (Figure 5). The next section shows an overview of PCD and the role 
of Cc in this process.  

 

 

 

Figure 5. Roles of Cc in cell metabolism under homeostatic and stress 
conditions. In the square is represented the ETC and the Cc bound to 
cardiolipin. 
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5.4.1 Programmed cell death 

A multicellular organism is a highly organized community of cells, 
where their number is tightly regulated by controlling the rates of cell 
division and death. Cells that are no longer needed, they “commit 
suicide” by activating an intracellular death program called programmed 
cell death (PCD). PCD is a regulated process that occurs under 
homeostatic conditions and tissue development in all multicellular and 
some unicellular organisms (Kerr et al., 1972; Ameisen, 2002; Debrabant 
et al., 2003; Engelberg-Kulka et al., 2006). Alterations in PCD process are 
related to many diseases (Gilchrist, 1998; Vila and Przedborski, 2003; 
Fuchs and Steller, 2011). In multicellular organisms, several PCD 
processes that use different pathways for active cell suicide have been 
described (Galluzzi et al., 2012). PCD shows four main routes that are 
summarized in Table 1: 

 
Apoptosis is a mechanism that implicates the activation of a family of 

aspartic acid-specific proteases, called caspases. They are synthesized as 
zymogens, requiring a proteolytic process carried out by other caspases 
for their activation. This is known as caspase proteolytic cascade and 
provides a self-protection mechanism to cell, avoiding the start of 
uncontrolled cell death (Chang and Yang, 2000; Denault and Salvesen, 
2002; Logue and Martin, 2008). 

Autophagy is a self-degradative process that responds to stress 
conditions such as starvation, hypoxia, mitochondrial damage, and 
pathogen infection. This mechanism is independent of caspases 
activation and is accompanied by a massive cytoplasmic vacuolization. It 
is an important process for balancing sources of energy at critical times 
during development (Glick et al., 2010).  

Necroptosis is a regulated necrosis, which implicates the activation of 
death receptors (such as tumour necrosis factor receptor 1, TNF1) and 
requires the kinase activity of receptor-interacting protein 1 and 3 (RIP1 
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and RIP3, respectively). This programmed necrosis involves the active 
disintegration of mitochondrial, lysosomal and plasma membranes 
(Vandenabeele et al., 2010).  

Finally, pyroptosis was described as a peculiar cell death in 
macrophages induced by certain bacterial infections, such as Salmonella 
typhimurium (Bergsbaken et al., 2009). Pyroptosis can also be triggered 
by non-bacterial pathological stimuli (Kepp et al., 2010). The most 
distinctive biochemical feature of pyroptosis is the early induced, 
proximity-mediated activation of caspase-1, which leads to the release of 
pyrogenic interleukins (Franchi et al., 2009).  

 
Table 1. Schematic overview of the multiple pathways of PCD.  

TNF-α: tumor necrosis factor-α; FasL: Fas ligand; TRAIL: TNF-related 
apoptosis-inducing ligand; HDAC: histone deacetylase; DAMPs: Damage-
associated molecular pattern molecules; JNK: c-Jun N-terminal kinase. 
Based on Inoue and Tani, 2014. 
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5.4.1.1 Apoptotic pathways 

Apoptosis has can be induced by three different signaling pathways 
that converge in the activation of caspase-3, considered one of the 
central molecules in PCD (Porter and Jänicke RU, 1999; Elmore, 2007): 
the extrinsic pathway, the perforin/granzyme pathway and the intrinsic 
pathway. 

The extrinsic pathway (or death receptor pathway) is triggered by 
extracellular stimuli acting on receptors of the tumor necrosis factor 
(TNF) receptor gene superfamily (Locksley et al., 2001). The best-
characterized ligands and their corresponding death receptors include 
FasL/FasR, TNF-α/TNFR1, Apo3L/DR3, Apo2L/DR4 and Apo2L/DR5. Upon 
ligand binding of to its receptor, the adaptor proteins FADD, TRADD or 
RIDD transmit the activating signal to effector caspases 2, 8, and 10 
(Kruidering and Evan, 2000). 

The perforin/granzyme pathway involves the release of 
perforin/granzyme by cytotoxic T lymphocytes (CTL) (Trapani and Smyth, 
2002). CTL secrete perforin over target cells to generate pores in their 
cell membrane. These pores are the entry for granules that contain 
granzyme B or granzyme A. Granzyme B is able to activate the intrinsic 
death pathway by activation of pro-apoptotic members of the BCL-2 
family, such as BH3-interacting domain death agonist (BID) (see below). 
In addition, granzyme B can directly activate procaspase-3. Granzyme A 
cleaves NDUFS3, a component of CI of the ETC, generating ROS 
(Martinvalet et al., 2005). On the other hand, granzyme A goes to 
reticulum endoplasmic and interacts with SET complex, which comprises 
the base excision repair endonuclease Ape1, an endonuclease NM23-H1, 
and a 5′-3′ exonuclease Trex1. The complex SET/granzyme A goes into 
the nucleus and activates DNase NM23-H1, which cleaves DNA. This 
results in the accumulation of single stranded DNA and activates a 
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caspase-independent cell death pathway. (Beresford et al., 1999; Fan et 
al., 2003). 

Finally, the intrinsic apoptotic pathway (also called mitochondrial 
pathway) is triggered by stimuli such as DNA damage, stress signals or 
cytotoxic drugs. These stimuli activate caspase 8, which cleaves the 
amino terminal fragment of BID protein (nBID), a member of the BH3-
only subgroup of Bcl-2 family proteins in the cytosol (Li et al., 1998). 
However, the dissociation of the nBID of the rest of the truncate protein 
(tBID) occurs in the mitochondria by the interaction betwwen tBID and 
cardiolipin (Liu et al., 2005). tBid promotes the assembly of Bak–Bax 
oligomers within the mitochondrial outer membrane (Gonzalvez et al., 
2005). The Bak–Bax oligomers form pores in mitochondria membrane, 
yielding the release of Cc to cytosol (Chipuk and Green, 2008). Under 
DNA damage, Cc goes to the nucleus where it interacts with SET/TAF-
1β (González-Arzola et al., 20015).  

Remarkably, the PCD is evolutionarily conserved along plants to 
humans, being Cc a central axis of this process (Martínez-Fábregas et al., 
2013; Martínez-Fábregas et al., 2014b). 

5.4.2 Cytochrome c and apoptosis 

Under stress conditions, Cc plays a second role in the cell as 
intermediate in apoptosis (Cai et al., 1998). During apoptosis, Cc is 
released from mitochondria to the cytosol to activate the caspases 
cascade. The release of Cc from mitochondria is still unknow, but several 
hypotheses have been proposed, such as the formation of a permeability 
transition pore or a mitochondrial swelling (Green and Reed, 1998; Gao 
et al., 2001).  

Although Cc is a soluble hemeprotein, a substantial population of it is 
bound to the lipid cardiolipin (CL), which is specific of the inner 
mitochondrial membrane. It has been suggested that the apoptosis-
inducing form of Cc is the membrane-bound fraction (Jemmerson et al., 
1999; Iverson and Orrenius, 2004; Kagan et al., 2005; Bergstrom et al., 
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2013). Cc shows two interaction sites with CL. The first one is called A-
site (constituted by Asn52) and is responsible for the electrostatic 
interaction with the deprotonated phospholipids. The second one is the 
C-site, which comprises Lys73, Lys73 and Lys79, and allows the binding of 
the protonated phospholipids by hydrogen bond and the insertion of two 
acyl chains of the CL into two hydrophobic pockets of Cc (Figure 6) 
(Rajagopal  et al., 2012; Sinibaldi et al., 2010, 2013). The hydrophobic 
pockets of Cc enable the displacement of water molecules, allowing the 
formation of hydrogen bonds more freely and increasing their number. 
The degree of acidic phospholipid protonation was suggested to be a 
critical factor governing Cc association with membrane via either A- or C-
sites. Complex formation causes loosening and reversible unfolding of Cc 
(Spooner and Watts, 1991). Recently, it has been demonstrated that the 
binding of Cc to CL enhances the peroxidase activity of the protein, a 
property shared by almost all hemeproteins, due to a conformational 
change that allows the access of hydrogen peroxide to the heme crevice 
(Radi et al., 1991; Lawrence et al., 2003; Kim et al., 2004; Kagan et al. 
2009; Pandiscia and Schweitzer-Stenner, 2015).  



 
 

37 
 

 

Figure 6. A model of CL-Cc interaction. A putative 1:1 complex of CL with 
Cc showing the two interactions that occurs in the CL-Cc complex 
(Sinibaldi et al., 2010, 2013). In the hydrophobic interaction, two acyl 
chains of CL are inserted into two hydrophobic pockets surrounding 
Met80 of Cc. The CL moiety is in magenta, A-site and C-site are in blue. 
The heme group is in green and the iron ion is shown as a red sphere. 
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Upon oxidation of cardiolipin, Cc is released to the cytosol and 
interacts with the Apoptosis Protease Activation Factor-1 (Apaf-1) to 
assemble the apoptosome (Li et al., 1997). Apaf-1 consists in several 
copies of WD-40 domains, a caspase recruitment domain (CARD), and an 
ATPase domain (NB-ARC). dATP binding triggers a set of conformational 
changes that results in the formation of the active apoptosome, which is 
formed by seven Apaf-1/Cc complexes arranged in a wheel form (Figure 
7) (Zhou et al., 2015). This complex cleaves pro-caspase 9, generating its 
activated shape. Caspase 9 activates caspase 3, which stimulates the 
subsequent caspase cascade that commits the cell to apoptosis (Li et al., 

1997).  

Figure 7. Structure of the heptamer Apaf-1/Cc apoptosome.  Ribbon 
representation of the solution NMR structure of human apoptosome 
(Protein Data Bank, PDB, code 3JBT (Zhou et al., 2015)). Cc is colored in 
red, Apaf-1 in blue and dATP in orange. 

 

Recent proteomic studies have shown that Cc could also be 
translocated to the nucleus where it interacts with several targets, such 
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as SET nuclear oncogene (SET) or acidic nuclear phosphoprotein 32B 
(ANP32B) (Nur-E-Kamal et al., 2004; Martínez-Fábregas et al., 2014a, b). 
Specifically, Cc goes to the nucleus upon DNA damage, where it interacts 
with SET/TAF-Iβ. This interaction blocks the binding of SET/TAF-Iβ to core 
histones, thereby locking its histone-binding domains and inhibiting its 
nucleosome assembly activity (González-Arzola et al., 2015).   

5.5 Post-translational modifications and cytochrome c function 

Post-translational nitration, phosphorylation and (tri)methylation 
regulate Cc function (Kluck et al., 2000; Cruthirds et al., 2003; Oursler et 
al., 2004; García-Heredia et al., 2010; García-Heredia et al., 2012). In 
human Cc, phosphorylations of Thr28 and Ser47 have been reported 
recently (Zhao et al., 2011). The residues Tyr46, Ser67 and Tyr74 can be 
nitrated (Cassina et al., 2000; MacMillan-Crow et al., 2001; Abriata et al., 
2009; Díaz-Moreno et al., 2011). Further, Tyr48 and Tyr97 of mammal Cc 
undergo both, phosphorylation and nitration (Lee et al., 2006; Yu et al., 
2008; Abriata et al., 2009). In addition, yeast Cc can be (tri)methylated at 
Lys72, which abolishes  its pro-apoptotic activity (DeLange et al., 1970; 
Polevoda et al., 2000; Kluck et al., 2000) (Figure 8). 

The effects of post-translational modificacion of Cc have been usually 
studied by nitro- and phosphomimetic variants due the low yield from 
cell extracts and the difficulty to preserve the post-translational 
modifications after purification. In addition, Cc-kinases remain 
unidentified. Tyrosine nitration of Cc is implicated in cell metabolism 
regulation under oxidative stress (Cassina et al, 2000; Abriata et al, 2009; 
Su and Groves, 2009; Garcia-Heredia et al., 2010, 2012). However, 
phosphorylation is postulated as the main regulation mechanism of the 
ETC in higher organisms under homeostatic and stress conditions 
(Hüttemann et al., 2005). The effects of this modification on Cc function 
become a particular interest because it relates to several diseases or 
pathological conditions like cancer, inflammation, sepsis, asthma and 
ischemia/reperfusion (Hüttemann et al., 2012; Sanderson et al, 2013; Lee 
and Hüttemann, 2014; Shay et al., 2015). 
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Figure 8. Residues involved in post-translational modifications of 
cytochrome c. Ribbon representation of structure of human Cc (PDB 
code 1J3S (Jeng et al., 2002)). Residues Thr28 and Ser47 (in red) can be 
phosphorylated. Tyr46, Tyr67 and Tyr 74 (in blue) undergo nitration. 
Tyr48 and Try97 (in orange) can be nitrated or phosphorylated. Lys72 (in 
pink) can be (tri)methylated. 

 

In this context, it is known that phosphorylation at either Y48 or Y97 
affects the role of Cc as electron carrier. In relation to the PCD process, a 
negative charge at position 48 decreases the ability of Cc to activate the 
caspase cascade (Lee et al., 2006; Yu et al., 2008; Pecina et al., 2010; 
Garcia-Heredia et al., 2011). However, how the phosphorylation at 
position 28 and 46 alters the role of Cc in cell life and death is unknown. 
Moreover, the use of glutamate or aspartate residue to imitate a PTR is 
under discussion, because only mimic the charge but not the aromatic 
ring of the PTR residue (Xie et al., 2007; Ge et al., 2010). 
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Hence, the goal of this Thesis is to contribute to a general 
understanding of the effects of phosphorylation of Cc in the interaction 
with its physiological targets. In addition, this work shows a new tool to 
analyze tyrosine-phosphorylated proteins, whose yield from cell extracts 
are low or their kinases are unknown. 
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6.  OBJECTIVES 
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The main goal of this PhD thesis research work is to determine the 
effects that post-translational phosphorylation of cytochrome c bears not 
only on its 3D structure but also on its double role in controlling cell life 
and death. Specifically, the work herein reported aims at determining 
whether such modification in cytochrome c induces conformational 
changes that could alter the interaction with its cellular targets. 

The specific objectives are as follows: 

1. To characterize the changes in the biophysical and structural 
properties of cytochrome c induced by phosphorylation at 
position 28, 47, 48 and 97. In particular, to compare the effects 
of the classical Tyr-by-Glu mimetic mutation with those 
promoted by replacement of tyrosine 48 with the novel non-
canonical amino acid p-carboxymethyl-L-phenylalanine, which is 
introduced by using the evolved tRNA synthetase technique. 

2. To understand how phosphorylation of cytochrome c affects the 
interactions with its partners in the electron transport chain, 
namely complexes bc1 and cytochrome c oxidase, under different 
physiological contexts. 

3. To assess the ability of phosphorylated cytochrome c to oxidize 
cardiolipin – an exclusive inner mitochondrial membrane lipid. In 
particular, to test whether the phosphorylation of cytochrome c 
affects its affinity by the lipid.  

4. To investigate the capacity of phosphorylated cytochrome c to 
trigger apoptosis. Specifically, to understand the effects of 
phosphorylation on the caspase activation capacity of 
cytochrome c.  

In addition, a secondary objective is listed below: 

1. To improve the synthesis of the non-canonical amino acid p-
carboxymethyl-L-phenylalanine. 
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In this section, a quick overview at the Results and Discussion of 
published and unpublished works is presented. Please, refer to the 
journal publications in Appendix I and unpublished works in Appendix II 
and III for further details. 

 
Post-translational modifications of proteins are relevant regulatory 

mechanisms to control an ample number of processes involved in cell 
metabolism. One of the most usual modifications is phosphorylation, 
which is implicated in the control of fundamental cellular processes 
including the cell cycle, cell adhesion, and cell survival, as well as cell 
proliferation and differentiation. The purpose of this thesis is to 
investigate the effect of phosphorylation of Cc on its structure and 
function, with a particular focus on interactions with its physiological 
targets due to the role of phosphorylated Cc in diseases such as cancer or 
isquemia.  

The ETC is postulated to be primarily regulated by protein 
phosphorylation in higher organisms (Hüttemann et al., 2008). However, 
the effects of this modification on the dual function of Cc are partially 
understood. Cc is phosphorylated in vivo in Tyr48 and Tyr97 (Lee et al., 
2006; Yu et al., 2008). Recently, a proteomic analysis has yielded the 
discovery of two new phosphorylation sites at positions 28 and 47. These 
sites are the first residue phosphorylations described in human Cc (Zhao 
et al., 2011). 

The specific Cc-phosphorylating kinase remains unknown and, due to 
the difficulty in obtaining enough phosphorylated Cc for experimental 
studies, phosphorylation of Cc is usually studied by phosphomimic Cc 
variants (Kadenbach and Urban, 1968; Pecina et al., 2010; García-Heredia 
et al., 2011).  

Traditionally, tyrosine phosphorylation has been mimicked by 
glutamate and aspartate residues (García-Heredia et al., 2011). However, 
the volume of these two amino acids is smaller regarding that from a 
phosphotyrosine and also they exhibit one charge less. The non-
canonical amino acid p-carboxymethyl-L-phenylalanine (pCMF) is a 
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mimetic of phosphotyrosine residue that emulates better its volume and 
charge than glutamate or aspartate residues (Figure 8a) (Guerra-
Castellano et al., 2015). Moreover, pCMF is more stable than traditional 
analogues, and it is resistant to protein tyrosine phosphatase hydrolysis. 
Hence, to mimic the phosphorylations of tyrosines 48 and 97, the 
evolved tRNA synthetase technique was used to introduce biologically 
the pCMF at the desired position (Ryu and Schultz, 2006; Xie et al., 2007) 
(Figure 8b). Thus, the mutants Y48pCMF and Y97pCMF Cc, respectively, 

were obtained (Guerra-Castellano et al., 2015).   

Figure 8. pCMF and the evolved tRNA synthetase technique. a) 
Eschematic representation of phosphotyrosine, glutamate and pCMF 
residues. Atoms are colored by element according to the CPK code.  b) To 
introduce the pCMF into the protein, the Tyr-encoding triplet of interest - 
48 and 97 to produce de Y48pCMF and Y97pCMF mutants, respectively - 
was replaced with an amber codon (TAG) in the human Cc gene. The 
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latter allows the incorporation of pCMF aided by a designed orthogonal 
tRNA that recognizes the amber codon. 

It was suggested recently that this approach has the major drawback 
of affecting the folding pathway of the protein, thereby leading to non-
native states (Radi, 2012). Hence, we have tested whether the 
introduction of pCMF affects the structure of Cc by molecular dynamics 
(MD) computations, UV CD and 15N, 1H, 13C, 1H- heteronuclear correlation 
spectra (HSQC) (Guerra-Castellano et al., 2015). The results imply that 
the mutation does not affect the overall folding of the protein during its 
synthesis and the protein structure remained similar to the wild type 
species.  

To the best of our knowledge, this is the first time that this technique 
has been applied to hemeproteins. Moreover, the overall yield of the 
organic synthesis of the pCMF has been significantly improved, from 44% 
to 75%, by modifications of the original synthetic protocol (Ryu and 
Schultz, 2006; Guerra-Castellano et al., 2015). In addition, replacing the 
initial reactant for the first step of methyl esterification has considerably 
lowered the cost of the synthesis to 70% of cost per yield (Guerra-
Castellano et al., 2015). 

For positions 28 and 47, the corresponding residue was replaced by 
the canonical amino acid aspartic acid (T28D and S47D, respectively). As 
a control, two other mutants were analyzed in the same two positions 
(S47A and T28A Cc) in order to differentiate the effects due to the 
presence of a negatively charged residue (Guerra-Castellano et al., 2016).  

The heme coordination of phosphomimetic species was analyzed by 
visible CD spectra. CD is a technique that provides information about the 
interaction between the heme group and the protein matrix (Dragomir et 
al., 2007). All phosphomimetic species showed the distinctive spectrum 
for Cc at state III, with a maximum at 410 nm corresponding to the B-
band, which reveals a splitting (Guerra-Castellano et al., 2015; Guerra-
Castellano et al., 2016). This splitting is due to the internal electric field of 
the protein, and it is usually observed in low-spin cytochromes 
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(Schweitzer-Stenner, 2008). Surprisingly, such B-band splitting was fully 
lost in the S47A mutant. To assess this behavior of the mutation by 
alanine at position 47 and to compare it to the wild-type (WT) protein, 
MD computations were performed on the native WT and S47A species.  
Data suggest that a change in the motion modes of Cc, rather than a 
substantial structural change, is responsible for the loss of the B-band 
splitting induced by the S47A mutation (Guerra-Castellano et al., 2015).  

The alkaline transition of Cc, which involves the replacement of 
Met80 as an axial ligand by Lys72, Lys73, or Lys79 at high pH values was 
only affected in the mutant Y48pCMF Cc, in which the pKa value for this 
transition drops to physiological values. To understand how this 
substitution affected the coordination of heme group, Raman scattering 
in collaboration with Prof. Peter Hildebrandt (Technische Universität 
Berlin, Germany), electron paramagnetic resonance (EPR) in 
collaboration with Prof. Miguel Teixeira (Institute of Biological Chemistry 
and Technology António Xavier, Portugal) and X-ray spectra absorption 
(XAS) in collaboration with Dr. Sofia Diaz Moreno (Diamond Light Source, 
Oxford, UK), were recorded at different pH values. Raman spectroscopy 
data showed that the alkaline state contribution increased along the pH 
range from 7.0 to 12.0. However, no change was seen in the range from 
pH 5.8 to 7.0. In contrast, 1D NMR spectra show that the Met80 Hε signal 
fades at neutral pH values; and they indicate a pKa value of 6.3. The 698-
nm band of the visible spectrum shows a similar behavior (pKa = 6.7). To 
better understand of the heme environment of Y48pCMF mutant, EPR 
assays were performed at different pH values. At low pH, the 
phosphomimic mutant showed two resonance sets. The first one 
corresponded to hexacoordinated low-spin ferric iron, the same as those 
found for the Y48E mutant (García-Heredia et al., 2011). The second was 
a signal typical of high-spin FeIII population in a tetragonal ligand field, 
indicative of pentacoordinated iron. Remarkably, the high-spin signal is 
substantially weaker in the Y48E mutant (García-Heredia et al., 2011). 
This finding is of particular relevance, since loss of the sixth iron ligand 
promotes translocation of the heme-protein to the cytosol and to the 
nucleus (Hannibal et al., 2016). However, the extended X-ray absorption 
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fine structure (EXAFS) spectra of WT and Y48pCMF Cc species were highly 
similar. Taking together, data showed an overall intact heme pocket, with 
the exception of the mutation site due to the presence of the carboxyl 
group of pCMF near the heme propionates (Guerra-Castellano et al., 
2015)  

In the ETC, Cc carries electrons from its donor protein, Cc1 of CIII, to 
CIV. The success in a redox process is that the carrier recognizes the 
donor and the acceptor proteins and dissociates quickly from them 
(Bashir et al., 2011; Díaz-Quintana et al., 2015). The ETC reactions 
between Cc and its partners have been characterized by time-resolved 
spectroscopy and steady-state enzyme kinetic studies (Yu et al., 1973; 
Speck et al., 1984; Esposti and Lenaz, 1991; Konermann et al., 1997; 
Trouillard et al., 2011). The thermodynamics and stoichiometry of the 
binding of Cc mutants ─ obtained by substitutions at positions 28, 47 and 
48 - to the soluble N-terminal domain of Arabidopsis thaliana Cc1 were 
studied by ITC and compared with previously reported data for WT Cc 
(Moreno-Beltrán et al., 2015). All mutants maintained the stoichiometry 
2:1 (Cc: Cc1) described for the WT species. The two binding sites for Cc in 
Cc1 are known as proximal and distal, according to the corresponding 
heme-to-heme distances (Moreno-Beltrán et al., 2015). All 
phosphomimetic proteins showed similar affinity by the proximal site of 
Cc1 (compatible with electron transfer). However, the distal site, 
dependent on electrostatics, was substantially weakened by the 
presence of negative charges at positions 28 and 48 of Cc (Guerra-
Castellano et al., 2016). In addition, the redox potential of the T28D and 
Y48pCMF Cc species showed a decrease in ca. 30 mV and ca. 60 mV in 
comparison with WT species, respectively (Guerra-Castellano et al., 2015; 
Guerra-Castellano et al., 2016).  

To dig into the interaction of phosphovariant Y48pCMF Cc with Cc1, 
NMR titrations of 15N labeled reduced Y48pCMF Cc with unlabeled 
reduced plant Cc1 were performed as previously described for WT 
species (Moreno-Beltrán et al., 2015). All the perturbed amide signals, 
excepting those from Lys55 and Ile58, are from residues surrounding the 
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heme crevice, as described for the interaction between WT Cc and Cc1 
(Moreno-Beltrán et al, 2014; 2015). In fact, this region constitutes a very 
well-conserved interaction surface patch in c-type cytochromes (Díaz-
Moreno et al., 2005a, b; Volkov et al., 2006; Díaz-Quintana et al., 2008, 
Sakamoto et al., 2011,). The residues Lys55 and Ile58 are located just on 
the opposite side to the interaction surface and their perturbations only 
appear in the mutant. A plausible explanation of these perturbations is 
that the bound to Cc1 promotes several internal movements which are 
favored by the more flexibility of the mutant structure. 

Aditionally, the binding affinity of the cross-complex between bovine 
CcO, the other Cc partner in the ETC, and the Y48pCMF mutant was 
analyzed by ITC, as previously described for WT Cc species (Moreno-
Beltrán et al., 2015). Y48pCMF Cc bound two sites on CcO, as described 
previously for WT Cc (Moreno-Beltrán et al., 2015). However, both sites – 
proximal and distal – showed an affinity for Y48pCMF Cc substantially 
lower than that for the WT species.  

To better understand how phosphorylation at position 28, 47, 48 and 
97 could affect the oxidative phosphorylation process, the ability of Cc 
mutants to reduce CcO was analyzed using the isolated protein CcO with 
WT and phosphomimetic variants of Cc. The CcO activity was higher 
when a negative charge was presented at positions above-mentioned, 
suggesting that phosphorylation enhances electron donor capacity of Cc 
towards CcO (Guerra-Castellano et al., 2016). As noted in the 
Introduction section, three models have been proposed for the 
organization of the respiratory complexes. The fluid model, where all 
membrane proteins and redox components catalyzing electron transport 
and ATP synthesis are in constant and independent diffusional motion 
(Hackenbrock et al., 1986). The solid model, which shows a 
supramolecular organization of individual respiratory complexes 
mediated by specific interactions and where are implicated respiratory 
factors, such as Rcfs in yeast or HIGDs in mammals (Schagger and 
Pfeiffer, 2000; Shoubridge, 2012; Strogolova et al., 2012; Vukotic et al, 
2012). Finally, the plasticity model conciles these apparently opposite 
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models. In this model, the supercomplex formation is dynamic and in 
equilibrium between fixed supercomplexes and independent respiratory 
complexes (Acín-Pérez et al., 2008). For this reason, the effect of 
supercomplex formation and the role of the respiratory factors over the 
CcO activity were analyzed. The study with the isolated HIGD1A and 
HIGD2A proteins with the Y48pCMF and Y97pCMF mutants showed a 
significant increment in the rate of CcO-catalyzed oxidation of both 
mutants in comparison to WT Cc species. In addition, data revealed that 
HIGD2A modulated the kinetics of the reaction more than HIGD1A. 
Nevertheless, the HIGD-dependent increase in CcO activity is slightly 
smaller for phosphomimic species compared to WT species. This 
observation was confirmed in the cellular context, using yeast 
mitochondria that express Rcf1, the orthologous of HIGD1A and HIGD2A 
(Chen et al., 2012). Rcf1 mediates the assembly CIII and CIV to form a 
supercomplex (Strogolova et al., 2012; Vukotic et al., 2012). Hence, the 
effects of supercomplex in the OxPhos process were also tested.  To do 
that, wild-type and knockout in Rcfs proteins – in yeast Rcf2 also 
mediated supercomplex assembly – mitochondria were tested under 
different growth media because the assembly of mitochondrial 
supercomplexes is strictly dependent on the metabolic needs (Ramírez-
Aguilar et al., 2011). In addition, respiratory supercomplexes can show a 
certain degree of heterogeneity in their composition due to metabolic 
transition in yeast, or to tissue-specific isoform variability in mammal 
(Kennaway et al., 1990; Fukuda et al., 2007). Under the context of 
supercomplexes, Y48pCMF and Y97pCMF Cc species were less efficient 
than WT as an electron carrier towards CcO. Hence, the Rcf-mediated 
ETC flux increase was lower with phosphomimetic mutants of Cc. It is 
known that nitration of Cc in its tyrosine residues by peroxynitrite 
increments its peroxidase activity and, concomitantly the impairment of 
the membrane potential formation (Nakagawa et al., 2007). Similarly, the 
phosphorylation at position 48 and 97 may help to prevent 
hyperpolarization of the mitochondrial membrane due to ROS/RNS 
production, which is related to apoptosis process (Rego et al., 2001; Perl 
et al, 2004). Thus, data suggests that phosphorylation of Cc modulates 
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the mitochondrial ETC, allowing a fast adaptation of the hemeprotein 
activity to shift in the physiological circumstances.  

The role of Cc as inductor of PCD was also analyzed. Mitochondria 
contain a pool of Cc that interacts with CL (Ascenzi et al., 2015). During 
apoptosis, Cc is able to oxidize CL (Vladimirov et al., 2006). This 
peroxidation allows the release of Cc to cytosol, where it participates in 
the formation of apoptosomes and the caspase activation (Puchkov et 
al., 2013; Li et al., 1997). The interaction of Cc mutants with CL was 
analyzed in liposomes that contained CL in a ratio 1:4 (CL:lipids), which 
represents the physiological ratio under homeostasis (Vik et al., 1981). All 
phosphomimic mutants showed a decrease in their affinity by CL. 
However, the CL-Cc peroxidase activity increased in T28D and Y48pCMF 
mutants (Guerra-Castellano et al., 2016). Thus, phosphorylation may 
produce a structural change allowing greater accessibility to H2O2 and 
affect the insertion of the acyl moiety in the Cc. Notably, both mutations 
of Ser 47 decrease the affinity towards CL and peroxidase activity 
(Guerra-Castellano et al., 2016).  

Finally, the capacity of phosphomimetic Cc to activate caspase-3 was 
tested in cell extract devoid endogenous Cc. Caspase-3 is a good marker 
of apoptosis, being considered one of the central molecules in PCD 
(Porter and Jänicke RU, 1999; Elmore, 2007). The presence of a negative 
charge at position 48 and 97 decreased the caspase activation capacity in 
comparison with WT Cc species. This result is particularly relevant for the 
phosphorylation at position 97, which is strongly induced after insulin 
treatment in post-ischemia state. In addition, this increase is related to a 
decrease in neuronal death of 50% (Sanderson et al., 2013). Caspase-3 
cleavage constitutes a potent neuroprotective strategy, so the study of 
the phosphomimetic Y97pCMF would be a useful tool to design 
therapeutic applications (Namura et al., 1998; Yuan, 2009). Surprisingly, 
both mutations of Ser47 (S47A and S47D mutans) decreased caspase-3 
activation, so this effect is independent of the additional negative charge 
concomitant to phosphorylation and reveals the importance of position 
47 in caspase activation (Guerra-Castellano et al., 2016).  
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In summary, Cc is a well-conserved protein along eucaryotic 
organisms, where participates in electron transport and apoptotic 
processes. Here, we have tested whether post-translational 
modificacions, such as phosphorylation, could affect its structure and 
ability to interact with its physiological partners.  Data that presents in 
this PhD thesis shows that the phosphomimic mutations of residues 28, 
47, 48 and 97 hardly affect the overall conformation of Cc. In relation of 
the effects on Cc roles in the cell, a negative charge at position 28 alters 
the function of Cc as electron carrier in the ETC. However, the Y48pCMF 
and Y97pCMF mutants could prevent the hyperpolarization of 
mitochondrial membrane and decrease the ability of Cc to activate the 
caspase cascade during PCD. So, phosphorylation of these residues could 
act as “antiapoptotic switch”. Moreover, residue 47 of Cc has been 
revealed important for caspase-3 activation during apoptosis. 
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8.  CONCLUSIONS 
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In this PhD thesis, four phosphorylation sites of cytochrome c have 
been analyzed by using biophysical techniques and functional 
approaches. The following conclusions can be inferred: 

1. None of the amino acid substitutions performed at positions 28, 
47, 48 and 97 does significantly affect the overall structure of 
cytochrome c.  

2. The substitution of tyrosine 48 by the non-canonical amino acid 
p-carboxymethyl-L-phenylalanine mimics the phosphorylation-
induced conformational changes of cytochrome c much better 
than the classical glutamate replacement. 

3. The presence of a negative charge at position 48 affects the 
redox properties of cytochrome c and lowers the pKa value of the 
alkaline transition to physiological pH. 

4. The phosphomimetic mutants of cytochrome c at position 28, 47 
and 48 are able to bind cytochrome c1 with a stoichiometry of 1:2 
(cytochrome c1 : cytochrome c). The proximal site of cytochrome 
c1 – compatible with electron transfer – shows a similar affinity 
towards the wild-type and mutant cytochrome c species, 
whereas docking to the distal site is weaker when a negative 
charge is present at either position 28 or 48 of cytochrome c. 
Remarkably, the phosphomimetic species are best electrons 
donnors than wild-type cytochrome c, and so their oxidation rate 
by cytochrome c oxidase is higher. 

5. All phosphomimic cytochrome c species, except mutant at 
position 97, have their affinity towards cardiolipin altered. The 
negative charge at positions 28, 47 and 48 increases the 
peroxidase activity of cytochrome c both in the presence and in 
the absence of cardiolipin.  

6. Phosphomimetic cytochrome c species at position 48 and 97 
show lower caspase activation ability. Residue 47 seems to be 
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crucial in cytochrome c-dependent triggering of the caspase 
cascade in apoptosis. 

7. Phosphorylation of cytochrome c at particular positions does 
specifically control the different functions of the hemeprotein in 
cell life and death.   

8. The overall yield of organic synthesis of the non-canonical amino 
acid p-carboxymethyl-L-phenylalanine has been significantly 
improved, from 44% to 75%, over the original synthetic protocol. 
Replacing the initial reactant for the first step of methyl 
esterification has considerably lowered the cost of the synthesis. 
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ABSTRACT 

Regulation of mitochondrial activity allows cells to adapt to changing 
conditions and to control oxidative stress, and its dysfunction can lead to 
hypoxia-dependent pathologies, such as ischemia and cancer. Although 
cytochrome c phosphorylation—in particular, at tyrosine 48—is a key 
modulator of mitochondrial signaling, its action and molecular basis 
remain unknown. Here, we mimic phosphorylation of cytochrome c by 
replacing tyrosine 48 with p-carboxy-methyl-L-phenylalanine (pCMF). The 
NMR structure of the resulting mutant reveals significant conformational 
shifts and enhanced dynamics around pCMF that could explain changes 
observed in its functionality: the phosphomimetic mutation impairs 
cytochrome c diffusion between respiratory complexes, enhances 
hemeprotein peroxidase and cardiolipin oxidation activities and hinders 
caspase-dependent apoptosis. Our findings provide a framework to 
further investigate the modulation of mitochondrial activity by 
phosphorylated cytochrome c and to develop novel therapeutic 
approaches based on its pro-survival effects.  
 

  



 
 

95 
 

INTRODUCTION 

Oxidative phosphorylation (OxPhos) relies on the electron transport 
chain (ETC) to generate the membrane potential that drives ATP 
synthesis (Papa, 1982). Components of the ETC oxidize substrates to 
reduce molecular oxygen, thereby producing water. Nevertheless, 
around 2% of the electrons flowing across the ETC yield reactive oxygen 
species (ROS) (Turrens, 2003). ROS are a source of oxidative stress and 
act as signaling molecules at low concentrations (Ray et al., 2012; Lenaz 
and Genova, 2010; Hou et al., 2014). Hindering redox reactions within 
the distinct ETC membrane complexes (complexes I to V) leads to 
enhanced ROS production (Solaini et al., 2010). The activity of the ETC is 
tightly regulated by posttranslational modifications of its components, 
isoform swapping and modulation of the equilibria for the association of 
the membrane protein complexes into supercomplexes (Lenaz and 
Genova, 2010; Lezan et al., 2010). Such associations allow substrate 
channeling while modulating ROS production (Lenaz and Genova, 2010; 

Lezan et al., 2010).  

Oxidative stress response involves redox signals modulating protein 
phosphorylation (Corcoran and Cotter, 2013). In the ETC, the major 
phosphorylation targets are NADH:UQ oxidoreductase, cytochrome c (Cc) 
and cytochrome c oxidase (CcO) (Helling et al., 2012). Besides being 
essential for oxidative respiration (Figure 1a), Cc acts as a redox 
regulatory protein within the mitochondrial intermembrane space (Díaz-
Moreno et al., 2011a). In addition, Cc aids to control ROS levels by 
oxidizing superoxide anions (Wegerich et al., 2009) and exhibiting 
peroxidase activity (Florence, 2009); the latter, however, also yields lipid 
peroxidation (Radi et al., 2009; Radi et al., 1991). Furthermore, Cc plays a 
crucial role in programmed cell death, a process that is only in partially 
understood (Martinou et al., 2000; Basova et al., 2007; Kagan et al., 2009; 
Bertini et al., 2011; Martínez-Fábregas et al., 2013; Martínez-Fábregas et 
al., 2014; González-Arzola et al., 2015). In this context, a fraction of Cc 
binds and oxidizes cardiolipin (CL) at the internal mitochondrial 
membrane, thereby facilitating the release of unbound Cc to the 
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cytoplasm (Basova et al., 2007; Kagan et al., 2009). In mammalian cells, 
extramitochondrial Cc interacts with apoptosis activating factor-1 (Apaf-
1) in the cytoplasm to spark the caspase proteolytic cascade (Martinou et 
al., 2000). It has recently been shown that Cc can interact with several 
other proteins outside the mitochondria in humans and plants (Bertini et 
al., 2011; Martínez-Fábregas et al., 2013; Martínez-Fábregas et al., 
2014a; González-Arzola et al., 2015).. The similarities between the Cc 
signaling networks in both organisms suggest that key programmed cell 
death pathways are conserved along evolution (Martínez-Fábregas et al., 
2014b). 

Cc phosphorylation is an alleged modulator of the mitochondrial cell 
death pathway (Hüttemann et al., 2008; Hüttemann et al., 2012). Its 
deregulation is believed to be related to the onset of neurological 
disorders and cancer (Hüttemann et al., 2012). Phosphorylation of Cc is 
easily reversed by phosphatases, hampering the isolation of the modified 
protein from tissues (Kadenbach, 1968). Tyr-to-Glu substitutions of Cc 
designed to emulate Tyr48 phosphorylation impair both electron 
transport to CcO and triggering of caspase-9 mediated by Apaf-1 under in 
vitro conditions (Pecina et al., 2010; García-Heredia et al., 2011). Notably, 
nitration of this residue also hinders the ability of Cc to activate Apaf-1 
(Díaz-Moreno et al., 2011b; García-Heredia et al., 2012; Ly et al., 2012). 
Thus, these posttranslational modifications alter both mitochondrial and 
cytoplasmic functions of Cc. Tyr48 phosphorylation also affects the 
spectroscopic and other physical-chemical properties of Cc (García-
Heredia et al., 2011; Díaz-Moreno et al., 2011b; García-Heredia et al., 
2012; Ly et al., 2012; Guerra-Castellano et al., 2015). Understanding the 
origin of these effects and how they help modulate Cc activity requires 
the 3D conformation of the phosphorylated species. However, 
deciphering the effects of Tyr48 phosphorylation on the structure and 
dynamics of Cc is highly challenging. Indeed, no atomic resolution 
structure has been reported for either phosphorylated Cc or any reliable 
mimic mutant.  
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Here, we have elucidated the structure of a phosphomimetic Cc variant 
in which Tyr48 is replaced by the synthetic, non-canonical amino-acid p-
carboxy-methyl-L-phenylalanine (pCMF). We show that such a 
replacement induces local perturbations of the Cc structure and 
enhanced internal dynamics of the mutation surroundings. We used 
biochemical assays to show that the Y48pCMF mutation impairs Cc 
channeling between cytochrome bc1 (Cbc1) and CcO, enhances the 
peroxidase activity and CL oxidation capability of Cc and induces an anti-
apoptotic function of Cc.  

RESULTS 

Phosphorylation of Tyr48 induces local structural changes in 
cytochrome c 

To understand how phosphorylation affects the structure of human Cc, 
we tackled the challenge of fully characterizing the phosphomimetic 
mutant Y48pCMF Cc in its reduced form, which is the redox state of Cc 
donating electrons to CcO in homeostasis and is essential for the 
apoptotic activity. Y48pCMF Cc maintains the overall secondary structure 
and global fold of wild-type (WT) Cc, as inferred from circular dichroism 
(CD) (Figure 1b) and 1H-15N heteronuclear single-quantum correlation 
(HSQC) nuclear magnetic resonance (NMR) spectra (Figure 1c), 
respectively. Also, the heme axial coordination was preserved, as 
indicated by 1D 1H NMR data (Figure 1d). The NMR spectra of reduced 
Y48pCMF Cc were extensively assigned: triple-resonance experiments 
(Table supplement 1) allowed us to detect and assign 91 backbone 
amide signals and the sequential connectivities for most residues of the 
protein. Aliphatic side-chain signals were assigned using 3D HBHA(CO)NH 
and 3D HCCH-TOCSY experiments, leading to the assignment of most 
(96.4%) of the side-chain proton resonances. The 15N-H resonance of 
pCMF48 was undetectable because the residue was not 15N-enriched. 
Four proline residues (Pro30, Pro44, Pro71 and Pro76) interrupt the 
sequential HN-HN connectivity. Additionally, in contrast to WT Cc, we 
could not detect the amide protons of the Thr49, Ala51, Gly56 and Ile57 
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residues. However, the WT spectra also only had four amide protons that 
could not be detected (Gly1, Glu21, Thr28 and Gly84) under similar 
experimental conditions. Further, in contrast to WT Cc, the signals from 
Asn31, Gly45 and Ser47 in pCMF48 Cc were significantly weaker than the 
rest. The largest chemical shift perturbations for backbone amides 
induced by the modified residue at position 48 are confined to nearby 
residues (Figure1—Figure supplement 1).  

Assigning 1H resonances to the heme substituents and 1H (and 13C) 
signals to the aromatic side chains was required for analyzing additional 
2D maps (i.e. COSY and 1H-15N NOESY) (Table supplement 1). Assignment 
of the Cδ1, Cδ2, Cε1 and Cε2 aromatic signals from the pCMF48 side-chain 
required the acquisition of an aromatic 1H-13C HSQC spectrum recorded 
in a natural abundance of 13C (Figure 1e). The assignment strategy for the 
pCMF48 side-chain also included the full assignment of the 2D 1H-15N 
NOESY.  

Numerous residues (Val20–Asn31, Thr40–Trp59 and Ile75–Glu90) 
displayed signals attributable to a second, minor protein conformation, 
which had a 1:10 ratio in intensity. Hereafter, only the major form was 
considered for structure calculations. 

We were able to assign 96% of all the 1H signals for the major form. 
Structural information derived from 2D and 3D NOESY maps supported 
the presence of 5 α-helical regions (labelled α1 to α5) with typically 
strong HN-HN (i, i+1), and medium-range Hα-HN (i, i+3) and Hα-HN (i, 
i+4), interresidual NOEs. These regions spanned the sequence stretches 
Val3–Lys13, Ala50–Asn54, Glu61–Glu69, Pro71–Tyr74 and Lys88–Thr102, 
resembling those in the NMR structure of reduced WT Cc (Jeng et al., 
2002). In total, we observed and assigned 2,176 meaningful NOEs, which 
corresponded to an average number of meaningful restraints per residue 
of 20.8 (Figure 2—Figure supplement 2). The 71 φ and 71 ψ dihedral 
angle constraints were derived from 15N, 13C’, 13Cα, 13Cβ and Hα chemical 
shifts, using TALOS+ (Cornilescu et al., 1999). The heme moiety was 
included in the calculations, following a procedure previously reported 
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for WT cytochromes (Banci et al, 1999; Baistrocchi et al., 1996), which 
assumes an intact heme iron coordination as supported by the XAS 
spectroscopic data (see next section).  

Two-hundred structures were calculated by CYANA, and the twenty 
structures with the lowest target-function (TF) value were selected to 
form a representative family. The range of TF values was 0.38–0.98 Å2, 
highlighting the high accuracy between calculated and experimental 
distances. Further refinement of the 20 lowest TF structures involved 
restrained energy minimization and restrained molecular dynamics 
(RMD) computations. A final restrained energy minimization carried out 
on the structure with the lowest root-mean square deviation (RMSD) to 
the average for each of the 20 trajectories. The overall quality of the 20 
lowest TF ensemble was good, according to PROCHECK G-factor 
(Laskowski et al., 1996) MolProbity clash-scores (Word et al., 1999) and 
other structural quality indicators (Table 1). Most residues were in the 
favored regions, whereas Cys14, Cys17, His18, Val20, Lys37 and Asn70 
were in the generously allowed Ramachandran plot regions, as also 
observed for the solution structure of WT Cc (Cornilescu et al., 1999; 
Rajagopal et al., 2013). Cys14, Cys17 and His18 are covalently bonded to 
the heme moiety, thereby straining their backbone conformation, as 
already described for c-type cytochromes (Banci et al., 1999; Baistrocchi 
et al., 1996). As an additional control, we performed 20 ns unrestrained 
molecular dynamics (MD) simulations of the final minimized conformers 
without applying any geometrical restraints. The RMSD for the main-
chain atoms was about 1.55 Å at the plateau, and it hardly drifted (0.122 
pm ns–1), as expected for a stable structure (Figure 2—Figure 
supplement 3a). 

The overall fold of Y48pCMF Cc is very similar to that of the WT species, 
with RMSD values for the backbone nuclei of 1.67 ± 1.01 Å (Figure 2a,b). 
However, the two structures differ in the mutation-containing loop ΩNY 

(residues 40–57; Figure 2b), according to the chemical-shift differences 
(Figure 2—Figure supplement 1) and RMSD variations between the first 
conformer of the NMR solution structures of WT Cc (PDB ID: 1J3S) (Jeng 
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et al., 2002) and the refined lowest-TF Y48pCMF Cc (Figure 2—figure 
supplement 4a). This dynamism in the loop ΩNY is also observed in the 
mutant G41S Cc (Karsisiotis et al., 2016). The ΩNY loop (also known as 
foldon V) and helix α2 constitute the less-stable folding unit of Cc (Maity 
et al., 2004). Unlike Tyr48 in the WT species, the pCMF48 residue 
presents a very low number of 1H-1H NOEs (Figure 3—Figure supplement 
2) and a high RMSD value within the family (Figure 2c and Figure 2—
figure supplement 4b). A decrease in the number of detectable NOEs can 
generally be attributed to either a partial assignment of the residue or an 
increased internal mobility. In our case, the observed effect can be 
ascribed to the highly dynamic behavior of the pCMF48 residue, in 
agreement with the presence of internal motions within the ns-ps time 
scale (see below).  

Other regions of the Y48pCMF Cc structure that differed from that of 
WT Cc belong to the 19–36 ΩG-loop (part of foldon II) and the 71–85 ΩR-
loop (foldon IV) comprising Met80 and helix α4. The former loop (Val20–
Gly29) of Y48pCMF Cc shows high RMSD values for the backbone nuclei 
with respect to WT Cc (2.75 ± 1.50 Å, Figure 2—figure supplement 4a). In 
the latter loop, the observed differences are mainly restricted to side 
chains. In fact, the RMSD values for backbone and heavy atoms are 
1.18 ± 0.37 Å and 1.77 ± 0.71 Å, respectively. Residues included in the ΩR 
loop indeed displayed double conformation, suggesting the presence of 
conformational equilibria (Figure 2—figure supplement 4a). 

The ensemble of structures for Y48pCMF Cc is very precise, except for 
residues surrounding the mutation. The backbone RMSD to the mean is 
0.89 ± 0.01 Å for the whole protein and drops to 0.53 ± 0.12 Å when the 
mutation surroundings are excluded (residues 40–57) (Figure 2—figure 
supplement 4b). As expected, the highest RMSD values correspond to 
the 40–57 ΩNY loop and the nearby residues Val20–Gly29 in loop ΩG, with 
corresponding global RMSD values for backbone atoms of 1.79 ± 0.53 Å 
and 0.78 ± 0.23 Å, respectively. These segments also exhibited a larger 
conformational variability in their secondary structure elements along 
the MD trajectory (Figure 3—Figure supplement 3b,c). High RMSD values 
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along the Val20–Gly29 stretch are typical in Cc homologs (Banci et al., 
1999; Baistrocchi et al., 1996). They are also consistent with our 
detection of NMR signals revealing secondary conformations for the 
His26–Pro30 stretch. Moreover, the nearby Asn31 amide signal is weak, 
suggesting a high mobility. Notably, all these residues contact the ΩNY 

loop, comprising the Y48pCMF mutation. 

Further, the highest RMSD values mapped to the ΩNY loop. 
Consistently, signals from this region undergo a drastic reduction of their 
1H-1H NOE cross-peaks. The intensities of the amide signals of Gly45 and 
Ser47 in Y48pCMF Cc were severely decreased, while those from Thr49, 
Ala51, Gly56 and Ile57 were undetectable. The ΩR loop also contains 
some residues with high RMSD values (Figure 2—Figure supplement 4b). 
The global RMSD value for backbone atoms of the 71–85 ΩR loop is equal 
to 0.76 ± 0.20 Å. Notably, the end of the ΩR loop shows high RMSD 
values in WT cytochromes (Banci et al., 1999; Baistrocchi et al., 1996).  

The heme iron coordination is insensitive to Tyr48 phosphorylation  

At physiological pH values, the Y48pCMF mutation lowers the B-band 
splitting in the CD spectra (Guerra-Castellano et al., 2015). We tested the 
effects of the mutation on the heme iron coordination environment and 
the axial coordination restraints used in our structure computations by 
using X-ray absorption spectroscopy (XAS), studying both WT and 
Y48pCMF species (Figure 2d–g and Figure 2—figure supplement 4c,d). 
The absorption spectra of the two proteins are almost identical. The X-
ray absorption near-edge structure (XANES) region of the absorption 
spectra for both proteins are superimposed (Figure 2e). The absence of 
any shift in the energy position of the absorption edge indicates that the 
mutation did not affect the electron density at the Fe center.  

Likewise, the extracted extended X-ray absorption fine structure 
(EXAFS) signals of the WT and Y48pCMF Cc species were highly similar. 
However, small differences in high wave vector (k) values can be 
observed (Figure 2—Figure supplement 4d), as well as in the slightly 
lower amplitude of the Y48pCMF protein. While the corresponding 
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Fourier transforms are also very similar (Figure 2f), the amplitude of the 
first peak is lower and broader in the Y48pCMF Cc species, suggesting a 
larger degree of disorder. The dynamic disorder for the two proteins 
should be similar, as the measurements were performed at cryogenic 
temperatures in both cases. Hence, the differences in disorder are due to 
a larger static disorder in Y48pCMF Cc. The main scattering paths 
contributing to this peak originate from the four nitrogen atoms of the 
porphyrin ring, although contributions of the nitrogen and sulphur axial 
ligands have also been included. The fit to the data requires the addition 
of the paths involving the eight porphyrin carbons closest to the iron 
atom, beyond the first coordination sphere. In addition, the multiple 
scattering paths involving these atoms were also included. Fits were 
performed in R space but also reproduced well the spectra in q space 
(Figure 2g). The parameters obtained from the best fit to the data 
revealed that the distances between the iron atom and its first 
coordinating ligands are insensitive to the Y48pCMF mutation (Table 2). 
Specifically, the distances from the iron center to the axial S ligand are 
2.26 ± 0.001 Å and 2.25 ± 0.001 Å in the WT and phosphomimetic mutant 
species, respectively (Figure 2d). Data analyses also showed that the 
value for the Debye-Waller factor corresponding to the path involving 
the four porphyrin nitrogen atoms increased from 0.0012 ± 0.0006 Å2 in 
the WT species to 0.003 ± 0.001 in the Y48pCMF mutant.  These data are 
consistent with the preserved chemical-shift pattern of the iron axial 
ligands and heme substituents observed in 1D 1H NMR (Figure 1d), which 
have been reported to be sensitive indicators of the heme iron electronic 
structures (Banci et al., 1999; Baistrocchi et al., 1996). The pattern of the 
observed NOEs for the heme substituents also supports an overall intact 
heme pocket, with the exception of the mutation site.  

Phosphorylation of Tyr48 enhances internal mobility in cytochrome c 

NMR relaxation measurements were performed to evaluate the 
dynamics of WT and Y48pCMF Cc. The Y48pCMF substitution slightly 
affected both relaxation rate (R1 and R2) parameters (Table supplement 
2). The rotational correlation time of the phosphomimetic mutant 
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(6.96 ± 0.02 ns) was higher than that of the WT form (6.33 ± 0.02 ns), in 
agreement with the small increase (pnul values of approximately 10–251) in 
the average gyration radius, from 12.95 ± 0.07 Å to 13.04 ± 0.06 Å, as 
calculated by MD. Indeed, phosphorylation can alter protein dynamics at 
different timescales and cause conformational rearrangements, such as 
the formation of secondary conformations (Deshmukh et al., 2011; Xiao 
et al., 2014; Wauer et al., 2015).  

Comparing R1, R2 and heteronuclear NOE (HetNOE) relaxation 
measurements recorded on the two proteins revealed that the ΩNY loop 
of Y48pCMF Cc exhibits a high mobility in the ps-ns time scale (Figure 3). 
Indeed, the Gly41–Lys55 segment showed a drastic drop of HetNOE 
values in the mutant species (Figure 3a). Further, the amide R1 rates for 
the sequence stretch of Tyr46–Lys55 in Y48pCMF Cc differ from those in 
WT Cc (Figure 3b). In addition, R2 analyses reveals three regions 
undergoing conformational exchange in the µs-ms time scale: His26–
Thr28, Thr40–Trp59 and Ile75–Thr78 (Figure 3c). This behavior agrees 
with the reduced intensity or lack of detection of the amide signals 
belonging to these stretches, as compared to the WT form. Furthermore, 
some regions within the protein displayed signals corresponding to 
double conformations in the 2D 1H NOESY spectra—namely, Val20–
Asn31, Thr40–Trp59 and Ile75–Glu90, indicating the presence of 
conformational equilibria between two different structures occurring on 
a slow-time scale with respect to the NMR chemical shift. This dynamics 
involves residues located in a defined region surrounding the non-
canonical amino acid (Figure 3d). Altogether, the NMR relaxation 
measurements of Y48pCMF Cc agree with the per-residue S2 order 
parameter values computed with TENSOR (Dosset et al., 2000) (Figure 
3e). 

Hydrogen-deuterium exchange experiments showed that a common 
core region is protected from solvent amide-hydrogen exchange in both 
Cc species. Nevertheless, a substantial number of amides become 
unprotected in pCMF48 Cc (Figure 3—figure supplement 5a–c). The 
newly accessible amide protons in the phosphomimetic mutant (Gly29, 
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Gly37, Arg38, Thr40, Gln42 and Trp59) are located in the surroundings of 
pCMF48 and the nearby ΩG loop, in agreement with their high mobility in 
the µs-ms time scale.   

Tyr48 phosphorylation modulates the interaction of cytochrome c with 
its mitochondrial partners in the electron transfer chain  

Cc carries electrons from Cbc1 to CcO within the ETC. To elucidate more 
details about the process, we analyzed the molecular recognition 
between the soluble N-terminal domain of plant cytochrome c1 (Cc1) and 
the phosphomimetic human Y48pCMF Cc. The human and plant N-
terminal domains of Cc1 have a 62% overall sequence identity and similar 
charge distributions on their molecular surfaces (Moreno-Beltrán et al., 
2015). Two binding sites for human and plant Cc on plant Cc1 have been 
recently reported (Moreno-Beltrán et al., 2014; (Moreno-Beltrán et al., 
2015). The proximal site is located near the heme moiety and is 
compatible with electron transfer, while the distal site lies far from the 
heme group and probably constitutes a local energy minimum of the 
encounter ensemble.  

To test how Tyr48 phosphorylation affects the conformation of the Cc1-
Cc complex, we recorded 1H-15N HSQC spectra upon titration of 15N-
labeled reduced Cc with unlabeled reduced Cc1. Several amide signals 
exhibited significant chemical-shift perturbations (CSPs), thus indicating a 
fast exchange rate within the NMR time scale (Figure 4a,b). Average 
amide CSPs (∆δAvg) were larger than 0.075 ppm for eleven residues: 
Gln16, Lys27, Gly29, Ala50, Lys55, Ile58, Lys72, Gly77, Met80, Ile81 and 
Val83 (Figure 4b,c). All the perturbed residues, except Lys55 and Ile58, 
surround the heme crevice, as previously described for the interaction 
between WT Cc and Cc1

 (Moreno-Beltrán et al., 2014; (Moreno-Beltrán et 
al., 2015) (Figure 4c). In fact, this region constitutes a very well-
conserved interaction surface in c-type cytochromes (Díaz-Moreno et al., 
2005a; Díaz-Moreno et al., 2005b; Volkov et al., 2006; Sakamoto et al., 
2011). Lys55 and Ile58, in turn, are located in the ΩNY loop, which 
undergoes a conformational exchange in free Y48pCMF Cc (Figure 4c). In 
addition, significant CSPs (∆δAvg ≥ 0.05 ppm) were detected for Lys7, 
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Lys13, His26, Lys39, Ala43, Thr78, Lys86, Lys88 and Glu89. Interestingly, 
Lys8, Lys13, Lys27, Lys72 and Lys86 also experienced large CSPs, as 
previously reported for the interaction between WT Cc and Cc1 (Moreno-
Beltrán et al, 2014; 2015).  

To obtain accurate data on the binding affinity and stoichiometry of 
the interaction between the two redox proteins, isothermal titration 
calorimetry (ITC) experiments were performed on both redox states. The 
isotherms obtained by titrating reduced Y48pCMF Cc with reduced Cc1 
are displayed (Figure 4d, left panel). All data fit a model with two 
independent binding sites in the corresponding Cc partner (Table 
supplement 3). The interaction between Y48pCMF Cc and Cc1 was 
entropy-driven. At pH 7.4, the dissociation constant (KD) value at the 
proximal site was half that observed for WT Cc, whereas that at the distal 
site was four times higher (Table supplement 3). This could be ascribed 
to the extra negative charge at position 48, which alters the surface 
electrostatic potential of the hemeprotein (Figure 4—figure supplement 
6). Both Cc1–Y48pCMF Cc and Cc1-Cc complexes in their oxidized states 
showed similar thermodynamic and equilibrium parameters at both 
acidic and basic pH values. The only exception was the KD value for the 
oxidized Cc1–Y48pCMF Cc complex, at the proximal site of Cc1, that was 
approximately four times lower than that for the oxidized Cc1-WT Cc 
adduct at pH 8.5. ITC measurements of the oxidized Cc1–Y48pCMF Cc 
complex were not run at neutral pH because the alkaline transition pKa 
shifts to this pH value upon Tyr48 phosphorylation (Guerra-Castellano et 
al., 2015); thus, WT and phosphomimic Cc are expected to have different 
axial ligands at pH 7.4 (Table supplement 3).  

In addition, we analyzed the binding affinity of the cross-complex 
between the reduced species of bovine CcO and human Y48pCMF Cc by 
ITC. Bovine and human CcO are evolutionarily-related proteins, with 91% 
and 96% of sequence identity and homology, respectively. Y48pCMF Cc 
can bind at two sites on CcO, similar to WT Cc (Moreno-Beltrán et al., 
2015; Osheroff et al., 1983). The resulting isotherms likewise fit a model 
with two independent binding sites, different KD values (Figure 4d, right 
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panel, and Table supplement 4) and enthalpy-driven interactions. Both 
the CcO proximal and distal sites had lower affinities for Y48pCMF Cc 
than the WT species (Table supplement 4). 

To assess the functional ability of Y48pCMF Cc to reduce respiratory 
complex IV, we tested the CcO activity of isolated complex IV or Cc-free 
mitochondria (ΔCc) from yeast cells grown with glucose as a carbon 
source (Figure 5a). In both cases, the Cc oxidation rate was at least two-
fold higher with Y48pCMF Cc than with WT Cc, thereby suggesting that 
Tyr48 phosphorylation enhances the ability of Cc to donate electrons to 
complex IV. Interestingly, the CcO activity was positively regulated by the 
human membrane proteins hypoxia-inducible domain family members 
1A and 2A (HIGD1A and HIGD2A), which promote cell survival under 
hypoxia. HIGD2A was successfully expressed in cell-free expression 
systems combined with n-dodecyl-β-D-maltoside, as previously reported 
for HIGD1A (Klammt et al., 2012) (Figure 5—figure supplement 7a–c). 
HIGD1A significantly increased the rate of CcO-catalyzed oxidation of 
Y48pCMF Cc (Figure 5b), as reported for WT Cc (Hayasi et al., 2015). 
Strikingly, HIGD2A induced an even a stronger positive effect than 
HIGD1A (Figure 5b). Nevertheless, the HIGD-dependent increase in CcO 
activity was slightly lower with Y48pCMF Cc (Figure 5b). This may be due 
to HIGD-dependent changes in either the complex IV affinity towards Cc 
or in the restraints of Cc diffusion (channeling) from Cc1 to complex IV. A 
direct Cc-HIGD interaction can also not be excluded. 

To confirm the HIGD-mediated regulation of the CcO activity in a 
cellular context, we isolated mitochondria from different yeast strains 
grown either with glucose (YPD medium), which supports fermentation 
and respiration, or with the non-fermentable carbon sources lactate and 
galactose (YP-Gal) (Strogolova et al., 2012). Under both metabolic 
conditions, the isoformic respiratory supercomplex factors 1 (Rcf1, 
formerly Aim31) and 2 (Rcf2, formerly Aim38) are constitutively 
expressed (Figure 5c, inset), in agreement with their role in CcO activity 
and supercomplex stability (Strogolova et al., 2012; Chen et al., 2012; 
Vukotic et al., 2012). Rcf1 is a yeast orthologue of the human HIGD1A 
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and HIGD2A proteins, whereas Rcf2 is specific to yeast. The external 
membranes of isolated mitochondria were then permeabilized to allow 
the entry of exogenous WT or Y48pCMF Cc. Under these conditions, 
mitochondria isolated from a yeast strain deficient of both Rcf1 and Rcf2 
(∆Rcf1/2), as verified by western blot, displayed an endogenous CcO 
activity lower than those isolated from WT yeast (WTRcf), no matter 
which type of exogenous hemeprotein—WT or Y48pCMF Cc—was used 
for supplementing (Figure 5c). This indicates that Rcf1 and Rcf2 act as 
positive modulators of CcO activity, similar to human HIGD proteins. In 
mitochondria isolated from yeast grown with non-fermentable carbon 
sources, the Rcf-mediated increase in CcO activity was less prominent 
when Y48pCMF Cc rather than WT Cc was added as an exogenous 
electron donor, in agreement with the in vitro behavior of isolated 
proteins (Figure 5b). This suggests that Tyr48 phosphorylation makes Cc 
less sensitive to the enhancer mechanism of the Rcf proteins and/or to 
the ability of Rcfs to stabilize the Cbc1-CcO supercomplexes (Figure 5c). In 
fact, Rcf1 and Rcf2 promote the supercomplex assembly, preferably in 
mitochondria from yeasts grown in a respiratory-based medium (Figure 
5d and Figure 5—figure supplement 7d). This is especially remarkable 
when comparing the band intensities in an anti–COX-2 immunoblot 
(Figure 5d). Note that such OxPhos supercomplexes could show a certain 
degree of heterogeneity in their composition, since the gene 
transcription of COX5a and COX5b—which encode for two CcO 
isoforms—are repressed and active, respectively, in the aerobic-to-
anaerobic metabolic transition (Fukuda et al., 2007). Moreover, the faint 
band pattern of ∆Rcf1/2 strains grown in YPD medium in the BN-PAGE 
corresponds to supercomplexes, thus suggesting that other factors may 
contribute to their assembly (Figure 5d and Figure 5—figure supplement 
7d). 

Altogether, our data suggest that phosphorylation of Cc at Tyr48 
modulates the mitochondrial ETC (Figure 5e). Such a posttranslational 
modification allows a fast adaptation of the hemeprotein function to 
changing cell conditions. The population of Cbc1-CcO supercomplexes is 
less prominent in the presence than in the absence of glucose, although 
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Rcf proteins are still expressed. In any case, Cc channeling from Cbc1 
towards CcO is impaired. At a physiological pH, Tyr48 phosphorylation 
thus favors binding of Cc to the proximal rather than to the distal site of 
Cc1. Under respiration-based growth, the Rcf proteins preferably 
associate directly with the OxPhos supercomplex, bridging Cbc1 and CcO. 
However, the weaker Y48pCMF Cc-CcO binding, along with the loss of the 
distal site on Cc1 due to phosphorylated Cc, impairs the channeling of Cc 
molecules that functionally connects Cbc1 with CcO, which has been 
proposed to occur with WT Cc45,46. As a consequence, Y48pCMF Cc is less 
efficient than WT Cc as an electron carrier towards CcO in the context of 
OxPhos supercomplexes.  

Tyr48-phosphorylated cytochrome c acts as an improved peroxidase-
like enzyme, in particular when bound to cardiolipin-containing 
liposomes 

Assembly of the mitochondrial protein membrane complexes Cbc1 and 
CcO into OxPhos supercomplexes enables more efficient electron flow 
and decreases ROS levels generated by the ETC (Louro and Díaz-Moreno, 
2015). The phospholipid CL, located in the inner mitochondrial 
membrane, also stabilizes the resulting supercomplexes (Zhang et al., 
2002) in a HIGD/Rcf-independent manner (Strogolova et al., 2012). In 
addition, CL interacts with Cc in a two-step binding reaction (Belikova et 
al., 2006): in the first step, the so-called A-site at the Cc surface makes 
transient electrostatic contacts with the membrane; in the second step, 
hydrophobic forces drive the formation of a tight and stable Cc-CL 
complex, with one of the CL acyl chains entering the hydrophobic groove 
of Cc (termed the C-site) (Sinibaldi et al., 2008; Sinibaldi et al., 2010). C-
site binding then triggers Cc-regulated CL peroxidation under oxidative 
stress and induces early apoptosis (Rajagopal et al., 2013).  

Within this frame, we analyzed how tyrosine phosphorylation can fine-
tune the affinity of Cc towards CL-containing liposomes, analyzing 
binding of Cc species to liposomes in electrophoretic mobility shift assays 
(EMSA) in native agarose gels (Figure 6a,b). To compare the binding 
properties of Cc species to the CL-containing liposomes of 4:1 
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DOPC:TOCL (1,2-dioleoyl-sn-glycero-3-phosphocholine:1,1’2,2’-
tetraoleoylcardiolipin) or to the liposome DOPC alone, we measured the 
mobility profiles of Cc at different Cc:lipid ratios. While both WT and 
Y48pCMF Cc bound to DOPC:TOCL and DOPC vesicles, their binding 
affinity for the CL-free DOPC liposomes seemed to be lower (Figure 6a,b). 
Notably, the presence of free hemeprotein at high lipid concentrations 
suggested that Y48pCMF Cc has a lower affinity than WT towards 
DOPC:TOCL liposomes (Figure 6b), as recently observed for the 
phosphomimetic mutant S47D Cc (Guerra-Castellano et al., 2016). 

ITC measurements corroborated these EMSA data and yielded 
apparent KD values for the first binding event of 427 µM (WT Cc) and 780 
µM (Y48pCMF Cc) (Figure 6c). The interaction with CL resulted in 
apparent ∆H values equal to 2.75 kcal mol–1 for WT Cc and 38.97 kcal 
mol–1 for Y48pCMF Cc. The differences in KD indicate a small change in 
binding energies (of approximately 6 kcal mol–1). Hence, the changes in 
∆H are indicative of enthalpy-entropy compensation effects, which are 
compatible with the electrostatic change resulting from the extra 
carboxylate group of the Y48pCMF species. Further, at least one other, 
slower exothermic process occurs as the lipid concentrations rose along 
the titrations. In this case, the apparent ΔH values with the WT and 
Y48pCMF Cc species were equal to –6.97 kcal mol–1 and –47.84 kcal mol–
1, respectively, but the apparent KD value (of approximately 1 mM) was 
practically the same with the two Cc species. Altogether, our EMSA and 
ITC assays indicate that Y48pCMF Cc binds to CL-containing liposomes 
with a slightly lower affinity than WT Cc.   

WT Cc undergoes CL-dependent conformational changes that allow 
H2O2 to access the heme crevice (Pandiscia et al., 2015). Hence, we 
addressed whether the affinity differences between WT and Y48pCMF Cc 
for CL could affect their peroxidase activity. In the absence of CL-
containing liposomes, Y48pCMF Cc exhibited a three-fold higher 
peroxidase activity than WT Cc (Figure 6d). However, the presence of 
TOCL/DOPC vesicles, at a 1:100 Cc:lipid ratio, increased the enzymatic 
activity of both WT and Y48pCMF Cc, similar to that observed for other 
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phosphomimetic Cc mutants (Guerra-Castellano et al., 2016). Note that 
the slightly lower peroxidase activity increment observed for Y48pCMF 
Cc is likely due to its higher population of free protein as compared to 
WT Cc (Figure 6b,d).  

Tyr48 phosphorylation is an anti-apoptotic posttranslational 
modification 

Phosphorylated Cc may be more easily released from mitochondria 
because of its lower affinity towards CL, as inferred from EMSA and ITC 
assays. Translocation to the cytosol could thus enable phosphorylated Cc 
to interact with Apaf-1 and to assemble the caspase-activating 
apoptosome. However, cytosolic caspase-3 activation was decreased by 
about 60% in the presence of the Y48pCMF Cc mutant (Figure 6e). This is 
in agreement with the behavior previously reported for the Y48E Cc 
mutant, which exhibits a lower ability than WT Cc to activate not only 
caspase-326 but also procaspase-9 by non-functional apoptosome 
assembly27. These results could thus be indicative of an anti-apoptotic 
function of Cc when phosphorylated at position 48. 

DISCUSSION 

Here we tackle the structural and functional characterization of the 
Y48pCMF variant of human Cc. This mutation mimics protein 
phosphorylation at Tyr48 by adding a negative charge and slightly 
increasing the side-chain size while keeping the aromatic ring. A recent 
spectroscopic analysis of Y48pCMF Cc showed a singular shift of the 
typical alkaline transition pKa to physiological pH values31, as is the case 
with the Y48E Cc mutant26,27. Here, we report NMR-based structure 
computations that indicate that Tyr48 phosphorylation maintains the 
core foldon of Cc but increases internal motions in the loops ΩNY, ΩR and 
ΩG. Specifically, the ΩNY loop, the most unstable folding unit of the 
hemeprotein, becomes looser and reaches conformational equilibria in 
Y48pCMF Cc. Enhanced motions at the ΩG and ΩR loops could be 
associated to the shift in the alkaline transition pKa. Indeed, these two 
loops hold the residues that provide the iron axial ligands, which are 
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observed to at least partially lose  their metal coordination in the alkaline 
form (Assfalg et al., 2003). This is in contrast to XAS data that suggest 
that axial coordination remains untouched. However, the cryogenic 
temperatures at which the XAS spectra were recorded may amplify the 
most stable structures and reduce contributions from minority species 
with a high disorder, which are undetectable. 

The local but substantial changes in conformation and dynamics of the 
regions surrounding the Y48pCMF mutation increased the solvent 
accessibility of the porphyrin ring, thereby enhancing cytochrome 
peroxidase activity. Thus, Y48pCMF Cc proficiently scavenges ROS and 
avoids damage of cellular components (Figure 7). Our findings also 
indicate that Y48pCMF Cc binds to mitochondrial CL with a lower affinity 
than WT Cc, an interaction that may facilitate Cc translocation into the 
cytoplasm during apoptosis. However, phosphorylation at Tyr48 hinders 
the proapoptotic activity of extramitochondrial Cc, similar to the function 
of HIGD1A protein in ischemia and tumorigenesis (Ameri et al., 2013; 
Ameri et al., 2015). Indeed, both HIGD1A and Y48pCMF Cc act as pro-
survival proteins by preventing apoptotic caspase activation (Figure 7) 
(An et al., 2011).  

As expected, the Y48pCMF mutation affects the binding mode of Cc to 
its well-known respiratory partners Cbc1 and CcO. Not surprisingly, the 
enhanced internal motions of the loops ΩNY and ΩR and the electrostatic 
change at the interaction patch resulting from the additional carboxyl 
group affect the interaction of Y48pCMF Cc with the two membrane 
complexes. Indeed, the binding of Y48pCMF Cc on the Cc1 surface is weak 
and functionally irrelevant at the distal site but is favored at the proximal 
site. In addition, the decrease in both the association constant (KA) 
between Y48pCMF Cc and CcO (as reported here) and the Michaelis 
constant (KM) of phosphorylated Cc with CcO (Yu et al., 2008) indicates 
that KM is governed by the catalytic step, which becomes smaller upon 
Tyr48 phosphorylation at saturating hemeprotein concentrations (Yu et 
al., 2008). This contrasts with the approximately 60 mV decrease in 
midpoint reduction potential (E0) of Y48pCMF Cc31, which should 
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facilitate the electron flow from Cc to CcO. It is well known that the 
catalytic step can be tuned by conformational changes of Cc upon 
binding to CcO50; strikingly, these changes resemble the prominent 
internal dynamics of Y48pCMF Cc. Therefore, such conformational 
changes might be the limiting step for Y48pCMF Cc oxidation inside the 
complex. In contrast, the CcO-driven oxidation rate of Y48pCMF Cc is 
larger than that of WT Cc at the limiting protein concentrations in the 
enzymatic activity assays used here, in agreement with the KM decrease 
in the reaction between phosphorylated Cc and CcO (Yu et al., 2008). 

Under nutrient and oxygen depletion, a dysfunctional mitochondrial 
ETC and OxPhos can lead to many human diseases, including pathologies 
like ischemia and cancer23. The nexus in both disorders could be the rate-
control mechanisms based on cellular signaling regulation of the ETC 
components, such as phosphorylation of Cc. Indeed, Cc phosphorylation 
efficiently fine-tunes respiratory rates. Even though HIGD-mediated 
assembly of Cbc1 and CcO into OxPhos supercomplexes preferably occurs 
under low glucose conditions, Cc channeling is disrupted by its 
phosphorylation, thus slowing down the ETC flow (Figure 7). Intriguingly, 
not only respiratory supercomplex formation (Strogolova et al., 
2012;Chen et al., 2012)–whose structure has been recently solved (Gu et 
al., 2016; Lets et al., 2016)–but also Cc phosphorylation, and the resulting 
decrease in the ETC rate, could help to keep ROS levels low and to 
guarantee cell survival.  

Tyr48-phosphorylated Cc could be targeted as a biomarker of 
mitochondrial dysfunction with associated pathological states, such as 
ischemia/reperfusion and cancer. Deciphering the details of the 
phosphorylated Cc–controlled complex network requires accurate 
structural and dynamic analyses, to eventually develop robust 
therapeutic approaches to foster or silence—as required—the pro-
survival action of phosphorylated Cc reported here.  

MATERIAL AND METHODS 
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Methods and any associated references are available in the 
Supplementary methods. 
Accession codes. Coordinates and structure factors for Y48pCMF Cc have 
been deposited in the Protein Data Bank under accession code 2N3Y. 
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TABLES, FIGURES AND LEGENDS 

Table 1. NMR statistics of the Y48pCMF Cc structure 

NMR distance and dihedral constraints 
  Distance constraints  
       Total meaningful NOE 2,176 
       Intra-residue 360 
       Inter-residue 1,816 
       Sequential (|i – j| = 1) 763 
       Medium-range (|i – j| ≤ 5) 539 
       Long-range (|i – j| > 5) 514 
  Total dihedral angle restraints  
       φ  71 
       ψ  71 
Structure statistics 
  Violations  
      Average target function 0.73 ± 0.18 
      Distance constraints (Å) 0.0059 ± 0.0014 
      Dihedral angle constraints (º)     0.3336 ± 0.0973 
      Max. distance constraint violation (Å) 0.29 
      Max. dihedral angle violation (º) 3.79 
  RMSD of minimized 20 conformers to the mean (Å)  
      Backbone 

 Heavy atoms 
0.89 ± 0.01 
1.33 ± 0.24 

  Global RMSD of minimized 20 conformers (Å)  
      Backbone 1.28 ± 0.30 
      Heavy atoms 1.91 ± 0.38 
  Ramachandram plot statistics from Procheck  
      Residues in favoured regions (%)       98.80 ± 0.10 
      Residues in generously allowed regions (%) 1.00 ± 0.10 
      Residues in disallowed regions (%) 0.20 ± 0.10 
  Global quality  
      Procheck G-factor (all dihedrals, raw score)      -0.436 ± 0.046 
      Verify 3D 0.432 ± 0.030 
      Prosall 0.578 ± 0.047 
      MolProbity Clashscore       2.564 ± 1.263 
      Number of close contacts 0 
      Deviations from ideal bond distance (Å) 0.013 ± 0.001 
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Table 2. EXAFS data of the Y48pCMF Cc structure 

EXAFS Fits* 

 Paths σ2
path (Å2) R (Å) ∆E0 (eV) 

WT NPi 0.0012 ± 0.0006 1.983 ± 0.008 0.5 ± 1.0 
NIz 0.0011 2.214 
S 0.002 ± 0.002 2.26 ± 0.01 
CPi 

0.002 ± 0.001 
2.98 

3.02 ± 0.01 
3.06 

Pi Multiple 0.002  
Y48pCMF NPi 0.003 ± 0.001 1.990 ± 0.001 0.4 ± 1.3 

NIz 0.0011 2.21 
S 0.003 ± 0.002 2.25 ± 0.01 
CPi 

0.002 ± 0.001 
2.99 

3.03 ± 0.02 
3.06 

Pi Multiple 0.003  
*The amplitude reduction factor, S0

2, was set to 1.0 for all fits. ∆kWT = 1.389 ─ 
11.885 Å-1; ∆kY48pCMF = 1.358 ─ 11.685 Å-1; ∆RWT = 1.15 ─ 2.95 Å; ∆RY48pCMF = 
1.18 ─ 2.95 Å. Fit R factors:  RWT = 0.0043; RY48pCMF = 0.0097. 
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Figure 1. Control of human cell fate by Cc-based signalosome, and 
biophysical and structural characterization of the Y48pCMF variant of 
human Cc. (a) Diagram of the role of Cc in homeostasis and apoptosis. 
Left, Cc molecules are located in the intermembrane mitochondrial space 
(IMS) under homeostatic conditions, transferring electrons from 
cytochrome bc1 complex (Cbc1) to cytochrome c oxidase complex (CcO). 
Cbc1 and CcO are embedded in the inner mitochondrial membrane 
(IMM). Such electron transfer reactions are coupled to proton 
translocations that originate the mitochondrial membrane potential (∆Ψ) 
necessary for ATP production in the mitochondrial matrix (MM) via ATP 
synthase (V). Cc molecules are represented as small red circles. Right, Cc 
is released from the mitochondria to the cytosol upon apoptotic stimuli. 
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Under such conditions, Cc is involved not only in inducing cell death via 
apoptosome formation and activation of the caspases pathway, but also 
in blocking specific pro-survival pathways via inter-protein interactions, 
including formation of nuclear complexes (for instance, the SET/Cc 
complex). Mitochondrial membrane potential (∆Ψ) is impaired under 
apoptotic conditions, and a portion of Cc is retained in the IMM upon 
binding to cardiolipin (CL). (b) Far-UV CD spectra of the reduced forms of 
WT and Y48pCMF Cc. The spectra of the WT and mutant proteins are 
displayed in blue and red, respectively. The same color-code is 
maintained in the following panels. (c) Superimposition of the 1H–15N 
HSQC spectra of uniformly 15N-labeled forms of WT and Y48pCMF Cc. 
Backbone amide resonances of Y48pCMF Cc are labelled in red and black. 
Particular amide resonances of WT Cc are labelled in blue. (d) Detailed 
view of the 1H NMR spectra of WT and Y48pCMF Cc at negative ppm 
values. Resonances for Met80 side-chain protons are shown for both Cc 
species. Assigned signals of all residues within this region are displayed 
for Y48pCMF Cc. The extra signal of WT Cc corresponds to the Qδ1 
protons of Ile53. (e) Superimposition of the aromatic region of the 1H–13C 
HSQC spectra of WT and Y48pCMF Cc acquired in 13C natural abundance. 
Assigned aromatic resonances of Y48pCMF Cc are displayed in red. 
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Figure 2. NMR solution structure of the Y48pCMF variant of Cc. (a) 
Stereo-view ribbon representation of the 20 best conformers of Y48pCMF 
Cc. Heme group atoms are displayed for all conformers. Ribbons are 
colored in red, whereas atoms from the heme group are colored 
following the CPK color scheme. Foldons of Y48pCMF Cc are shadowed 
and marked with Roman numerals, except for foldon III, which is located 
behind foldon IV. (b) Comparison between the NMR solution structures 
of WT Cc (PDB ID: 1J3S) (Jeng  et al., 2002) and Y48pCMF Cc (this work). 
The ribbon for WT Cc is in blue. The five α-helices of both Cc species, as 
well as the mutation-containing loop of Y48pCMF Cc, are marked. Arrows 
point to the regions on the Y48pCMF Cc ribbon with substantial structural 
changes as compared to the WT form. (c) Detailed view of the loop 
harboring the pCMF48 residue. pCMF48 atoms follow the CPK color 
scheme. Protein structures were represented with the UCSF Chimera 
software (Pettersen et al., 2004). (d) Detail of the heme group and axial 
ligands. Labels display iron-to-axial ligand distances for the Y48pCMF 
mutant obtained from the EXAFS analysis. (e) Overlay of the XANES 
regions of the XAS spectra of reduced WT (blue) and Y48pCMF (red) Cc. 
The inset displays an enlargement of the absorption edge. (f) Modulus of 
the Fourier transforms of the EXAFS signals for the reduced WT 
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(continuous line, blue) and Y48pCMF (continuous line, red) Cc species. 
Dotted curves are the best fits of the experimental data carried out 
within the interval ΔR = 1.38–2.95 Å. Fits in k space are shown in Figure 
S4d. (g) q-space, reverse Fourier transform of the experimental data 
(continuous lines) and best fits (dotted lines), following the same color-
code as for (f). 
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Figure 3. Relaxation NMR measurements and dynamic properties of WT 
and Y48pCMF Cc. (a–c) Heteronuclear NOE (a), relaxation rate R1 (b) and 
relaxation rate R2 (c) for the reduced forms of WT (left) and Y48pCMF 
(middle) Cc, plotted as a function of the residue number. The differences 
between the respective experimental values are also presented (right). 
Gaps in data result from overlapping resonances, broadened resonances 
beyond the detection limit and unassigned resonances. A scheme of the 
secondary structure elements is included at the top of each plot. (d) Map 
of the Y48pCMF Cc residues colored according to their dynamic 
properties. Affected residues in the heteronuclear NOE and relaxation 
rate R2 parameters are colored in yellow and orange, respectively. 
Residues with backbone amide with resonances that are undetectable in 
the 1H–15N HSQC spectrum of Y48pCMF Cc but detectable in the 1H–15N 
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HSQC spectrum of WT Cc are colored in red. pCMF48 is shown in black 
and the heme group, in green. Unaffected, unassigned and proline 
residues are in blue. (e) Internal mobility comparison between Y48pCMF 
and WT Cc. S2 order parameter values per residue for Y48pCMF (left) and 
WT (right) Cc are represented on the respective NMR ribbon structures 
using a blue-red scale. Color key is shown. Undetectable backbone 
resonances are in gray. Heme atoms are in green. Internal mobility was 
calculated by Tensor 2 software (Dosset et al., 2000). 
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Figure 4. Binding assays between Y48pCMF Cc and its respiratory 
partners. (a) Overlay of selected residues of 1H–15N HSQC spectra of 15N-
labeled Y48pCMF Cc along with titration with Cc1. Signals corresponding 
to different titration steps are colored according to the code indicated in 
the panel. (b) Plot of chemical-shift perturbations (CSPs) of 15N-labeled 
Y48pCMF Cc as a function of residue number. Proline and non-assigned 
residues are marked by asterisks. Color bars stand for the ∆δavg 
categories, as follows: insignificant ∆δavg < 0.025 ppm, blue; small 0.025 
≤ ∆δavg < 0.050 ppm, yellow; medium 0.050 ≤ ∆δavg < 0.075 ppm, 
orange; and large ≥ 0.075 ppm, red. (c) CSP map of reduced Y48pCMF Cc 
upon addition of reduced Cc1 at a 1:1 ratio. Residues are colored 
according to the ∆δavg categories, as indicated in (b). Proline and non-
assigned residues are in gray. (d) ITC measurements of the Y48pCMF Cc-
Cc1 and Y48pCMF Cc-CcO complexes in their reduced states. 
Experimental data were fitted to a 2:1 binding model. Thermograms are 
shown in the upper panels, and binding isotherms, in the lower panel.  
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Figure 5. CcO activity with WT or Y48pCMF Cc as the electron donor. (a) 
CcO activity of isolated complex IV and of mitochondria lacking Cc (∆Cc) 
upon addition of exogenous WT (blue bars) or Y48pCMF Cc (red bars). 
Western blot results confirmed the lack of endogenous Cc in ∆Cc 
mitochondria (see inset). (b) In vitro modulation of CcO activity by 
HIGD1A and HIGD2A. WT Cc (blue bars) or Y48pCMF Cc (red bars), along 
with HIGD1A or HIGD2A at the indicated ratios, were added to isolated 
complex IV. (c) Effect of the modulators Rcf1 and Rcf2 on the CcO activity 
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of mitochondria isolated from yeasts grown in YPD or YP-Gal media with 
either WT Cc (blue bars) or Y48pCMF Cc (red bars). All data represent the 
mean ±SD of three independent experiments. In all cases, CcO activity 
was detected only upon addition of exogenous Cc but not with 
endogenous Cc. Inset, Western blots of WTRcf mitochondria (lane 1) and 
mitochondria lacking Rcf1 and Rcf2 (∆Rcf1/2) (lane 2). (d) Blue-native gel 
(BN-PAGE) and western blots of mitochondria from WTRcf and ∆Rcf1/2 
strains, using antibodies against Rcf2 and COX-II. Bands submitted to 
tryptic digestion (Figure. S7d) are highlighted by asterisks. (e) Scheme of 
the interactions within the electron transport chain involving Ccb1, CcO, 
Rcf proteins and WT or Y48pCMF Cc, as a function of glucose (Glu) 
availability. The Rcf proteins facilitate the interaction between Ccb1 and 
CcO to form OxPhos supercomplexes, mainly under glucose deprivation 
(right). Thickness of solid arrows refers to the electron transfer rate at the 
Cc-binding proximal sites of Cbc1 and CcO by WT or Y48pCMF Cc—the 
longer and thicker the arrow, the more efficient the electron transfer. 
Dashed line highlights the channeling of WT Cc molecules. 
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Figure 6. Liposome-binding assays with caspase-3 activity induced by WT 
and Y48pCMF Cc. (a,b) Electrophoretic mobility shift assay (EMSA) of Cc 
in the presence of increasing concentrations of lipids. DOPC:TOCL (4:1) or 
DOPC liposomes were incubated with WT (a) or Y48pCMF (b) Cc in 25 
mM HEPES buffer (pH 7.4). Note that free Cc species moved to the 
cathode, whereas liposome-bound Cc migrated to the anode. Samples 
were loaded onto a 0.8% agarose gel, and gels were stained with 
Coomassie Brilliant Blue. Lanes marked by rectangles correspond to the 
Cc:lipid ratio at which the peroxidase activity was determined (see 
below). (c) Calorimetric assays for lipid binding to Cc. Upper, ITC 
thermograms, corresponding to titrations of DOPC:TOCL 4:1 liposomes in 
phosphate buffer (black), WT Cc (blue) or Y48pCMF Cc (red). Lower, 
binding isotherms with WT Cc (blue dots) or Y48pCMF Cc (red dots). 
Continuous lines represent the best fits to a sequential binding, as 
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computed with the Nanoanalyze software (TA instruments) with a 
stoichiometry of 30 molecules of lipid per molecule of Cc. (d) Relative 
peroxidase activities of WT Cc (blue) or Y48pCMF Cc (red) in the presence 
of liposomes containing DOPC (empty bars) or DOPC:TOCL (4:1) (filled 
bars). (e) Relative caspase-3 activity in HEK293 cell extracts devoid of 
endogenous Cc upon addition of exogenous WT Cc (blue) or Y48pCMF Cc 
(red). A lack of caspase auto-activation was verified in a run without the 
addition of Cc (gray). Western blots confirmed the lack of endogenous Cc 
in cytoplasmic cell extracts after immunoblotting with anti α-tubulin 
(cytosolic marker) and anti-Cc antibodies (see inset). Lane 1, cytoplasmic 
cell extracts; lane 2, Cc; lane 3, BSA as a negative control. 
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Figure 7. Schematic diagram illustrating the changes induced in cell 
function by phosphomimic Y48pCMF Cc. The negative charge at position 
48 decreases CcO activity by disrupting Cc channeling in OxPhos 
supercomplexes (left), enhances the reactive oxygen species (ROS) 
scavenger activity by increasing the peroxidase activity of CL-bound Cc 
(middle) and promotes the anti-apoptotic function of Y48pCMF Cc by 
inhibiting its ability to activate the caspase-3 cascade (right).  
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SUPPLEMENTARY METHODS 

Protein expression and purification 

Uniformly 13C,15N-labeled, 15N-labeled and unlabeled samples of the 
Y48pCMF variant species of cytochrome c (Cc)—in which tyrosine 48 was 
replaced by p-carboxymethyl-L-phenylalanine (pCMF)—were expressed 
using the evolved tRNA synthetase technique and purified as previously 
described (Xie et al., 2007; Guerra-Castellano et al., 2015). For isotopic 
labelling, 15N-labeled ammonium chloride and 13C-labeled glucose were 
added to minimal cell culture media to express the 13C,15N-labeled 
protein samples, whereas only 15N-labeled ammonium chloride was 
added to media for 15N-labeled protein samples. Unlabeled pCMF and δ-
aminolevulinic acid were added to a final concentration of 1 mM each 
after cell culture induction. Cultures were induced with IPTG and 
arabinose at 1 mM and 0.02% final concentrations, respectively. Tryptic 
digestion and MALDI-TOF analyses confirmed the molecular mass and 
the substitution of tyrosine by pCMF. Uniformly 15N-labeled and 
unlabeled samples of wild-type (WT) Cc were expressed and purified as 
reported previously (Moreno-Beltrán et al., 2015). Protein concentration 
was determined by visible spectrophotometry, using an extinction 
coefficient of 29 mM–1 cm–1 for reduced Y48pCMF and WT Cc. For NMR 
experiments, pure Cc samples were first dialyzed against 10 mM sodium 
phosphate (pH 6.3), and afterwards concentrated in Millipore 3 K 
Nominal Molecular Weight Limit (NMWL) centricons until a final Cc 
concentration of 0.7 mM.  

Plant cytochrome c1 (Cc1) was obtained as described (Moreno-Beltrán 
et al., 2014). Bovine cytochrome c oxidase (CcO) was purchased from 
Sigma; before use, the buffer was exchanged to 10 mM sodium 
phosphate buffer (pH 7.4), supplemented with 0.2% (w/v) n-dodecyl-β-D-
maltoside (DDM) and 5 mM sodium dithionite, using Millipore 3K NMWL 
centricons, as reported previously (Moreno-Beltrán et al., 2015). 

Hypoxia-inducible domain family members 1A and 2A (HIGD1A and 
HIGD2A, respectively) were expressed by cell-free protein synthesis using 
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a continuous exchange reaction (dialysis mode; ratio 1:10), with a 6 mL 
final volume.  Briefly, 10 µg mL–1 of either HIGD1A- or HIGD2A-coding 
DNA in the pIVEX2.4d plasmid were added to the reaction mixture, which 
consisted of 1 mM amino acid mix, 0.8 mM ribonucleotides (guanosine-, 
uracyl- and cytidine- triphosphate), 1.2 mM adenosine triphosphate, 55 
mM HEPES buffer (pH 7.5), 68 µM folinic acid, 0.64 mM cyclic 
adenosinemonophosphate, 3.4 mM dithiothreitol, 27.5 mM ammonium 
acetate, 2 mM spermidine, 80 mM creatine phosphate, 208 mM 
potassium glutamate, 16 mM magnesium acetate, 250 µg mL–1 of 
creatine kinase, 27 µg mL–1 of T7 RNA polymerase, 0.175 µg mL–1 of tRNA 
and 0.4 mL of S30 Escherichia coli (E. coli) bacterial extract. DDM 
detergent was added to a final concentration of 0.4% (w/v). For the 
feeding mix in the external tank (60 mL), the same conditions were used 
but omitting DNA, creatine kinase, T7 RNA polymerase, tRNA and S30 E. 
coli bacterial extract. Incubation was carried out at 23°C with agitation 
for 16 h. The His-tagged forms of HIGD1A and HIGD2A were then purified 
by nickel affinity chromatography. The final yield was 125 µg of protein 
per mL of reaction in both cases. Before using the HIGD proteins, the 
buffers were exchanged to 10 mM sodium phosphate buffer (pH 7.4) 
with 0.2% (w/v) DDM. 

Circular dichroism 

Circular dichroism (CD) spectra were recorded on a JASCO J-815 
spectropolarimeter, equipped with a Peltier temperature system, in a 1-
mm quartz cuvette. CD intensities were presented in terms of molar 
ellipticity [θmolar], based on molar protein concentration (Kelly et al., 
2005). Secondary structural elements of reduced WT and Y48pCMF Cc 
were analyzed by recording their respective far-UV CD spectra (185–250 
nm) at 25°C. The samples contained 3 µM hemeprotein in 5 mm sodium 
phosphate buffer (pH 6.3), supplemented with 10 mM ascorbic acid. 
Twenty scans were averaged and analyzed for each sample, using the 
CDPro software package (Sreerama and Woody, 2000; Greenfield, 2007) 
SMP50 and SP37A were used as reference sets. CLSTR option was 
employed for comparison with a set of proteins with similar folds. 
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Nuclear magnetic resonance experiments 

Nuclear magnetic resonance (NMR) spectra of fresh 0.6 mM 13C,15N-
labeled Y48pCMF Cc samples, in 90% buffer and 10% D2O, were recorded 
at 25°C on Bruker Avance spectrometers operating at 950, 700 and 500 
MHz 1H frequencies. A standard set of triple-resonance experiments, 
necessary for the full assignment of backbone and side-chain resonances, 
were acquired at 700 MHz 1H frequency, whereas 2D and 3D NOESY 
experiments required for structure determination were acquired at 950 
MHz 1H frequency. Recorded NMR experiments for determination of 
backbone resonances were 2D 1H-15N heteronuclear single-quantum 
correlation (HSQC), 2D 1H-13C HSQC, 3D HNCA, 3D HNCACB, 3D 
CACB(CO)NH, 3D HN(CA)CO and 3D HNCO, and specific experiments for 
determination of side-chain resonances were 3D HCCHTOCSY and 3D 
HBHA(CO)NH (Zuiderweg et al., 1988; Grzesiek and Bax, 1993; Kay et al., 
1993). Additional 2D COSY and aromatic 2D 1H-13C HSQC spectra of an 
unlabeled sample of Y48pCMF Cc were acquired for the assignment of 
aromatic residues. Therefore, the 1H-13C HSQC spectrum was recorded in 
natural abundance of 13C. Water suppression was achieved in all 
mentioned spectra by WATERGATE (Piotto et al., 1991) 1D 1H spectra 
were launched before and after each spectrum to check the state of the 
sample, and especially the redox state of the hemeprotein. 

The following NOESY experiments were acquired: 2D 1H-15N NOESY, 3D 
1H-15N NOESY-HSQC and 3D 1H-13C NOESY-HSQC spectra in the aliphatic 
region (Marion et al., 1989a; Marion et al., 1989b; Zuiderweg et al., 
1989). Mixing times were 100 ms for all NOESY experiments, recorded on 
a 15N-labeled sample, with the exception of the 3D 1H-13C NOESY-HSQC, 
which was acquired on a 13C,15N-labeled sample. An additional 2D 1H-15N 
EXSY spectrum was launched for assignment of heme resonances using a 
partially oxidized 15N-labeled sample. WATERGATE suppression was used. 
1D 1H spectra were again launched to check the state of the samples.  

15N relaxation R1 (=1/T1), R2 (=1/T2) and {1H}-15N NOE parameters (also 
known as HetNOE) were obtained from standard experiments recorded 
at 500 MHz 1H frequency and 25°C (Kay  et al., 1989) on 15N-labeled 
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samples of the Y48pCMF and WT Cc species. R1 and R2 values were 
obtained using 10 delays, of 1, 2.5, 10, 35, 70, 200, 380, 550, 740 and 
3000 ms for R1 experiments, and 16.96, 33.92, 67.84, 101.76, 135.68, 
186.56, 237.44, 271.36, 305.28 and 356.16 ms for R2 experiments. To 
determine HetNOE values, spectra were recorded in the presence or 
absence of a proton presaturation period. HetNOE, R1 and R2 values from 
residues in well-defined regions were used to estimate the 
comprehensive 15N relaxation parameters (Blackledge et al., 1998; Dosset 
et al., 2000). The R1/R2 ratio was used to estimate the rotational 
correlation time (τc) of the protein constructs using TENSOR2 software 
(Dosset et al., 2000). Internal mobility was also calculated by an isotropic 
model-free analysis via TENSOR2 routines (Dosset et al., 2000). Amide 
hydrogen exchange experiments were also carried out on these 15N-
labeled samples of the Y48pCMF and WT Cc species. For this purpose, 2D 
1H-15N HSQC experiments were run using Cc samples in 95% buffer and 
5% D2O, or 100% D2O. 

NMR data processing was carried out using the Bruker TopSpin 
software package. The assignments of 2D and 3D spectra were 
performed manually with the help of the CARA and SPARKY software 
packages (Keller, 2004; Goddar and Kneller, 2001). A list of NOEs of 
reduced yeast Cc was used as a reference (Baistrocchi et al., 1996). Final 
reviews of peak assignments and integrations of peak volumes were 
executed by the XEASY software (Bartels et al., 1991). 15N relaxation 
parameters were analyzed using CARA routines (Keller, 2004).  

NMR titrations of 100 µM 15N-labeled, reduced Y48pCMF Cc with 
aliquots of unlabeled, reduced plant cytochrome c1 (Cc1) were performed 
at 25ºC and recorded on a Bruker Avance 700 MHz. Titrations were 
performed in 5 mM sodium phosphate (pH 6.3) with 10% D2O. Each 
titration step was prepared in an independent NMR tube (Shigemi) up to 
a 0.28 mL final volume. The pH of the samples was checked before and 
after recording each spectrum. The Chemical-Shift Perturbations (CSP) 
were monitored in a series of 1H-15N HSQC experiments. The data were 
processed using Bruker TopSpin and analyzed with SPARKY (Goddar and 
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Kneller, 2001). CSP titration curves were analyzed with Origin 7 
(OriginLab, http://www.originlab.com), using a two-parameter non-linear 
least squares fit with two-site binding model, as previously described 
(Moreno-Beltrán et al., 2015; Moreno-Beltrán et al., 2014).   

Distance geometry calculations 

Volumes of cross-peaks between assigned resonances were obtained 
using the integration routines of the XEASY program. Elliptical integration 
was applied. NOESY cross-peak intensities were converted into upper 
limits of inter-atomic distances by CYANA (Güntert et al., 1997). The 
heme group, axial ligands and two Cys residues covalently linked to the 
porphyrin ring were treated as in previous computations (Bartalesi et al., 
2003). Upper and lower distance limits were imposed to build up the 
heme group. Upper (1.90 Å) and lower (1.70 Å) distance limits from the 
α-carbons of thioethers 2 and 4 of the heme moiety to the Sγ of cysteines 
14 and 17, respectively, were used in the computations to covalently link 
the heme moiety to the cysteine residues. An upper distance limit of 2.50 
Å and a lower distance limit of 2.20 Å between the Sδ of Met80 and the 
heme iron atom were also introduced. The orientations of Met80 and 
His18 side-chains were defined only by experimental NOE constraints. 

A residue containing the heme moiety was added to the standard 
CYANA library. In addition, the non-standard amino acid pCMF was built 
and added to the CYANA library. Several cycles of structure calculation 
were carried out in order to recalibrate the NOE distance constraints. 
CYANA calculations were performed following the procedure and with 
the parameters used for the determination of other c-type cytochromes 
(Baistrocchi et al., 1996; Banci et al., 1997; Assfalg et al., 2002). Initially, 
200 structures were calculated. In each calculation, violated constraints 
were analyzed for the 20 best structures with respect to the target 
function. After consecutive rounds of review and refinement of violated 
constraints, a final CYANA computation was performed in which no 
consistent violations were determined. The final average value of the 
target function was equal to 0.73 ± 018. 
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Molecular dynamics simulations  

NMR-restrained Molecular Dynamics (RMD) computations were 
performed by the AMBER 12.1 package and using the AMBER-2003 force 
field on a selection of the 20-best structures derived from the CYANA 
calculations (Duan et al., 2003; Case et al., 2006). Distance constraints 
were introduced by the DIS_RST module of Amber 12.1. Simulations 
were performed under periodic boundary conditions using an 
orthorhombic cell geometry (with the minimum distance between 
protein and cell faces initially set to 10 Å) and particle mesh Ewald (PME) 
electrostatics with a Ewald summation cut off of 9Å. The structures were 
solvated with extended simple point charge model (SPC) water 
molecules, and Cl– counterions were added to neutralize the net charge 
of the full systems. Afterwards, solvent and counterions were subjected 
to 2500 steps of steepest descent minimization followed by 500 ps NPT-
MD computations using isotropic molecule position scaling and a 
pressure relaxation time of 2 ps at 298 K. Once the systems were NMR-
restrained energy minimized (REM), the resulting data were submitted to 
RMD computations for 5 ns at 298 K. The temperature was regulated 
using a Langevin thermostat with a collision frequency of 5 ps–1 
(Andersen, 1980).  Finally, structures from RMD were energy minimized 
for 5000 steps. The SHAKE algorithm was used to constrain bonds 
involving hydrogen atoms (Ryckaert et al., 1977). The PTRAJ module of 
AMBER was used for trajectory analyses. Force field parameters for the 
heme group were taken from a previous work (Autenrieth et al., 2004). 
The Met80 residue was non-bonded to the iron atom and a constraint 
was applied instead. Molecular graphics were performed with UCSF 
Chimera (Pettersen et al., 2004). Final minimized structures were 
validated by the Protein Structure Validation Software suite (PSVS) 
(Bhattacharya et al., 2007), the iCING server (Doreleijers et al., 2012) and 
the Protein Data Bank (PDB) validation suite. In addition, a non-
restrained MD computation of 20 ns was launched to check the stability 
of the resulting conformers. A non-restrained MD computation of 20 ns 
was also launched on the NMR structure of WT Cc. S2 parameters values 



 
 

145 
 

per residue were obtained from the non-restrained computations 
performed for both Cc species. 

Finally, NMR assignments and PDB coordinates for the Y48pCMF Cc 
were deposited in the Biological Magnetic Resonance Data Bank (BMRB) 
and PDB databases. BMRB and PDB entries for the Y48pCMF Cc are 
25660 and 2N3Y, respectively.  

X-ray absorption spectroscopy  

X-ray absorption spectroscopy (XAS) experiments were carried out at 
Diamond Light Source (UK), operating at 3 GeV and 300 mA ring current. 
The Fe K-edge (7112 eV) was measured at beamline I20-scanning, 
comprising a four-bounce Si(111) crystal monochromator. Two Rh-coated 
mirrors working at 5.0 mrad were used for high-energy harmonics 
rejection. The spectra were recorded in fluorescence mode, using a 36-
element monolithic Ge detector (Canberra). An iron foil was 
simultaneously recorded in transmission mode using ionization chamber 
detectors to be used as internal calibration. To avert radiation damage, 
X-rays were attenuated with a 1.5-mm thick carbon foil. In addition, 
samples were measured at cryogenic temperatures using a liquid 
nitrogen cryojet (Oxford Instrument). Each datapoint was collected using 
a 1 s acquisition time, and 36 scans were averaged. Samples were 
measured in plastic capillary cells. 350 µM Cc samples were prepared in 
10 mM sodium phosphate buffer (pH 5.8).   

Spectra averaging, background subtraction and amplitude 
normalization required to obtain the extended X-ray absorption fine 
structure (EXAFS) signals (k) were performed using the Athena (version 
0.9.024) code (Ravel and Newville, 2005). The best fit to the data was 
performed by using the Artemis program (version 0.9.024) (Ravel and 
Newville, 2005). Scattering paths were computed using FEFF 6.0. Initial 
atomic coordinates of the heme moiety were taken from the 
crystallographic structure of the WT form (PDB: 3zcf) (Rajagopal et al., 
20013). Neither the initial coordinates from this structure nor those from 
the NMR structure (PDB: 1j3s) (Jeng et al., 2002) yielded acceptable fits. 
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Still, the distances coming out from these fits were used as input to 
screen 104 coordinates from each MD computation (Guerra-Castellano et 
al., 2015). The snapshots with the smallest sum of quadratic distance 
differences with respect to the EXAFS fit-derived distances were selected 
iteratively. 

Isothermal titration calorimetry  

Interactions of the human Cc species with plant Cc1, at their reduced 
and oxidized states were analyzed by isothermal titration calorimetry 
(ITC) using an Auto-ITC200 microcalorimeter (MicroCal) at 25°C. The 
reference cell was filled with distilled water. The experiments consisted 
of 2 µL injections of 0.4 mM Cc solution in 10 mM sodium phosphate 
buffer (at pH 5.8, 7.4 and 8.5) into the sample cell, initially containing 20 
µM Cc1 solution in the same buffer. All solutions were degassed before 
titration. Titrant was injected at appropriate time intervals to ensure that 
the thermal power signal returned to the baseline prior to the next 
injection. To achieve a homogeneous mixing in the cell, the stirring speed 
was kept constant at 1000 rpm. The data, specifically the heat-per-
injection normalized per mol of injectant versus molar ratio, were 
analyzed with Origin 7 (OriginLab) using a two-site binding model with a 
distinct affinity for each site, as recently reported for the plant Cc-Cc1 
complex (Moreno-Beltrán et al., 2014). In addition, the titration of 
reduced bovine CcO (3.85 µM) with the reduced Cc species (0.10 mM) 
was performed in 10 mM sodium phosphate buffer (pH 7.4), 
supplemented with 0.2% (w/v) n-dodecyl-β-D-maltoside and 5 mM 
sodium dithionite, as described previously (Moreno-Beltrán et al., 2015). 
Calibration and performance tests of the calorimeter were carried out by 
conducting Ca+2-EDTA titrations with the solutions provided by the 
manufacturer.  

Calorimetric liposome binding assays were carried out in a low-volume 
Nano-ITC (TA instruments, Inc.). All titrations were performed in 25 mM 
HEPES buffer (pH 7.4). A 6 µM Cc solution was titrated with a suspension 
of unilamellar vesicles. Stirring was set to 350 rpm. Unilamellar vesicles 



 
 

147 
 

contained 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) either alone 
or with 1,1’2,2’-tetraoleoylcardiolipin (TOCL) at a 4:1 ratio. Total lipid 
concentration in the syringe was 8.9 mM. DOPC unilamellar vesicles (7.9 
mM) were used for control experiments. Data processing and analyses 
were carried out with the Nanoanalyze software (TA Instruments).  

Cytochrome c oxidase assays 

The ability of Cc species to act as electron donors for cytochrome c 
oxidase (CcO) activity was tested in isolated complex IV and in 
mitochondria from Saccharomyces cerevisiae. Two yeast cell strains were 
used for mitochondria extraction, namely WT (BY4741; MATa; ura3∆0; 
leu2∆0; his3∆1; met15∆0) (WTmito) and Cc-deficient Y06846 (BY4741; 
MATa; ura3∆0; leu2∆0; his3∆1; met15∆0; YJR048w::kanMX4) (∆Cc) 
strains. Two other yeast cell strains were likewise used for mitochondria 
extraction, namely WT (W303-1A; mata leu2 trp1 ura3 his3 ade2) (WTRcf) 
and Rcf-deficient RCF1::HIS3 RCF2::KAN (W303-1A; mata leu2 trp1 ura3 
ade2) (∆Rcf1/2) strains. WTmito and ∆Cc cells were grown in YPD medium 
(1% yeast extract, 2% peptone and 2% glucose), whereas WTRcf and 
∆Rcf1/2 cells were grown in YPD medium or YP-0.5% lactate medium 
supplemented with 2% galactose (YP-Gal), as described previously 
(Strogolova et al., 2012), to obtain mitochondria-enriched cells. In all 
cases, crude mitochondria were isolated as previously described (Padilla-
López et al., 2009) and stored at –80oC in 0.6 M sorbitol, 20 mM K-MES 
buffer (pH 6.0). CcO activity was measured spectrophotometrically 
(Beckman DU® 650 spectrophotometer) using the commercial CcO 
activity kit from Sigma®, according to the manufacturer’s instructions. In 
experiments with HIGD1A/2A proteins, the reaction mixtures were 
incubated at 25ºC for 30 min before running the assay. 

 

Liposome preparation and binding experiments 

In order to analyze the interaction of the Cc species with cardiolipin 
(CL), small unilamellar liposomes were prepared by sonication in 25 mM 
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HEPES buffer (pH 7.4). Liposomes contained either DOPC and TOCL (4:1 
ratio) or DOPC alone (manufactured by Avanti Polar Lipids®). Cc:liposome 
binding assays were performed by incubating the Cc species with DOPC 
or TOCL/DOPC liposomes at different ratios (protein:lipids) for 1 h in 25 
mM HEPES buffer (pH 7.4). The complexes were analyzed by 
electrophoretic mobility shift assay (EMSA). The samples were applied 
onto 0.8% agarose gel, and the electrophoresis was run for 90 min at 50 
V in non-denaturing 35 mM HEPES buffer (pH 7.4). Gels were stained for 
protein detection with 0.25% Coomassie Brilliant Blue R-250 in 45% 
methanol and 10% acetic acid. 

Peroxidase assays 

Peroxidase assays of Cc:liposomes were performed as previously 
described with minor modifications (Belikova et al., 2006). TOCL/DOPC 
liposomes were incubated for 1 h at room temperature with Cc (1 µM) in 
a 1:100 ratio (w/w) (protein:lipid) in 20 mM HEPES buffer  (pH 7.4). After 
incubation, and immediately before starting the measurement, 2′,7′-
dichlorofluorescin diacetate (H2DCF) and H2O2 were added to the 
samples at 5 µM and 100 µM final concentrations, respectively. Increases 
in DCF fluorescence at 522 nm were recorded along 30 min upon 
excitation at 502 nm, with 5-nm slits, in a Cary Eclipse (Varian) 
fluorescence spectrophotometer. Basal peroxidase activity of Cc in CL-
free liposomes was used as control. 

Caspase activation assays 

In vitro activation of caspases was achieved as described previously 

with minor modifications (Rodríguez-Roldán et al., 2008). Human 
embryonic kidney 293 (HEK 293) cytoplasmic cell extract (100 µg), 
prepared as described previously (Pecina et al., 2010), was incubated for 
60 min at 37oC, in a total volume of 25 µL, with 25 mM KCl, 0.2 mM DTT, 
0.2 mM dATP and human WT or Y48pCMF Cc at a final concentration of 8 
µM. After incubation, 180 µL of buffer A (10 mM HEPES buffer (pH 7.0) 
with 50 mM NaCl, 40 mM β-glycerophosphate, 2 mM MgCl2, 5 mM EGTA, 
0.1 mg mL–1 bovine serum albumin, and 0.1% (w/v) CHAPS), 
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supplemented with 10 µM of acetyl-Asp-Glu-Val-Asp-7-amino-4-
methylcoumarin (Ac-DEVD-AMC; a fluorescent substrate specific for 
caspases 3/7), was added to the reaction mixture. Fluorescence increases 
resulting from Ac-DEVD-AMC cleavage was rapidly determined in a Cary 
Eclipse (Varian) fluorescence spectrophotometer (optical slits of 2.5 nm), 
using an excitation wavelength of 360 nm and an emission wavelength of 
460 nm. Data were the averages of at least three independent 
experiments. 

 

 

Blue-native gel electrophoresis of protein complexes from yeast 
mitochondria 

Fresh mitochondria (400 μg of protein) isolated from yeast cell extracts 
were permeabilized in 40 µL of solubilization buffer (30 mM HEPES buffer 
(pH 7.4), with 150 mM KOH-acetate, 10% glycerol and 1 mM PMSF) plus 
digitonin at a 4:1 (w:w) ratio of digitonin:protein. Samples were 
incubated on ice for 30 min, centrifuged for 30 s, and loaded onto 
NativePAGE Novex 3–12% Bis-Tris protein gel (1.0 mm, 15-well; Thermo 
Fisher Scientific, cat. No. BN2012BX10), following the manufacturer’s 
instructions. 

Antibodies 

Mouse monoclonal anti-His6 and anti-α-tubulin were obtained from 
Sigma-Aldrich (catalog numbers 11922416001 and T8328, respectively). 
Secondary horseradish peroxidase (HRP)-conjugated anti-mouse IgG was 
obtained from Sigma-Aldrich (catalog number A4416). Rabbit antibody 
against yeast Cc, and mouse antibody again yeast COX II, were a gift from 
Dr. Carlos Santos-Ocaña. Rabbit antibodies against the C-terminal 
domains of yeast Rcf1 and Rcf2 were kindly provided by Prof. Peter 
Rehling. Rabbit antiserum against yeast Cc1 was a gift from Prof. Nikolaus 
Pfanner. Rabbit anti-human Cc serum was obtained by immunizing male 
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rabbits with full-length recombinant Cc suspended in a 0.85% NaCl 
solution. Secondary horseradish peroxidase (HRP)–conjugated anti-rabbit 
IgG was obtained from Sigma-Aldrich (catalog number A0545). 

Western blot analysis 

For immunoblot detection of yeast Cc, Rcf1 and Rcf2 in mitochondria 
and human Cc and α-tubulin in cytoplasmic fractions of HEK293 cells, 
protein quantification was first assessed using the Bradford protein assay 
(Bradford, 1976). For immunodetection of Cc1, COX II, Rcf1 and Rcf2 
inside the respiratory supercomplexes, mitochondrial content were 
obtained after permeabilization and protein quantification by the 
Bradford protein assay (Bradford, 1976). For cytoplasmic cell extracts and 
mitochondria samples, 10–20 µg of proteins were resolved by β-dodecyl 
sulphate–polyacrylamide gel electrophoresis (SDS-PAGE). For 
supercomplexes analysis, 20-µg protein samples were loaded onto 
NativePAGE Novex 3–12% Bis-Tris protein gels (1.0 mm, 15-well; Thermo 
Fisher Scientific, catalog number BN2012BX10), which were further 
transferred to polyvinylidene fluoride (PVDF) membranes (EMD 
Millipore) using a Mini Trans-Blot electrophoretic transfer cell (Bio-Rad). 
Membranes were blocked in 5% nonfat dry milk in PBS with Tween-20 
(TPBS) for cytoplasmic extracts and mitochondria, and in only TBS for 
supercomplex analyses. Immunoblots were performed with primary 
antibodies, and then HRP-conjugated secondary antibodies were used for 
detection. The immunoreactive bands were detected using Amersham 
ECL Plus Western Blotting Detection Reagents (GE Healthcare Life 
Sciences).  
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SUPPLEMENTARY TABLES 

 

 

 

Supplementary Table 1. NMR experiments performed on reduced 
Y48pCMF Cc 

 Experiments Magnetic Field 

Backbone assignment 

2D 1H-15N HSQC, 2D 1H-
13C HSQC, 3D HNCA, 3D 

HNCACB, 3D 
CBCA(CO)NH, 3D 
HN(CA)CO and 3D 

HNCO. 

700 MHz 

Side-chain assignment 

2D 1H-13C HSQC, 2D   
COSY, 3D HBHA(CO)NH 
and 3D HCCH-TOCSY. 

700 MHz 

Aromatic 2D 1H-13C 
HSQC 500 MHz 

Mobility analysis 
15N R1, 15N R2 and 

steady-state {1H}-15N 
NOE 

500 MHz 

Distance constraints 
2D 1H-1H NOESY, 3D 

1H-15N  NOESY-HSQC, 
3D 1H-13C NOESY-HSQC 

950 MHz 

Heme assignments & 
constraints 

2D  COSY, 2D 1H-15N 
NOESY and 1H-15N EXSY 950 MHz 

Amide hydrogen 
exchange 2D 1H-15N HSQC 700 MHz 

Biomolecular 
interactions 2D 1H-15N HSQC 700 MHz 
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Supplementary Table 2. Comprehensive 15N relaxation parameters of 
the WT and Y48pCMF Cc species 

 
 WT Cc Y48pCMF Cc Difference 

R1 (s–1) 2.26 ± 0.08 2.15 ± 0.07 0.11 
R2 (s–1) 8.53 ± 0.46 9.14 ± 0.48 0.61 
R2 / R1 3.77 ± 0.23 4.25 ± 0.23 0.48 

NOE ratio 0.80 ± 0.03 0.80 ± 0.02 0.00 
τc (ns) 6.33 ± 0.02 6.96 ± 0.02 0.63 
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Supplementary Table 3. Equilibrium and thermodynamic parameters for the interaction of WT and Y48pCMF Cc at the two 
binding sites of Cc1, as determined by ITC 
 

Relative errors: KD, 20%; ∆H and –T∆S, 5%; ∆G 2% 
1 = Moreno-Beltrán et al., 2015 
a = pH 7.4 
b = pH 5.8 
c = pH 8.5 

 

 

 Proximal site Distal site  

Protein couple KD1  

(µM) 
∆H1 

(kcal/mol) 
–T∆S1 

(kcal/mol) 
∆G1 

(kcal/mol) 
KD2  

(µM) 
ΔH2 

(kcal/mol) 
–T∆S2 

(kcal/mol) 
∆G2 

(kcal/mol) n 

Cc WTred/Cc1red
a,1 11.5 11.7 –18.40 –6.70 54.0 10.5 –16.30 –5.80 2 

Cc Y48pCMFred/Cc1red
a 5.1 –1.8 –5.42 –7.22 230.0 4.4 –9.36 –4.96 2 

Cc WTox/Cc1ox
b 1.9 6.2 –14.00 –7.80 110.0 1.1 –6.50 –5.40 2 

Cc Y48pCMFox/Cc1ox
b 1.8 8.2 –16.03 –7.83 71.0 3.3 –8.96 –5.66 2 

Cc WTox/Cc1ox
c 50.0 4.3 –10.16 –5.86 140.0 0.8 –6.05 –5.25 2 

Cc Y48pCMFox/Cc1ox
c 12.0 1.4 –8.11 –6.71 140.0 1.3 –6.55 –5.25 2 
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Supplementary Table 4. Equilibrium and thermodynamic parameters for the interaction of WT and Y48pCMF Cc at the two 
binding sites of bovine CcO, as determined by ITC 

 
Relative errors: KD, 20%; ∆H and –T∆S, 5%; ∆G, 2% 
1 = Moreno-Beltrán et al., 2015.  

  

 Proximal site Distal site  

Protein couple KD1  

(µM) 
∆H1 

(kcal/mol) 
-T∆S1 

(kcal/mol) 
∆G1 

(kcal/mol) 
KD2  

(µM) 
∆H2 

(kcal/mol) 
-T∆S2 

(kcal/mol) 
∆G2 

(kcal/mol) n 

Cc WTred/CcOred
1 0.03 –6.6 –3.7     –10.3   0.30 –5.4 –3.5 –8.9 2 

Cc Y48pCMFred/CcOred
 2.10 –6.3 –1.4 –7.7   7.00     –30.0 23.0 –7.0 2 
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SUPPLEMENTARY FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1. Chemical-shift differences between WT and Y48pCMF 
Cc. (a) Plot of the chemical-shift differences between both Cc species for 
backbone amides along their primary sequence. (b) The chemical shift 
differences are mapped on the Y48pCMF Cc surface according to the degree of 
change. Residues are colored in yellow if the chemical-shift difference ranged 
between 0.1 and 0.2 ppm, and in red if the difference was greater than 0.2 
ppm. Residues with undetectable backbone amide resonances in the 1H-15N 
HSQC spectrum of Y48pCMF Cc but detectable in WT Cc are colored in orange. 
pCMF48 and the heme group are given in black and green, respectively. 
Unaffected, unassigned and proline residues are in blue. 
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Supplementary Figure 2. Number of experimental meaningful NOEs per residue 
used for the structure calculation of Y48pCMF Cc. The color code for the NOE 
bars is: intra-residue, white; sequential, light gray; medium, gray; and long 
range, black. Residue 105 corresponds to the heme group. 
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Supplementary Figure 3. Molecular Dynamics simulations for the Y48pCMF 
variant and WT form of Cc. (a) A non-restrained MD computation was 
performed to check the stability of conformers derived from the NMR structure 
of Y48pCMF Cc. RMSD values are plotted along the full 20 ns trajectory, 
considering either residues away from the mutation surroundings (black) or the 
whole protein sequence (blue). (b) Time evolution of secondary structural 
elements along the MD trajectory represented in (a). The color code is as 
follows: α-helix, red; π-helix, orange; extended β-brand, blue; β-bridge, cyan; 
turn, yellow; and coil, white. (c) Comparison of S2 order parameter values for 
Y48pCMF and WT Cc obtained from MD computations. S2 order parameter 
values per residue for Y48pCMF (left) and WT (right) Cc are represented on 
their respective NMR ribbon structures using a blue-red scale (color key is 
shown). Heme atoms are displayed in green. Internal mobility of alpha carbon 
atoms was calculated with the Amber software. 
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Supplementary Figure 4. (a) Per residue RMSD values between the first 
conformer of the NMR solution structures of WT Cc (PDB ID: 1J3S) (Jeng et al., 
2002) and the refined lowest-TF Y48pCMF Cc. Backbone and heavy atoms are 
represented as gray triangles and black circles, respectively. RMSD calculations 
were performed with the MOLMOL software (Koradi et al., 1996). (b) Global 
RMSD values per residue of the best 20 conformers of Y48pCMF Cc with 
respect to the mean structure. The color code is as in (a). (c) Normalized X-ray 
Absorption Spectra (XAS) of WT (blue line) and Y48pCMF (red dots) Cc. (d) 
Extended absorption fine structure (EXAFS) waves for WT Cc (blue) and 
Y48pCMF Cc (red). Black dots correspond to the best fits summarized in Figure 
2 and Table 1. 
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Supplementary Figure 5. Amide-hydrogen exchange experiments with WT and 
Y48pCMF Cc. (a) 1H-15N HSQC spectrum of WT Cc recorded either in 95% H2O 
and 5% D2O (blue) or in 100% D2O (cyan). (b) 1H-15N HSQC spectrum of 
Y48pCMF Cc recorded either in 95% H2O and 5% D2O (red) or in 100% D2O 
(gold). (c) Residues protected from amide-hydrogen exchange in both Cc 
species are displayed in gold, those protected only in Y48pCMF Cc, in red, and 
those protected only in WT Cc, in blue. pCMF48 and the heme group are in 
black and green, respectively. The representation is projected on the Y48pCMF 
Cc structure, whose surface is light gray. 
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Supplementary Figure 6. (a, b) Surface electrostatic potentials of WT (a) and 
Y48pCMF (b) Cc molecules. Negatively and positively charged regions are 
depicted in red and blue, respectively. Simulations were performed with the 
DelPhi program (Nicholls and Honig, 1991) aided by Chimera (Pettersen et al., 
2004), assuming an ionic strength of 250 mM. The color scale ranges from –5 
(red) to +5 (blue) kBT. Some residues were labelled to better show the 
orientation of both Cc species. The PDB file 1J3S was used for the WT Cc 
structure. 
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Supplementary Figure 7. HIGD proteins. (a) SDS-PAGE of purified HIGD1A and 
HIGD2A His-tagged proteins after applying an imidazole gradient. M, molecular 
weight markers. The arrow points to the bands corresponding to HIGD proteins. 
(b) Western blot analysis using an antibody against His-tag to identify HIGD1A 
and HIGD2A following Ni-column purification. (c) Trypsin digestion of HIGD 
proteins followed by matrix-assisted laser desorption ionization with time-of-
light (MALDI-TOF) analysis. (d) Tryptic digestion of proteins from BN-PAGE 
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bands followed by MALDI-TOF/TOF and highlighted by asterisks in Figure 5d. 
Specifically, the data presented here correspond to the upper band in YP-Gal in 
Figure 5d. The expected tryptic masses clearly matched the calculated values, 
with 0.5 Da tolerance. The sequence coverage of these fragments is shaded in 
cyan.  
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Abstract 
 
Cytochrome c (Cc) is phosphorylated at tyrosine 97 in the post-ischemic brain 
by neuroprotective insulin treatment. Here we characterize a phosphomimetic, 
phosphatase-resistant Cc mutant, which was recombinantly generated by site-
specific incorporation of p-carboxymethyl-L-phenylalanine at position 97 using 
an evolved aminoacyl-tRNA synthetase. The mutant Cc was not significantly 
affected in its overall folding and heme environment but had a decreased 
thermal stability. COX activity increased 5-fold in isolated complex IV in the 
presence of HIGD1A and the mutant Cc, but decreased by half in mitochondrial 
supercomplexes from hypoxia-induced yeast with the phosphomimetic mutant, 
as compared to wild-type Cc. The peroxidase activity of mutant Cc, as well as its 
capacity to bind cardiolipin and activate caspases, are likewise investigated. 
This phosphomimetic Cc could potentially have therapeutic applications for 
acute diseases, such as brain ischemia. 
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Abbreviations:  
 

Ac-DEVD-AMC  acetyl-Asp-Glu-Val-Asp-7-amino-4-methylcoumarin 
Apaf1   apoptosis protease activation factor 1 
βDDM   n-dodecyl β-D-maltoside 
CD   circular dichroism 
CHAPS 3-[(3-cholamidopropyl)dimethylammonio]-1-

propanesulfonate 
CL   cardiolipin 
COX   cytochrome c oxidase 
Cbc1   cytochrome bc1 complex 
Cc   cytochrome c 
Cc1   cytochrome c1 
DOPC   1,2-dioleoyl-sn-glycero-3-phosphocholine 
EMSA   electrophoretic mobility shift assay 
ETC   electron transfer chain 
H2DCF   dichlorofluorescein diacetate 
HEK   human embryonic kidney 
HIG1   hypoxia-induced gene 1  
HIGD1A   HIG hypoxia inducible domain family member 1A 
HIGD2A   HIG hypoxia inducible domain family member 2A 
MD   molecular dynamics 
MES 2-(N-morpholino)ethanesulfonic acid, 4-

morpholineethanesulfonic acid 
PCD   programmed cell death 
pCMF   p-carboxymethyl-L-phenylalanine 
OxPhos   oxidative phosphorylation 
Rcf1   respiratory supercomplex factor 1 
Rcf2   respiratory supercomplex factor 2 
ROS/RNS  reactive oxygen/nitrogen species 
Tm   midpoint melting temperature 
TOCL   1,1′2,2′-tetraoleoylcardiolipin 
WT   wild-type 
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Highlights 
 

• Replacing Tyr97 with pCMF97 generated a Cc mutant that retained its 
overall structure and heme properties 

• The Y97pCMF Cc mutant enhanced the HIGD1A-dependent COX activity 
in vitro 

• Under hypoxia conditions, the COX action triggered by Y97pCMF was 
decreased to half of that triggered by WT Cc 

• The Y97pCMF mutation slightly decreased caspase cascade activity 
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1. Introduction 

One post-translational modification known to regulate proteins is 
phosphorylation, which is modulated by kinases and phosphatases, affecting 
for instance the functionality of proteins in redox signaling (Monteiro and 
Sterm, 1996; Liaudet et al., 2009; Corcoran and Cotter, 2013). This is 
particularly important in mitochondria, which are the main source of reactive 
oxygen/nitrogen species (ROS/RNS) in the cell (Turrens, 2000).  

Cytochrome c (Cc) is a small soluble hemeprotein localized in the 
mitochondrial intermembrane space. It is an essential component of the 
electron transfer chain (ETC), which transfers electrons from the cytochrome 
bc1 complex (Cbc1) to cytochrome c oxidase (COX). The yeast respiratory 
supercomplex factors (Rcfs) are modulators that stabilize both membrane-
embedded Cbc1 and COX complexes within respiratory supercomplexes 
(Strogolova et al., 2012; Vukotic et al., 2012). Rcf1 (formerly Aim31) and Rcf2 
(formerly Aim38) are members of the hypoxia-induced gene 1 (HIG1) protein 
family. Rcf1 is required for yeast growth under hypoxia and is directly involved 
in the association of Cbc1 and COX, which form a stable supercomplex. Rcf1 is a 
conserved subunit and has two human orthologues, the hypoxia inducible 
domain family members 1A and 2A (HIGD1A and HIGD2A, respectively). 
However, Rcf2 is yeast-specific, in which it is necessary for the oligomerization 
of a subclass of COX into respirasomes (Strogolova et al., 2012; Vukotic et al., 
2012).   

Under nitro-oxidative stress conditions, Cc acts as a programmed cell death 
(PCD) inductor (Ow et al., 2008). During the start of apoptosis, a population of 
tightly mitochondrial membrane–bound Cc triggers phospholipid peroxidation, 
affecting in particular cardiolipin (CL) (Tuominem et al., 2002; Kagan et al., 
2005; Belikova et al., 2006; Kapralov et al., 2011).  

CL-adducted Cc undergoes a profound tertiary conformational 
rearrangement that creates an entry channel for H2O2 molecules, which 
explains how Cc enhances its peroxidase activity (Jemmerson et al., 1999; 
Vladimirov et al., 2006; Pandiscia and Schweitzer-stenner, 2005). It has been 
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proposed that Cc-CL conjugates are sufficient for formation of mitochondrial 
pores, which then release the hemeprotein into the cytosol during apoptosis 
(Iverson and Orrenius, 2004; Gonzalvez and Gottlieb, 2007; Bergstrom et al., 
2013).   

Extramitochondrial Cc binds to the apoptosis protease activation factor 1 
(Apaf1), thereby eliciting the apoptosome platform assembly and activating the 
caspase cascade (Zou et al., 1999; Desagher and Martinou, 2000). Recent data 
indicate that the apoptotic network involving Cc is complex, and that Cc targets 
several proteins that are functionally equivalent in humans and plants 
(Martínez-Fábregas et al., 2013; Martínez-Fábregas et al., 2014a; Martínez-
Fábregas et al., 2014b). In human cells, Cc reaches the cell nucleus upon DNA 
damage and sequesters SET/TAF1β, a histone chaperone that remodels 
chromatin (González-Arzola et al., 2015).  

The two major targets of oxidative phosphorylation (OxPhos) that control 
signaling are Cc and COX. Cc can undergo several post-translational 
modifications, including nitration or phosphorylation of tyrosine residues (Lee 
et al., 2006; Yu et al., 2008; Souza et al., 2008; García-Heredia et al., 2010; Díaz-
Moreno et al., 2011; Ly et al., 2012; Capdevila et al., 2015). These two 
mutually-exclusive modifications can alter how Cc binds to its physiological 
partners, in either the mitochondria or cytosol, but these effects are highly 
dependent on which tyrosine is modified (reviewed in ref. Díaz-Moreno et al., 
2011). In addition to tyrosine residues, Cc can also be phosphorylated at Thr28 
and Ser47, as detected in human skeletal muscle. Recent data obtained with 
phosphomimic mutants suggest that phosphorylation of these residues 
enhances electron transport (Zhao et al., 2011; Guerra-Castellano et al., 2016). 

Tyr97 phosphorylation has been correlated with several pathologies, 
including ischemia. Indeed, it has been proposed that Tyr97 of Cc is targeted for 
phosphorylation during the insulin-induced neuroprotection response following 
an ischemic injury (Sanderson et al., 2013). A possible mechanism could be that 
Tyr97-phosphorylation of Cc impairs its electron shuttling to COX (Lee et al., 
2006). In addition, although the HIGD1A membrane protein positively regulates 
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the activity between COX and wild-type (WT) Cc, it is unknown how it reacts 
with phosphorylated Cc (Hayasi et al., 2015).  

Research on tyrosine phosphorylation in Cc has normally resorted to using 
Tyr-to-Glu mutations (Pecina et al., 2010; García-Heredia et al., 2011), to 
overcome the difficulties of obtaining enough phosphorylated Cc for 
biophysical and functional studies if the specific Cc-phosphorylating kinase is 
unknown (Kadenbach and Urban, 1968). However, the Tyr-to-Glu substitution 
leads to a substantial decrease in the residue volume and the loss of an 
aromatic ring. Therefore, we used the tRNA-evolved technique to include the 
non-canonical p-carboxymethyl-L-phenylalanine (pCMF) amino acid at position 
97, as previously reported for Tyr48 (Guerra-Castellano et al., 2015). Thus, this 
non-canonical amino acid can be used to synthesize stable analogues of a wide 
array of phosphoproteins, allowing it to be used when specific kinase is 
unknown or the yield of phosphoprotein is very low. In addition, pCMF provides 
a dependable analogue of a phosphorylated tyrosine that can be used to study 
signal transduction pathways. The resulting Y97pCMF Cc mutant maintained its 
overall folding and heme moiety. However, we found that this post-
translational modification of Cc affected the OxPhos process: on the one hand, 
Y97pCMF Cc enhanced the HIGD1A-dependent COX activity in vitro; on the 
other, the electron donation rate to COX by Y97pCMF was decreased to half of 
that of WT Cc in mitochondria isolated from yeast grown under hypoxia. Thus, 
the COX-driven oxidation rate of Cc is controlled by phosphorylation to 
maintain low levels of apoptotic-inducing ROS/RNS. Y97pCMF Cc is also an 
inefficient caspase activator, thereby avoiding inducing apoptosis. Altogether, 
our findings can help shed light on the role of phosphorylated Cc in insulin-
stimulated post-ischemic neuroprotection. 
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2. Materials and methods 

2.1. Site-directed mutagenesis, protein expression and purification of 
recombinant proteins 

Y97pCMF Cc was expressed and purified as previously described (Guerra-
Castellano et al., 2015) using the evolved tRNA synthetase technique (Xie et al., 
2007). Detailed descriptions of the DNA constructs, protein expression and 
protein purification are provided in Supporting Information. 

The HIGD1A protein was expressed by cell-free protein synthesis in 
continuous exchange (dialysis mode; ratio 1:10) following our recently 
established protocol [data not shown]. The His-tagged form of HIGD1A was 
purified by nickel affinity chromatography according to earlier protocols. The 
final yield was 125 µg protein⋅mL–1 of reaction. The protein was exchanged to a 
final 10 mM sodium phosphate buffer (pH 7.4) with 0.2% n-dodecyl β-D-
maltoside (βDDM). 

2.2. Circular dichroism spectroscopy 

Circular dichroism (CD) spectra were recorded using a Jasco® J-815 
spectropolarimeter equipped with a Peltier temperature-control system. CD 
intensities are presented in terms of molar ellipticity [θmolar] using molar protein 
concentration (Kelly et al., 2005). The secondary structure analyses were 
carried out by recording far-UV CD spectra (185–250 nm) at 25°C in a 1-mm 
quartz cuvette. Samples contained 3 µM protein in 10 mM sodium phosphate 
(pH 6.5), supplemented with 10 µM potassium ferricyanide. For each sample, 
20 scans were averaged and analyzed using the CDpro software package with 
the SMP50 and SP37A reference set, as well as with the CLSTR option to 
compare with a set of proteins with similar folds (Sreeema and Woody, 2000; 
Greenfield, 2007). 

The coordination of the heme iron atom to the S atom of Met80—the sixth 
axial ligand of heme group—was analyzed by visible (B-band) recording visible 
CD spectra (300–600 nm) at 25°C in a 10-mm quartz cuvette. Samples 
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contained 30 µM protein in 10 mM sodium phosphate (pH 6.5), supplemented 
with 100 µM potassium ferricyanide. 

Thermal unfolding was monitored between 20°C and 105°C (with a heating 
rate of 1 °C/min) by recording the CD signal at far-UV in a 10-mm quartz 
cuvette. For these assays, the oxidized Cc species were at 3 µM final 
concentration in 10 mM sodium phosphate (pH 6.5), supplemented with 10 µM 
potassium ferricyanide. Changes in the tertiary structure of the protein upon 
temperature increases were additionally monitored by fluorescence-detected 
CD following the increment of the intensity for the 270 nm excitation signal due 
to the exposure of Trp59 to the solvent (Blauer et al., 1993). The sample 
mixture contained 30 µM Cc in 10 mM sodium phosphate (pH 6.5) and 100 µM 
potassium ferricyanide. The experimental data were processed by a principal 
component analysis (Johnson et al., 2002) as described (Guerra-Castellano et 
al., 2015). This strategy eliminates the noise that appears with the single-
wavelength analysis and allows the distinction of processes involving different 
attributes.  

2.3. Electronic absorption spectroscopy 

The coordination of the heme group of Cc was analyzed by monitoring the 
absorption changes at 699 nm, indicative of the heme Fe-Met80(Sδ) bond 
(Ranjbar and Gill, 2009). Electronic absorption spectra were recorded in the 
630–740 nm range, using a Jasco® V-650 spectrophotometer in a 1-mL quartz 
cuvette with a path length of 10 mm (García-Heredia et al., 2010). Samples 
contained 0.2 mM oxidized Cc in 50 mM Tris-HCl (pH 7.4), supplemented with 
0.2 mM potassium ferricyanide. For pH titration studies, the pH of each sample 
was adjusted to the reported values by adding aliquots of 0.1–0.5 M NaOH or 
0.1–0.5 M HCl.  

2.4. Cytochrome c oxidase measurements 

Whether human Cc species is able to restore bovine COX activity was first 
tested using both isolated hemeproteins in the presence or absence of the 
HIGD1A membrane protein. Secondly, COX activity was measured in 
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mitochondria from the following Saccharomyces cerevisiae yeast strains: WT 
(W303-1A mata leu2 trp1 ura3 his3 ade2), RCF1::HIS3 (∆Rcf1) strain (W303-1A 
mata leu2 trp1 ura3 ade2), RCF2::KAN (∆Rcf2) strain (W303-1B matα leu2 trp1 
ura3 his3 ade2) or RCF1::HIS3 RCF2::KAN (∆Rcf1/Rcf2) strain (W303-1A mata 
leu2 trp1 ura3 ade2), all of which were provided by Dr. Rosemary A. Stuart 
(Klingler College of Arts and Sciences, Marquette University, Milwaukee). All 
yeast strains were grown in YP–0.5% lactate medium supplemented with 2% 
galactose (YPL-Gal) as described previously to obtain mitochondria-enriched 
cells grown in hypoxia-like conditions [5]. Crude mitochondria were then 
isolated as previously described and stored at –80°C in 0.6 M sorbitol, 20 mM 2-
(N-morpholino)ethanesulfonic acid, 4-morpholineethanesulfonic acid 
(MES)/KOH (pH 6) (Padilla-López et al., 2009). To permeate the outer 
mitochondrial membrane and allow exogenous WT and Y97pCMF Cc (to a final 
concentration of 6.9 µM) to enter into the organelle, βDDM detergent was 
used following previously-reported protocols (Musatov et al, 2000). In vitro and 
in mitochondria COX activity was measured spectrophotometrically (Jasco® V-
650 spectrophotometer) using a COX activity kit (Sigma®) according to the 
manufacturer’s instructions. No signal of Cc oxidation was obtained in these 
assays, showing that it was necessary to add exogenous Cc to test the COX 
activity (data not shown). For measurements involving HIGD1A, WT or 
Y97pCMF Cc and HIGD1A proteins were incubated with COX at 25ºC for 30 min 
before each assay. The slopes of the 550-nm absorbance for at least three 
independent experiments were correlated with a value of COX activity. 

2.5. Liposome preparation and binding to cytochrome c 

To analyze the interaction of Cc with cardiolipin (CL), small unilamellar 
liposomes were formed by sonication in 25 mM HEPES buffer (pH 7.4). 
Liposomes were prepared from 1,2-dioleoyl-sn-glycero-3-phosphocholine 
(DOPC) and 1,1′2,2′-tetraoleoylcardiolipin (TOCL) (4:1 ratio) or DOPC alone 
(manufactured by Avanti Polar Lipids®). 

Cc:CL binding assays were performed as previously described (Guerra-
Castellano et al., 2016). Cc and liposomes were incubated at different ratios for 
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1 h in 25 mM HEPES buffer (pH 7.4). The samples were applied to a 0.8% 
agarose gel for electrophoresis for 90 min at 50 mV in non-denaturing 35 mM 
HEPES buffer (pH 7.4). Gels were stained for protein detection with 0.25% 
Coomassie Brilliant Blue R-250 in 45% methanol and 10% acetic acid. 

2.6. Peroxidase assays 

Peroxidase assays of Cc were carried out as reported previously (Belikova et 
al., 2006). DOPC:TOCL liposomes were incubated for 1 h at room temperature 
with Cc in a ratio 1:100 (w/w) (Cc:lipids) in 20 mM HEPES buffer (pH 7.4). After 
the incubation, and immediately before starting measurements, 5 µM 2′,7′-
dichlorofluorescein diacetate (H2DCF) and 100 µM hydrogen peroxide were 
added to the samples. DCF fluorescence increment was measured for 30 min 
using an excitation wavelength of 502 nm and emission of 522 nm (with a slit of 
5 nm in both cases) in a Cary Eclipse (Varian) fluorescence spectrophotometer, 
estimating the peroxidase activity as the slope of fluorescence increment. To 
test the basal peroxidase activity of Cc, control assays without liposomes were 
also performed. 

2.7. Caspase activation assays 

In vitro activation of caspases was achieved as formerly described with 
slight changes (Dutton and Wilson, 1974). Cytoplasmic cell fractions devoid of 
endogenous Cc from human embryonic kidney 293 (HEK 293) were obtained as 
previously described with minor modifications (Pecina et al., 2010). Detailed 
descriptions of cell culture, subcellular fractioning and caspase-3 activation 
assays are provided in Supporting Information. 
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3. Results and Discussion 

3.1. The Tyr97pCMF mutation preserves the physicochemical properties of 
wild-type cytochrome c species 

In order to mimic the phosphorylation of Cc at position 97, we substituted 
Tyr97 with the non-canonical amino acid pCMF, using the evolved tRNA 
synthetase method (Ryu and Schultz, 2006) as described previously (Guerra-
Castellano et al, 2015). This substitution simulates the charge and the volume 
of a phosphotyrosine residue better than a glutamic acid substitution. 

To confirm that the non-canonical amino acid pCMF was successfully 
introduced at position 97 of the protein (Figure 1A), the Y97pCMF mutant was 
purified to homogeneity, and its molecular mass was compared to that of WT 
Cc by MALDI-TOF (Figure S1 in Supporting Information). The molecular mass of 
the phosphomimetic protein was increased by 41 Da as compared to WT, 
consistent with the expected substitution. We checked whether the amino acid 
replacement affected the secondary structure and heme environment by CD 
spectroscopy in the far-UV and visible region, respectively. We demonstrated 
that the overall secondary structure and heme properties of Y97pCMF Cc are 
conserved, being similar to the WT species (Figure 1B, C). 

At physiological pH values, the heme iron ion is hexacoordinated, with 
His18 and Met80 as axial ligands. In contrast, at least five distinct 
conformations of the oxidized form can exist in pH ranges from 1 to 12, which 
have altered heme axial coordination and/or in protein folding (Boffi et al., 
2001). The so-called alkaline transition is the transformation from the 
physiological state III into state IV with increased pH and involves the 
replacement of Met80 as an axial ligand by Lys72, Lys73 or Lys79 (Wilson and 
Greenwood, 1996; Assfalg et al., 2003; Ying et al., 2009). In addition, the 
alkaline transition has been related to a change in the Cc cell location, which is 
essential for its role in PCD (Godoy et al., 2009). To analyze the Fe-Met80(Sδ) 
bond changes caused by pH, we monitored the charge-transfer band at 699 nm 
(Fig. 1D), which disappears concomitantly with the alkaline transition (Schejter 
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and George, 1964). The estimated pKa values for the WT and the Y97pCMF Cc 
species were similar to each other, as well as to that reported for the Y97E 
mutant (García-Heredia et al., 2011). Thus, the pKa of the alkaline transition is 
unaltered by the phosphomimetic mutation at residue 97. The presence of the 
699-nm absorption band data in the Y97pCMF mutant contrasts with the shift 
towards 687 nm that is characteristic of Tyr97-phosphorylated Cc (P-Y97), 
which is attributed to structural changes in the catalytic heme crevice (Lee et 
al., 2006). Indeed, a similar intensity of the 699-nm band is observed for both 
the WT and the Y97pCMF Cc species (Figure 1D). However, a prominent 650-
nm band appeared in the spectrum of the Y97pCMF mutant, which is related to 
ferric high-spin heme iron (Chen et al., 1994; Pereira et al, 1997).  

3.2. Thermal stability of the Y97pCMF cytochrome c mutant 

The thermal stability of Cc mainly depends on residues localized in the 
heme core (Cys14, Cys17, His18 and Met80) and in the N- and C-terminal α-
helices (Gly6 and Phe10, and Leu94 and Tyr97, respectively). All of these 
residues are known as “key residues” of Cc and are highly conserved (Zaidi et 
al., 2014). Remarkably, the N-terminal helix packs with an “extended” C-
terminal helix or non-canonical “ridges and grooves” pattern (Chotia et al., 
1985) by a weak polar interaction, establishing a conserved structural motif 
shared by prokaryotic and eukaryotic Cc (Pielak et al., 1995). The assembly of 
this helix-helix motif constitutes an early event in Cc folding (Ptitsyn, 1998). 

Most mutations in Tyr97 performed to date destabilize the structure of Cc, 
as exemplified by the Y97E, Y97N and Y97I mutants.  Nevertheless, the Y97F 
substitution increases thermal stability of the hemeprotein (García-Heredia et 
al., 2011; Pielak et al., 1995)]. We therefore recorded the denaturation of the 
Y97pCMF mutant along temperature ramps by far-UV CD together with 
simultaneous total fluorescence measurements. Data fitted to a two-state 
model (Lumry and Eyring, 1954). While the midpoint melting temperature (Tm) 
of the Y97pCMF mutant was slightly lower than that calculated for WT Cc 
(Table 1), it was significantly higher than the Tm of Y97E (García-Heredia et al., 
2011). In fact, the pCMF non-canonical amino acid contributed to keeping the 
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volume of a phosphotyrosine inside the folding core, making it a more 
appropriate phosphomimetic substitution than the Y97E mutation.  

We also monitored the heme moiety environment along the temperature 
ramps by Vis CD. In contrast to the WT Cc, which shows two transitions 
(Guerra-Castellano et al, 2015), the Y97pCMF data fit into a two-state model. In 
addition, the Tm of Y97pCMF was lower than the Tm of the second transition 
(Tm2) of WT Cc (Table 1).  

Altogether, these data indicate that there is a slight destabilization in the 
overall structure of Y97pCMF mutant as compared to the WT Cc. Such thermal 
changes can be explained by alterations in the folding core formed by residues 
Phe10, Leu94 and Tyr97 upon phosphorylation, along with polar interactions 
between the N-terminal and C-terminal helices. Nevertheless, mimicking 
tyrosine phosphorylation in Cc by including the non-canonical amino acid pCMF 
at a specific sequence position is a smarter solution than a Tyr →Glu 
substitution, since pCMF emulates not only the charge but also the volume of a 
phosphotyrosine.  

3.3. COX activity modulated by Y97pCMF cytochrome c and respiratory 
supercomplex factors  

The ability of Y97pCMF Cc to reduce COX was measured in the absence 
(Figure 2A) or presence of HIGD1A (Fig. 2B), which is a pro-survival membrane 
protein that acts as a positive modulator of COX (Hayasi et al., 2015). The 
measured COX activities were slightly higher with the Y97pCMF mutant as 
compared to the WT Cc (with an increase of about 30%) (Figure 2A). This 
contrasts with previous measurements on respiration kinetics of WT and 
phosphorylated Cc (Lee et al., 2006), in which COX was also phosphorylated, 
allowing a rapid adjustment of OxPhos components and their function. COX 
activity hardly increased upon HIGD1A addition but increased significantly 
when HIGD1A was added in the presence of Y97pCMF Cc (Figure 2B). Hence, Cc 
phosphorylation and HIGD1A might cooperatively modulate COX performance.  
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The HIGD1A-mediated regulation of COX activity was further tested in a 
cellular context using isolated mitochondria from yeast cells grown on YPL-Gal 
medium and incubated with either exogenous WT Cc or Y97pCMF Cc, after the 
outer mitochondrial membrane had been permeabilized. Under such hypoxia-
like stress conditions, Rcf1—a yeast orthologue of human HIGD1A—and Rcf2 
stabilize the Cbc1-COX supercomplex (Strogolova et al., 2012; Vukotic et al., 
2012; Chen et al., 2012). Hence, we used mitochondria obtained from a 
∆Rcf1/2 yeast strain in next COX assays; the absence of Rcf1 and Rcf2 proteins 
was corroborated by western blots. Regardless whether WT or Y97pCMF Cc 
was added, the endogenous COX activity was strongly impaired in these 
mitochondria (Figure 2C). A single deletion of either Rcf1 or Rcf2 partially 
affected the COX activity levels, indicating a cooperative effect when the two 
membrane proteins Rcf1 and Rcf2 were present (Figure 2C). Interestingly, WT 
Cc exhibited more COX activity than the Y97pCMF mutant, both in the presence 
of Rcf2 alone (∆Rcf1 strain) or together with Rcf1 (WT strain). Therefore, in 
mitochondria isolated from yeast undergoing hypoxic stress and incubated with 
exogenous Y97pCMF Cc, the Rcf-mediated ETC flux is less accelerated. This may 
help to prevent hyperpolarization of the mitochondrial membrane and 
subsequent ROS/RNS production. In a similar manner, phosphorylation of Tyr97 
in Cc, which is triggered in the brain upon ischemic injury by the insulin-induced 
neuroprotection response (Sanderson et al., 2013), may aid to avoid cellular 
damage and guarantee cell survival during hypoxia in the brain.  

3.4. Peroxidase activity and cardiolipin binding of the Y97pCMF 
phosphomutant 

Recently, Sanderson and co-workers described the relation between Cc 
phosphorylation at Tyr97 and the decrease in neuronal death under ischemia 
(Sanderson et al., 2013). The onset of PCD is triggered by the ability of the 
hemeprotein to leave mitochondria after binding to CL, which enhances the 
peroxidase activity of Cc (Pandiscia and Schweitzer-Stenner, 2015). Therefore, a 
plausible hypothesis is that the decrease in neuronal ischemic death may be 
due to a less efficient release of phosphorylated Cc to the cytosol, 
concomitantly with its role as PCD inductor. Hence, we examined the binding of 
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Cc species to liposomes containing DOPC:TOCL (4:1) or DOPC by electrophoretic 
mobility shift assays (EMSA) in native agarose gels (Figure 3A). EMSA data 
revealed that Y97pCMF and WT Cc had similar affinities for DOPC:TOCL 
membranes. Likewise, both Cc species presented weak affinities for DOPC 
liposomes. 

We also measured the peroxidase activity of Cc that was either free or 
bound to DOPC:TOCL vesicles at a 1:100 ratio (Cc:lipid). The peroxidase activity 
of Cc species rose in the presence of liposomes, although no differences in 
activity were observed between the Y97pCMF and WT Cc forms (Figure 3B). 

3.5. Activation of caspase cascade by the Y97pCMF Cc mutant 

After mitochondrial membrane permeation during apoptosis, cytosolic Cc 
interacts with Apaf1 to assemble the caspase-activation platform, the so-called 
apoptosome. In the context of brain ischemic damage, inhibition of both the 
Cc-Apaf1 interaction and caspase-3 cleavage constitutes a potent 
neuroprotective strategy (Namura et al., 1998; Cao et al., 2004). Using HEK293 
cytoplasmic cell extracts devoid of Cc, we analyzed the caspase-3 activation by 
WT and Y97pCMF species (see inset, Figure 4). The presence of a negative 
charge at position 97 decreased caspase-3 cleavage by about 26% with respect 
to WT Cc (Figure 4). These findings perfectly agree with our previous results on 
Y97E and Y97F Cc mutants as well as with the nitrated mono-Tyr97 Cc, which 
has a caspase activation slightly lower than that of the WT (García-Heredia et 
al., 2010; García-Heredia et al., 2011). Interestingly, none of these Cc species 
disrupted the Cc/Apaf1 complex assembly, and this is also expected for the 
Y97pCMF form. However, the formation of a non-functional apoptosome upon 
post-translational modifications of Cc cannot be excluded (García-Heredia et 
al., 2010; García-Heredia et al., 2011; García-Heredia et al., 2010; García-
Heredia et al., 2012). In summary, Y97pCMF Cc acts as an inefficient caspase 
activator that would not induce apoptosis during post-ischemic 
neuroprotection.  

This work shows the potential for designing a drug based on the pCMF 
molecule—a stable analogue of the phosphotyrosine that is resistant to 
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phosphatase hydrolysis and keeps Cc in its phosphorylated state, which could 
have therapeutic applications for acute diseases, such as brain ischemia. 
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Figures 

 

 

Figure 1.  The Y97pCMF Cc mutant. (A) Ribbon representation of the solution 
NMR structure of human Cc (PDB code 1J3S). The Tyr97 residue is colored in 
red. The heme group is in green, with its Fe atom in red. The two axial ligands 
of heme group (His18 and Met80) are also shown. Far-UV CD (B), visible CD (C) 
and visible absorption spectra (D) of WT (blue lines) and Y97pCMF (red lines) Cc 
species are shown. All measurements were recorded on oxidized hemeprotein 
samples.  
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Figure 2. COX activity in the presence of WT or Y97pCMF Cc. (A) Activity of 
exogenous COX in the presence of WT (blue) or Y97pCMF (red) Cc. COX activity 
data were normalized with respect to WT Cc data. (B) Modulation of COX 
activity by the HIGD1A membrane protein in the presence of either WT (blue) 
or Y97pCMF (red) Cc. The 1:0 bars represent the exogenous COX activity 
without HIGD1A. Data were normalized to the Cc:HIGD1A ratios 1:0 for each Cc 
form. (C) Effect of the modulators Rcf1 and Rcf2 on COX activity in yeast 
mitochondria in the presence of either WT (blue) or Y48pCMF (red) Cc. 
Endogenous COX activity measurements from WT and Y97pCMF Cc were 
normalized with respect to those obtained by mitochondria isolated from 
∆Rcf1/2 yeast strains. Inset: Western blots of WT mitochondria (lane 1), Rcf1-
deficient mitochondria (lane 2), Rcf2-deficient mitochondria (lane 3) and Rcf1- 
and Rcf2-deficient mitochondria (lane 4). All mitochondria were purified from 
yeast grown under hypoxic-like conditions. Data represent the mean ± SD of 
three individual experiments.  
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Figure 3. Liposome-binding assays and peroxidase activity of WT and 
Y97pCMF Cc species. (A) EMSA of the Cc species in the presence of increasing 
concentrations of lipids. DOPC:TOCL (4:1) or DOPC liposomes were incubated 
with WT or Y97pCMF Cc in 25 mM HEPES buffer (pH 7.4). Samples were 
analyzed on 0.8% agarose gels stained with Coomassie Brilliant Blue. Open 
squares highlight the Cc:lipid ratio (1:100 w/w) at which the peroxidase activity 
was measured. (B) Relative peroxidase activity of Cc species that was either 
free (white) or bound to the DOPC:TOCL (4:1) mixture (gray). Data represent 
the mean ± SD of three individual experiments and are normalized to the 
results with relative peroxidase activity of free WT Cc.  
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Figure 4. Caspase-3 activity of WT and Y97pCMF Cc species. Relative caspase-3 
activities in HEK293 cytoplasmic cell extracts devoid of endogenous Cc were 
measured upon addition of exogenous WT or Y97pCMF Cc. Caspase auto-
activation, without addition of exogenous Cc, was also tested (control bar). 
Data represent the mean ± SD of three individual experiments and are 
normalized with respect to WT Cc results. Inset: Western blots confirmed the 
lack of endogenous Cc in the cytoplasmic cell extracts, by immunoblotting with 
anti-tubulin (cytosolic marker) and anti-Cc antibodies. Lane 1, cytoplasmic cell 
extracts; lane 2, purified Cc; and lane 3, BSA, as a negative control.  
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Table 1. Midpoint melting temperature (Tm,°C) of Cc species 

 Far-UV CD  
(220 nm) 

Visible CD  
(419 nm) 

Fluorescence  
(270 nm) 

WT 88.6 ± 1.9 Tm1: 43.9 ± 2.0 
Tm2: 85.1 ± 2.3 86.3 ± 1.4 

Y97pCMF 82.2 ± 0.3 76.6 ± 4.9 82.6 ± 1.6 
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Supporting Figures 
 

 

 

Supporting Figure S1. Protein expression of the Y97pCMF Cc species. (A) SDS-
PAGE of purified WT and Y97pCMF Cc. About 10 µg of WT (lane 1) and 
Y97pCMF (lane 2) Cc proteins was loaded onto a 12% SDS-PAGE gel. M: 
Molecular weight marker. (B) MALDI-TOF spectra of WT and Y97pCMF Cc 
species. The molecular mass of WT Cc (black line) is 12,235.3 Da, whereas that 
of Y97pCMF species (red line) is 12,276.5 Da. The molecular weight of the 
Y97pCMF Cc is consistent with the substitution of a tyrosine for pCMF.   
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Supporting Materials and methods 

Site-directed mutagenesis, protein expression and purification of 
recombinant proteins 

AMBER mutation was performed on a pBTR1 plasmid (pCcWT) comprising 
the CYCS gene-coding for human Cc, along with the CYC3 gene of the yeast Cc 
heme lyase. CYC3 is required for the proper maturation of human Cc. Notably, 
the CYCS and CYC3 genes lack topogenic sequences, thereby avoiding the 
export of the gene products to periplasm, the location of endogenous c-type 
cytochromes in Escherichia coli (E. coli).  Thus, the resulting proteins were 
located in the bacterial cytoplasm. The selectable marker of pCcWT was a 
cassette that conferred ampicillin resistance to cells containing this plasmid 
(Olteanu et al., 2003). pCcWT was mutated by replacing the TAT triplet 
corresponding to Tyr97 by TAG, the amber stop signal. The primers for PCR 
were pBTR1 Y97amber fw (5′-CYT CTGATCGCGTAGCTGAAAAAGG-3′) and pBTR1 
Y97amber rv (5′-CYT CTTTTTCAGCTACGCGATCAGG-3′). For this purpose, one-
step mutagenic PCR with Accusure® DNA Polymerase (Bioline) was used 
following the manufacturer’s instructions. E. coli DH5α was used as a host in all 
cloning procedures. Plasmid DNA was transferred to the E. coli strain following 
a standard heat-shock transformation method. In all cloning procedures 
involving PCR amplification, the sequences of the amplified fragments were 
checked with the aid of a commercial sequencing service (StabVida, Caparica, 
Portugal). The new plasmid, containing the mutated sequences, was named 
pCcY97AMBER. 

The pCMF and δ-aminolevulinic acid compounds were added at a final 
concentration of 1 mM after cell culture induction. IPTG and arabinose were 
used to induce the cultures at 1 mM and 0.02% final concentrations, 
respectively. Tryptic digestion and MALDI-TOF analyses confirmed the 
molecular mass and the tyrosine substitution by pCMF. Protein concentration 
was determined by Vis spectrophotometry, using an extinction coefficient of 29 
mM-1 cm-1 for reduced Y97pCMF Cc (Guerra-Castellano et al., 2015). 

Caspase activation assays 
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Human embryonic kidney 293 (HEK 293) cells were cultured in Dulbecco’s 
modified Eagle’s medium supplemented with 10% heat-inactivated fetal bovine 
serum, 2 mM L-glutamine, 100 U⋅mL–1 penicillin and 100 µg⋅mL–1 streptomycin, 
and maintained at 37°C in a humidified 5% CO2 atmosphere. For subcellular 
fractioning, cells were treated with trypsin and collected by centrifugation 
(2,000 g for 5 min). Pellets were washed twice with PBS and once with cell 
extract buffer (CEB, 20 mM HEPES [pH 7.5], 10 mM KCl, 1.5 mM MgCl2, 1 mM 
EDTA, 1 mM EGTA, 1 mM dithiothreitol, 100 µM PMSF). After these washes, 
cells were again collected by centrifugation (2,000 g for 5 min), and pellets 
were resuspended with two volumes of CEB and transferred to a Dounce 
homogenizer. The cell solution was incubated for 15 min at 4°C. Subsequently, 
cells were disrupted by 30 strokes with a tight pestle. Lysates were centrifuged 
at 15,000 g for 15 min at 4 ºC to remove nuclei and organelles. Protein 
concentration of the extracts was measured using the Bradford protein assay 
(Bio-Rad, Hercules, CA). 100 µg of cytoplasmic cell fractions were incubated 
with 1 µM of reduced Cc species for 60 min at 37°C in a total volume of 25 µL 
with 25 mM KCl, 0.2 mM DTT and 0.2 mM dATP. Then, 180 µL of buffer A (10 
mM HEPES [pH 7.0] with 50 mM NaCl, 40 mM β-glycerophosphate, 2 mM 
MgCl2, 5 mM EGTA, 0.1 mg·mL-1 bovine serum albumin and 0.1% [w/v] 3-[(3-
cholamidopropyl)dimethylammonio]-1-propanesulfonate [CHAPS]) 
supplemented with 10 µM of acetyl-Asp-Glu-Val-Asp-7-amino-4-
methylcoumarin (Ac-DEVD-AMC) (a fluorescent substrate specific for caspases 
3/7) was added to the reaction mixture and measured afterwards. The increase 
in fluorescence resulting from Ac-DEVD-AMC cleavage was determined in a 
Cary Eclipse (Varian) fluorescence spectrophotometer (optical slits of 5 nm), 
using an excitation wavelength of 360 nm and an emission wavelength of 460 
nm. Experimental data derive from the average of at least three independent 
experiments. 
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