Efficient Design and Implementation on FPGA of a MicroBlaze Peripheral for
Processing Direct Electrical Networks Measurements

J. Viejo, M.J. Bellido, A. Millan, E. Ostua, J. Juan, P. Ruiz-de-Clavijo and D. Guerrero
Departamento de Tecnologia Electronica - Universidad de Sevilla
Av. Reina Mercedes, s/n (E. T. S. Ingenieria Informatica) - 41012 Sevilla
{julian, bellido, amillan, ostua, jjchico, paulino, guerre} (@dte.us.es
Tel.: +34 954556160 - Fax: +34 954552764
http://www.dte.us.es/gtm/

Abstract

This contribution successfully accomplished the
design and implementation of an advanced DSP circuit
for direct measurements of electrical network
parameters (RMS and real and reactive power) with
application to network monitoring and quality
assurance.

The device is implemented on a mid-range Xilinx
Spartan-3 family FPGA and includes an OPB interface
so that it can be integrated as a standard peripheral of a
microprocessor system like the MicroBlaze. Special
attention has been paid to resources optimization and
accuracy with simulated error below 1%.

1. Introduction

The technological development has given rise to such
a significant increase of the integration density that it is
causing more and more parts of a complete system to be
included inside the main core, constituted by a single
chip. This chip has been traditionally referred to as
Integrated Circuit, but new terms like Integrated System
or System on Chip (SoC) have become popular because
they better express the fact that the chip can contain not
only a part of the system but the whole system itself.

Most of the times, a SoC structure includes a
microprocessor as a central core in charge of the control
of the system, and a set of general purpose and/or
custom peripherals that carry out different operations:
co-processing, display control, communication, etc. SoC
clearly fulfils the demand for more compact, function-
rich and portable appliances that has become so popular,
like multimedia-enabled cellular phones, tiny multimedia
players, pocket computers, etc. In fact, SoC design is
currently the most relevant methodology for the design
of a wide range of embedded systems.

SoC designs are commonly built out of already
available parts in the form of IP-cores: microprocessors,
memory blocks, Ethernet controllers, standard input-

1-4244-0777-X/06/$20.00 ©2006 |IEEE

output devices, etc; so that SoC designers typically do a
work of integrations of already available parts and
design of specific functions and glue logic. This scheme
improves re-usability and reduce the time to market and
total costs.

The advance in technology has also made possible to
produce better programmable circuits (FPGAs) with
increased performance and higher integration densities.
FPGAs offer the highest flexibility and cost
effectiveness because hardware implementation can be
done several times on the same chip at no additional cost
and because mass productions of FPGA chips has lead to
very competitive prices. Today, full systems may be
implemented in mid-range FPGAs from several vendors
[1, 2] that can allocate 1,5x10° equivalent gates working
at 100MHz or more (Spartan-3 XC3S1500 FPGA [3]).
FPGA vendors also provide high level development
tools where the designer typically works by assembling
high level configurable building blocks from a library
and designing custom parts through a Hardware
Description Language (Verilog, VHDL, etc.) [4, 5].

This makes FPGAs an ideal platform to implement
SoC where flexibility, re-usability, development cost and
time to market is improved by an order of magnitude
when compared to the traditional ASIC design path. This
methodology, widely known as System on a
Programmable Chip (SoPC) is rapidly gaining
acceptance as technology produces more powerful
FPGA chips widening the range of possible applications.
With this in mind, FPGA vendors offer some chips that
integrate processor cores and memory in the FPGA,
focusing at processor-driven applications, thus leaving
plenty resources for custom modules or soft IP cores. On
the side of the tools, development platforms usually
provide and integrates both hardware and software
design and test for the convenience of the system
designer.

This work is part of the OpenRTU project (see
section 7) which main objective is the implementation of
flexible embedded system to be used as a technology
core for Remote Terminal Units (RTU) with application
in industrial control systems. Most of these units are

customized for a particular application despite they may
share most of the functionality, so the ability to re-use
the building blocks from a previous implementation and
the possibility of timely and predictable production of
variants at a low cost is mandatory. For these reason the
implementation of the system as a SoPC seems the most
appropriate solution. The system is based on a
microprocessor and a set of optional devices connected
to the internal bus that provide various processing and
communication capabilities: LAN, wireless, signal
processing, etc. But the most important technology
challenge of the project is to include in the same device a
Digital Signal Processor (DSP) for direct measurement
and real-time processing of electrical network
parameters. In this paper, the design and implementation
details of this DSP are presented. The overall objective is
to provide a much improved alternative to the current
solution in which a RTU consists of a set of general
purpose DSPs mounted on a board, which implement the
required functionality. The board is then connected to a
computer running a controlling software. The new
system will drastically improve the solution in all the
senses: physical allocation, power consumption,
performance, robustness and cost, since most of the
hardware is now included in a single FPGA chip.

The designed DSP is able to process electrical
network parameters in real time, which involves
complex operations like filtering, multiplications and
square root calculations. As a result, it provides a
continuous flow of high level calibrated and filtered data
like instant current and voltage, active and reactive
power, etc. that can then be used in a variety of
applications like quality assurance or network
monitoring. Moreover, the DSP is implemented as a
standard peripheral connected to the standard OPB bus
and is included in a peripheral library, so that its use in
other designs is straightforward.

In order to optimize the implementation of such a
device in hardware, two different design methodologies
have been explored: direct VHDL coding and use of
system level tools provided by the programmable device
foundry, it is System Generator for DSP [6] from Xilinx,
since Xilinx Spartan-3 FPGAs were selected to
implement the hardware platform. The use of system-
level tools resulted in a much more productive, resource-
efficient and produced better performance do to the
variety of fully parametrizable building blocks available
in the library and the fact that these blocks are highly
optimized for the target programmable chip. Then, it is
this methodology that is described in this work.

The rest of the paper is organized as follows: in the
next section, the system tools used to develop the DSP
device will be described. In section 3, DSP specifications
will be presented. In the fourth section, the most
important details of the design are discussed. The fifth
section is dedicated to presenting the main results both

from simulation and implementation. Finally, some
conclusions will be derived.

2. Design and implementation methodology

As it has been mentioned previously, it was decided
to address the design of the system using the new tools
developed by Xilinx to facilitate the design and
implementation of DSPs on its FPGAs: System
Generator for DSP [6] and EDK [7].

System Generator for DSP is a software platform,
integrated within MATLAB and Simulink [8] tools from
The MathWorks, that allows for the design of DSP
systems using The Xilinx BlockSet [9, 10]. System
Generator also handles the automatic generation of
peripherals for MicroBlaze [11], synthesizable on Xilinx
FPGAs. The typical methodology for digital system
design has been followed, based on a control unit
implemented in VHDL code and a data path built out of
System Generator’s building blocks. The different tools
used in the methodology followed for the design of the
DSP peripheral are shown in Fig. 1. Most of the system
simulation is carried out using Simulink; however,
Mentor Graphics tool ModelSim [12] has been used to
simulate VHDL code (HDL Co-simulation). Synthesis
and implementation of the system on FPGA have been
done using the Xilinx Platform Studio for embedded

systems (XPS) integrated within the Embedded
Development Kit (EDK).
HDL CO-SIMULATION
]
- MATLAB XILINX
MOde| yim,— SIMULINK BLOCKSET
FUNCTION/SYSTEM
MODELING .mdl

PLUGIN

-
SYSTEM
AUTO HDL GENERATION ﬂ GENERATOR' * OPB EXPORT TOOL

hdl,.edn,
.pao,.mpd,.bbd
DESIGN soc & HW AND SW DESIGN
AND Platform Studic” -SOC IMPLEMENTATION

FPGAIMPLEMENTATION

-bit

DEVELOPMENT
BOARD

Fig. 1: Environment and tools used.

3. System specifications

With regard to the specifications, the designed DSP
peripheral carries out digital processing tasks on eight
analog inputs (AI) which are acquired through an
external Analog Front-End (AFE). These signals come
from a system of three-phase measurement transformers
(voltages and/or currents in power lines: R, S, T phases
and neuter).

The eight analog inputs are subjected to a series of
configurable treatments. Different sampling frequencies,
gain control or offset elimination can be configured.
Different sampling rates are determined by two setup
bits: TADC and C50/60, so that it is possible to sample
at 64 or 128 samples by cycle of the electrical signal;
this is equivalent to sampling frequencies of 3200 Hz (64
s/c) or 6400 Hz (128 s/c) for 50 Hz input signals and of
3840 Hz (64 s/c) or 7680 Hz (128 s/c) for 60 Hz input
signals.

A diagram of the modules that form the DSP
peripheral is shown in Fig. 2. We can clearly distinguish
three parts: AFE Interface, OPB Interface and Direct
Measurements Processing. Next, we will briefly explain
the functionality of each one of these subsystems.

The AFE Interface module carries out the two
following functions: A/D Conversion Control that is in
charge of controlling the sampling frequency of the
external ADC converters and capturing the digitized
analog inputs, coming from these converters; and Gain
Control applies to each analog input.

The OPB Interface module establishes the connection
of the peripheral with the On-chip Peripheral Bus (OPB),
allowing the communication and the interchange of
information between MicroBlaze and the designed DSP.
MicroBlaze and the Al peripheral exchange information
in two ways: sending of configuration parameters from
MicroBlaze to the peripheral (write operation of the
setup registers) and relay of calculated data from the
peripheral to MicroBlaze (read operation of the
calculated parameters). Configuration parameters that
this peripheral handles refer to control registers and
calibration factors.

Analog Input OPB Interface
Peripheral 5
Control Calculated
Parameters Data
” Control
AFE | control Control Unit | Signals |
Interface | Signals DSP_EA Data Path
" DSP_EA
Analog
Inputs
Direct Measurements Processing

Fig. 2: DSP peripheral designed.

The Direct Measurements Processing module is in
charge of processing the signals acquired by the A/D
conversion module. The group of subsystems that form
this module are: FIR filter, offset control, instantaneous
values, average and calibration.

The FIR filter module filters the eight analog inputs.
Specifically, the implemented filter is a linear low-pass
FIR filter that eliminates high-frequency components.

The offset control function calculates the DC
component of each filtered signal using the following

equation:
Zx (my —n (1)

where DCji(ny) is the offset value calculated in the
instant for the input signal i, N is the number of samples
by cycle and x; is the filtered input signal i.

These calculated data will be wused in the
instantaneous values subsystem. The instantaneous
values subsystem calculates root mean square values
(RMS) and real and reactive power associated to each
analog input. RMS values are calculated as follows:

N-1 5
Z'xl (nO _n)
n=0

DC, nO

X0 (”0) =

1

-DC*(n,) @)

where X,»Ws(no) is the RMS value of the input signal i
in the instant n,.
Real (P;;(ny)) and reactive (Q,;(ny) power are given

by:
1 N-1
)=y Sl -n)exu-n) 0

Q,,(n0 Zx ><x (no (3TN—nj J(4)

where i,j indexes are selected so that x; and x;
correspond to voltage and current signals of the same
phase, respectively.

Finally, AC power can be obtained by subtracting the
DC component:

P;f;c(”o): F, (nO)_DCi (no)x Dc, (no) Q)
Q,aj (no) =0, (no)_ DC, (no)x DC, (no)

Parameters calculated by the two previous subsystems
are average values, the average period being one cycle of
the electrical signal. For the estimation of reactive power
the approximation that the input signal is sinusoidal and
stationary has been used, so that the derivative of the
current signal is the same signal shifted 3N/4 samples.

The purpose of the average modules is to calculate the
average of instantaneous values over a number of signal
cycles determined by the NCP configuration parameter.

Finally, the average instantaneous parameters must be
calibrated. The calibration subsystem does two

operations: the first one is the correction of distortions of
the board and the second one is the correction of external
distortions. Calibration parameters are available through
configuration registers. Calibrated average values are
made available to the MicroBlaze processor through the
OPB interface as depicted in Fig. 2.

4. System design and implementation

In this section, the most important aspects of design
and implementation are commented.

The AFE Interface subsystem has been designed
according to the datasheets of the external systems we
have to interface to, AD7656 converter [13] and
ADS5233 digital potentiometer [14], by using a VHDL
behavioral description. The OPB Interface has been
modeled using the Xilinx BlockSet, just as it is described
in[11].

To design the Direct Measurements Processing
subsystem, we have modeled a data path using System
Generator blocks, together with a VHDL control unit
that is in charge of controlling the processing of the eight
analog inputs.

In the design of this DSP peripheral, a great effort has
been made to optimize both FPGA resources and
operation frequency.

In order to optimize resources, it has been taken
advantage of the fact that operation frequency is much
higher than Al sampling frequency (75-100MHz versus
3200-7680Hz). This feature allows us to have a lot of
clock cycles at our disposal between two consecutive
captures.

AC])(':(), ACR/\/]S:(); ACP:O, ACQ:()
for each sampling period do
capture_and_filter analog_inputs();
process_analog_inputs();
update_accumulators(4Cpe, ACprys, ACp, ACp):
if(samples=limit_samples-1) then
--One electrical signal cycle has been processed
calculate_instantaneous_values();
average instantaneous_values();
if(average cycles=limit average cycles-1) then
2N ¢ycles have been processed
calibrate_instantaneous_values();
average cycles=0;
else
average cycles=average cycles+1;
end if}
samples=0;
else
samples=samples+1;
end if}
end for each;

Fig. 3: Processing algorithm.

Thus, the suggested approach consists on designing a
data path that uses the same processing elements for
every input (multipliers, adders, etc.) in series. The
control unit is in charge of arbitrating the processing,
establishing the input that is processed in each moment.
A general algorithm of the functionality that implements
the control unit is shown in Fig. 3.

In this behavioral description, two counters have been
declared: samples and average cycles which will count
the number of processed samples and average cycles,
respectively, and two registers: [imit samples and
limit_average cycles. The first one will be initiated to 64
or 128 samples according to the TADC bit, and the
second to 2", Moreover, a set of accumulators have
been defined: ACpe, ACrys, ACp and AC,. These
accumulators will store the average values of the
functions: offset control (7), RMS value (8), real power
(9) and reactive power (10).

N-1
AC), (no) = Z X; (no - n) @)

n=0

N-1
AC s (no) = z x12 (no - n) (8

n=0

N-1

ACP(”O): x/(no _n)xxj(no _n) ©

Il
(=]

n

N-1 3N

ACQ(nO):Zx,(nO—n)xxj[no —(T—n) j (10)

n=0 mod N

In the following lines, the most outstanding
implementation details will be commented.

First, FIR filter design and coefficient calculation
have been carried out using FDATool, a MATLAB
package [10]. FDATool features an advanced interface
that allows the design to define filter type, filter order,
pass and stop frequencies, passband ripple, stopband
attenuation, etc. The System Generator FIR block has
been used for the filter implementation, providing a great
variety of implementation options: filter coefficients
(those generated by FDATool), number of bits per
coefficient (16 bits), entry number of channels (eight
channels), processing type (serial input) and latency (10
cycles).

In order to implement offset control, RMS, real and
reactive power subsystems, a data path where all inputs
share the same resources has been modeled. Thus,
multiplexing logic has been added to select the input
channel that will be processed.

System Generator's CORDIC SQRT block has been
used to implement square root operation. This block has
been modified so that negative inputs produce zero as
result, which is part of the system specifications.

System Generator facilitates DSP design and
verification [10], reducing the design time and
simplifying the exploration of the design space.
Therefore, the challenge is to improve hardware area and

speed while producing acceptable results. To do this, as
well as optimizing the hardware architecture to suit the
ideal algorithm [15], a number of options are available:
using on-chip resources (embedded multipliers, BRAMs,
etc.) and configuring System Generator blocks [9, 10]:
arithmetic ~ type, precision, latency, overflow,
quantization, etc. By using these options the system
functional behavior is not affected only the precision and
overall performance.

Taking account of these two last alternatives, two
versions of the peripheral have been developed: 1.0 and
1.2. In the first version, all intermediate operations are
carried out using 32 bits fixed-point arithmetic. In
version 1.2, the design has been modeled using 16 bits
fixed-point arithmetic. Besides, operations which
produce 32 bits results are rounded to 16 bits.

System Generator’s blocks may also be configured
for frequency optimization, by adding pipeline stages
and latency in the different data path components:
multipliers, adders, etc. However, these modifications
affect the system behavior, making it necessary to
modify the control unit so that it behaves properly.

Once system requirements are fulfilled and checked
by simulation at the block level, the two versions of the
DSP peripheral are generated and imported into an EDK
project for later integration with the MicroBlaze
processor provided by Xilinx. OPB_Export Tool [11]
carries out these tasks.

5. Results

In this section, simulation and hardware
implementation results are described in some detail.

5.1. Simulation results

To check that the design fulfills the specifications
Simulink and ModelSim tools have been used together
(HDL Co-simulation) for system simulation. This kind
of simulation is mandatory in order to take account of
blocks that are only available as black boxes.

A wide range of system configurations have been
simulated: different sampling rates, NCP, amplitudes,
offset, etc., getting a correct operation in all the cases.

A simulation example that corresponds to the
following configuration is shown in Fig. 4 :

1. Sampling frequency fixed to 7680 Hz.

2. Value of NCP fixed to 0.

3. Offset elimination option enabled.

For the generation of the input stimuli to the system,
the Sources Blockset of Simulink has been used. A
sample input signal is formed by the sum of two
sinusoids with frequencies of 60 and 3200 Hz,
amplitudes of 0.5 and 0.1 and offset of 0.01 and 0,
respectively. This way we will be able to check the
littering stage where the smaller component at 3200 Hz
should be filtered.

Fig. 4: Simulation results. (a) Input signal.
(b) Filtered input signal. (c) DC acumulator
output. (d) RMS acumulator output. (e)
Real power acumulator output. (f) Reactive
power acumulator output.

Once the simulation begins, the analogue-to-digital
conversion control subsystem samples the generated
input signals (see Fig. 4a). In Fig. 4a, the blue signal is
the voltage and the red signal is the current. Both signals
are out of phase m/6 rad.

As it can be observed in Fig. 4b-4e and mainly in
Fig. 4f, a transitory phase exists during the first cycle of
the input signal. From the second cycle on, when the
processing of each cycle concludes, valid and updated
data of the different calculated parameters are obtained:
offset, RMS values and real and reactive power.

For the offset and RMS values calculation the filtered
signal is used (Fig. 4b). The signals in Fig. 4c-4f show
the outputs of the accumulators ACpc, ACgys, ACp and
ACy, respectively, which store inter-cycle transitory
values of the parameters being processed. When a cycle
of the input signal is completed, the accumulated values
in that instant are used to calculate the offset, the RMS
value and real and reactive power corresponding to that
cycle, according to equations (1) to (6).

In Table 1 the obtained simulation results are shown
for each implemented peripheral, as well as the
theoretical values calculated for those functions.
Comparing the results obtained by the peripherals we
realize that they are identical. Accuracy of both DSP
implementations for RMS values calculated are typically
under 1% of the exact theoretical value whereas
accuracy for real and reactive power are under 1%eo.

5.2. Hardware implementation results

In order to compare the implementations of the two
versions of the peripheral, they have been synthesized
separately using XPS from Xilinx [7]. Some figures of
merit will be analyzed in this section: used hardware
resources and maximum frequency of operation.

Both designs have been implemented on a Spartan-3
XC3S1500 FPGA. These devices have all the features
required for efficiently implementing DSP functions:
Embedded 18x18 Multipliers, Distributed RAM, Shift
Register Logic, etc [15]. In short, these features allow for
the implementation of high-performance DSP functions
in a small fraction of the total device. XC3S1500 device
features about 1,5x10° equivalent gates, 32 multipliers
and 32 BRAM and is in the moderate to low capacity
range of the Spartan-3 family.

The hardware implementation results show that the
version 1.0 of the peripheral occupies 5181 slices (38%
of a XC3S1500 FPGA) and 6 embedded multipliers
whereas the version 1.2 only uses 4232 slices (31%) and
half of the embedded multipliers, leaving plenty of
available resources for implementing the MicroBlaze
processor and additional circuitry (see Table 2).

Finally, we observe that frequency optimization have
provided a maximum frequency of 110.461MHz which
easily meet the initial 75-100 MHz requirements.

6. Conclusions

An advanced DSP for direct electrical measurements
has been successfully designed and implemented on a
Xilinx Spartan-3 FPGA. The DSP takes the form of a
standard OPB peripheral so that it can be managed by a
system processor implemented in the same FPGA like
the MicroBlaze provided by Xilinx. The device is able to
monitor eight analog input signals and calculate offset,
root mean square and real and reactive powers from the
inputs in every signal cycle, thus providing the basic data
to determine the quality of the electrical network.

DSP DSP Theoretical

(v.1.0) (v.1.2) value
RMS 0.3571 03571 | 035355
value
Real 0.1084 0.1084 0.10825
power
Reactive -0.0626 -0.0626 -0.0625
power

Table 1: Simulation results.
DSP (v.1.0) DSP (v.1.2)

Slices 5181 (38%) 4232 (31%)
lg/iULTISXI 6 (18%) 3 9%)
RAMBI16s 5 (15%) 5 (15%)
Max. Freq. 110.461 MHz

Table 2: Hardware implementation results.

Different design alternatives have been tried out in
order to optimize available resources and meet frequency
requirements. As a result, the implemented device easily
exceeds the required operation frequency and accuracy
while only consuming 30% of the available resources of
a XC3S1500 Xilinx FPGA chip.

We can also conclude that state-of-the-art FPGAs are
ready to be used for advanced DSP design, taking
advantage of a variety of tools and integrated design
environments that automate the most tedious design
tasks, allowing the designer to focus on architecture and
specifications and facilitating the exploration of the
design space in search of an optimal solution.

7. Acknowledgment

This work has been partially supported by the
PROFIT-MITC OPENRTU FIT-330101-2004-5 and
MYCT MEC META TEC 2004-00840/MIC projects of
the Spanish Government and the CICE OFU TIC 1023
project of the Andalusian Government.

References

[1] “Altera Website.” http://www.altera.com/.

[2] “Xilinx Website.” http://www.xilinx.com/.

[3] “Spartan-3 FPGA Family: Complete Data Sheet.”
http://www xilinx.com/bvdocs/publications/ds099.pdf.

[4] W. F. Lee, Verilog Coding for Logic Synthesis, John
Wiley & Sons Inc., ISBN 0-471-42976-7, 2003.

[5] B. Cohen, VHDL Coding Styles and Methodologies, 2nd
Edition, Kluber Academic Publishers, ISBN 0-7923-

8474-1, 1999.
[6] Xilinx Inc., Xilinx System Generator for DSP v8.1
User’s Guide, April 25, 2006.

[7]

(8]
[9]

[10]

http://www.xilinx.com/support/sw_manuals/sysgen_ug.p
df

Xilinx Inc., Platform Studio User Guide, Embedded
Development Kit EDK 7.1i, February 15, 2005.
http://www.xilinx.com/ise/embedded/edk7 1docs/ps_ug.
pdf.

“Simulink® - Simulation and Model-Based Design.”
http://www.mathworks.com/products/simulink/.

Robert D. Turney, Chris Dick, David B. Parlour, and
James Hwang, “Modeling and Implementation of DSP
FPGA Solutions”, International Conference on Signal
Processing Applications and Technology, ICSPAT'99,

Orlando, November 1-4, 1999.
http://www.xilinx.com/products/logicore/dsp/matlab_fin
al.pdf

J. Hwang, B. Milne, N. Shirazi, J. Stroomer, “System
Level Tools for DSP in FPGAs”, Field-Programmable
Logic and Applications - 11th International Conference,
FPL 2001, Belfast, Northern Ireland, UK, August 27-29,
2001.

[11]

[12]

[13]

[14]

[15]

http://www.xilinx.com/products/logicore/dsp/sysgen_fpl
2001.pdf

J. Ballagh, J. Hwang, P. James-Roxby, E. Keller, S. Seng
and B. Taylor, “Building OPB Slave Peripherals using
System Generator for DSP”, Xilinx Inc., 2004.
http://www xilinx.com/bvdocs/appnotes/xapp264.zip.

“The Mentor Graphics Website.”
http://www.model.com/.
Analog Devices Inc., “250 kSPS, 6-Channel,

Simultaneous Sampling, Bipolar 12/14/16-Bit ADC”,
2005.
http://www.analog.com/UploadedFiles/Data_Sheets/881
19461AD7656_7_8 prl.pdf.

Analog Devices Inc., “Nonvolatile Memory, Quad 64-
Position Digital Potentiometer”, 2005.
http://www.analog.com/UploadedFiles/Data_Sheets/112
773373AD5233_a.pdf.

S. Zack and S. Dhanani, “DSP Co-Processing in FPGAs:
Embedding High-Performance, = Low-Cost DSP
Functions”, Xilinx Inc., March 18, 2004.

http://www xilinx.com/bvdocs/whitepapers/wp212.pdf

