Indian J. pure appl. Math.38(3): 185-201, June 2007
© Printed in India.

B.-Y. CHEN'S INEQUALITY FOR SUBMANIFOLDS OF GENERALIZED SPACE FORMS

PABLO ALEGRE*, ALFONSOCARRIAZO*!, YOUNG HO KIM** AND DAE WON Y OON***

*Department of Geometry and Topolo@aculty of Mathematics
University of SevillaApdo. Correod160, 41080 Sevilla Spain
e-mail: carriazo@us.es
“*Department of Mathematics, College of Natural Sciences, Kyungpook National University,
Taegu702-701Rep. of Korea
e-mail; yhkim@knu.ac.kr
***Department of Mathematics, College of Education and RINS, Gyeongsang National University,
Chinju660-701Rep. of Korea
e-mail: dwyoon@gsnu.ac.kr

(ReceivedL 4 October2005;after final revision8 May 2006;accepted8 June2006)

In this article, we investigate sharp inequalities involvinimvariants for submanifolds in both
generalized complex space forms and generalized Sasakian space forms, with arbitrary codi-
mension.
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1. INTRODUCTION

To study submanifolds of a Riemannian manifold, we must consider some intrinsic invariants and
the extrinsic ones as well. Among invariants, Riemannian invariants are the intrinsic characteristics
of the Riemannian manifold. In fact, curvature is known as the most naturally important intrinsic
invariant according to Berger in [4]. In this regard, sectional, scalar and Ricci curvatures are mostly
concerned.

In [10] B.-Y. Chen introduced new types of curvature invariants (calledbthievariantg, by
defining two strings of scalar-valued Riemannian curvature functions, naifwely...,n;) and

1The second author is partially supported by the research project BFM2001-2871-C04-04 (MEC) and the PAI group
FQM-327 (Junta de Andalig, 2004).
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A~

d(ni,...,ny) forevery(ny,...,n;) satisfyingn; < n,n; > 2andn; + ...+ ny < n. The first
string of-invariants §(n4, . . ., ny), extend naturally the Riemannian invariant introduced in [6, 7].

There are many papers studyifignvariants. For instance, in [8] B.-Y. Chen established sharp
inequalities for submanifolds of a complex space form, while in [15], Oiaga and Mihai investigated
d-invariants for slant submanifolds in this kind of ambient spaces. In [12], &liral. studied
them in generalized complex space forms. We can also refer to some papers on Chen’s inequalities
in Sasakian space forms (see [5, 11, 14]) and Arslaal,, ([2, 3]) studiedj-invariants for sub-
manifolds in locally conformal almost cosymplectic manifolds and+nu)-contact space forms.
Recently, the fourth named author ([13, 18]) investigated the sharp inequalities inv@ivivariant
for C' R-submanifolds and totally real submanifolds in locally conformal Kaehler space forms, re-
spectively.

In this paper, we study-invariants for any kind of submanifolds of either generalized complex
space forms or generalized Sasakian space forms, with arbitrary codimension.

2. PRELIMINARIES

An almost Hermitian manifolc{M, J,g) is said to be a generalized complex space form if there
exist two functionsf; and f, on M such that

RX,Y)Z = fi{g(Y,2)X —g(X, Z)Y}
+flg(X, JZ)JY — (Y, JZ)JX +29(X,JY)JZ},

for any vector fieldsY, Y, Z on M, whereR denotes the curvature tensoraf (see [17]). In such a
case, we will writeZ\Z(fl, f2). Many authors have studied these manifolds and their submanifolds.
For example, one main reference concerning these spaces is [17], in which Tricerri and Vanhecke
established an important obstruction for their existence in dimensions greater than or equal to 6.
In fact, in these dimensions a generalized complex space form reduces to a complex space form.
Nevertheless, Olszak provided some interesting examples of 4-dimensional generalized complex
space forms with non-constant functions in [16].

On the other hand, a generalized Sasakian space form is an almost contact metric manifold
(M, ®,&,n, g) such that its Riemannian curvature tensor is given by

R(X,Y)Z = fi{g(Y,2)X —g(X,2)Y}
+fo{9(X,02)9Y — g(Y,0Z)p X + 29(X, ¢Y)dZ}
+f3{n(XOn(2)Y —n(Y)n(Z)X + g(X, Z)n(Y)E — g(Y, Z)n(X)E},

f1. f2, f3 being differentiable functions oi/. We will write ]\Zl(fl, f2, f3). These spaces were
defined and studied by the first two named authors and Blair in [1]. In that paper, they also gave
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some procedures to construct interesting examples by using warped products and conformal changes
of metric.

Given a submanifold/ of a generalized (either complex or Sasakian) space farmve also
usey for the induced Riemannian metric d. We denote by the Levi-Civita connection o/
and byV the induced Levi-Civita connection @ff. Then the Gauss and Weingarten formulas are
given respectively by

VxY = VxY +h(X,Y),
VxV = —AyX +DxV

for vector fieldsX, Y tangent ta)M and a vector field” normal toM, whereh denotes the second
fundamental form)) the normal connection andy- the shape operator in the directioni6f The
second fundamental form and the shape operator are related by

g(h(X,Y),V) = g(AvX, Y)

Moreover, the mean curvature vectBr on ann-dimensional submanifold/ is defined by
H = (1/n) traceh.

Forp € M and anyX € T,M, we write either/JX = PX + FX or ¢X = TX + NX,
wherePX,TX € T,M, FX,NX € TpiM, depending on the ambient space being a generalized
complex space form or a generalized Sasakian space fofma If. . e, } is an orthonormal basis
of T,M, we put either

n
I1PI[> = ¢*(Peise)),
i,j=1
or
n n
ITI? = ¢*(Teiej),  |INIP =) INeif”. (2.1)
i,j=1 i=1

Moreover, ifr C T,,M is a plane section at< M itis easy to see that
O(r) = g°(Pe1, e2)

(or, similarly,©(r) = g?(Tey, e2) in the almost contact metric case) is a real numbgy,ih] which
is independent on the choice of the orthonormal bésises } of 7.

For ann-dimensional Riemannian manifold, we denote by (7) the sectional curvature of
M associated with a plane sectienC 7,,M,p € M. For any orthonormal basis, . . ., e, of the
tangent space, M, the scalar curvature atp is defined by

T(p) = ZK(ei Nej).

i<j
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If we put (inf K)(p) = inf{K (7) : plane sections C T,M }, then the Riemannian invariant
dps introduced by B.-Y. Chen in [6, 7] is given by:

dm(p) = 7(p) — (inf K)(p).

If L is a subspace df,M of dimensionr > 2 and{ey,...,e,} is an orthonormal basis df,
then the scalar curvature L) of ther-plane sectiorl is defined by
T(L)=> K(eaNeg), 1<a,B<r (2.2)
a<f

If L is a2-plane sectiong (L) is nothing but the sectional curvatuk& L) of L. As B.-Y. Chen
points out in [9], geometrically;(L) is nothing but the scalar curvature of the image,, (L) of L
atp under the exponential map atWe set either

V(L) = Z g*(Pei,e;) or V(L) = Z g*(Te;, ej).
1<i<j<r 1<i<j<r

For anintegek > 0, S(n, k) denotes the finite set consisting of unordetedples(n, . .., nx)
of integers> 2 satisfyingn; < n andn; + ...+ ngx < n, while S(n) denotes the set of unordered
k-tuples withk > 0 for a fixedn. For eachk-tuple (nq,...,nx) € S(n), the two sequences of
Riemannian invariant§(n;, . .., n.)(p) andS(ni, . .., ni.) (p) are defined respectively by

S(ni,...,ng)(p) = inf{r(L1)+...+7(Lg)},

Sny,...,ng)(p) = sup{r(L1)+...+7(Lk)},

whereLy, ..., L run over allk mutually orthogonal subspaces’ffM such thadimL; = n;,
j=1,..., k. The two strings of Riemannian curvature invariafts,, . .., n;)(p) and

A~

d(ni,...,nk)(p) introduced by B.-Y. Chen in [10] are given by

6(ni,...,nk)(p) = 7(p)—S(n1,...,n)(p),

o(ni...,ng)(p) = 7(p)—SMn1,...,nk)(p) (2.3)

Clearly, 6(ny,...,n) > 6(n1,...,ny) for any k-tuple (n1,...,ng) in S(n). For more ex-
planations about theseinvariants and their relationship with that introduced in [6, 7], we refer to
[9].

Foreachni,...,n;) € S(n), lete(n, ..., n,) andb(ny, ..., n;) denote the positive constants
given by

n?(n+k—1->nj)
2n+k—>n;)

1 k
b(ni,...,ng) = 3 n(n—l)—an(nj—l) .
j=1
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We give the following lemma for later use.
Lemma2.1 — ([6]) Letaq,...,a,,bben + 1 (n > 2) real numbers such that

n 2 n
(Zm) =(n-1) (Za?—l—b).
i=1 i=1
Then,2a1a2 > b, with the equality holding if and only i, + a2 = a3 = ... = a,.

3. 0-INVARIANTS OF SUBMANIFOLDS OF GENERALIZED COMPLEX SPACE FORMS

Let M be ann-dimensional submanifold isometrically immersed in a generalized complex space
form ]\Zf(fl, f2) of complex dimensiomn. Then, the Gauss’ equation is given by

R(X,Y, Z,W) = f{g(X,W)g(Y, Z) = g(X, Z)g(Y, W)}
+{9(X, JZ)g(JY, W)
—g(Y, JZ)g(JX, W) + 29(X, JY )g(JZ, W)}
+g(h(X, W), (Y, Z)) — g(h(X, Z), (Y, W), (3.1)

whereR is the Riemannian curvature tensordfandR(X,Y, Z, W) = g(R(X,Y)Z, W). Hence,
it is easily seen that the scalar curvaturef M atp is obtained by

27(p) = n®|[H|* = ||h]]* +n(n — 1) f + 32| PP, (3.2)

where||H||? and||h||? are the squared mean curvature and the squared norm of the second funda-
mental form.

The following result was obtained as Theorem 3.3 of [12]:

Theorem3.1 — ([12]) Let M be ann-dimensional submanifold of am(> 3)-dimensional
generalized complex space fOfM(fl,fg). Then, for any poinp € M and any plane section
m C T,M, we have

n 1PI”

2

T—K(w)sn_2<

2 (5 + o+ 0 +3

n —

@<7r>) Lo (63

The equality holds at a point € M if and only if there exists an orthonormal bagis;, . .., e, }
for T,,M and an orthonormal basife,, 11, . . . , eam } for T;- M such that(a) @ = Span{ei, e} (b)

the shape operatord, = A..,r =n+1,...,2m, take the following forms
a 0 0 ... 0
0O b 0 ... 0
An—i—l = 0 0

c ... 0 , (3.4)

0 0 0 ... ¢
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¢ dp 0 0
d —c¢ O 0

A.=10 0 0 0 , r=n+2,....2m (3.5)
0 0 O 0

wherea + b = cande,, d, € R.
Let us point out that the normal vectey, ., appearing in the above theorem is in the direction
of the mean curvature vectdf.
As an application of this result, the authors [d2] also obtained some B.-Y. Chen inequalities
for 6-dant submanifolds of a generalized complex space form. Now, we can prove some more
general results, depending on the functiyrbeing negative or positive
Theorem3.2— Let M be ann-dimensional submanifold of an(> 3)-dimensional general-
ized complex space forff (f1, f2). If f» < 0, then we have

_ 2
o < 5 2 (n"_ |HI + (n+ 1)f1> . (3.6)

The equality holds at a pointof M if and only if there exist an orthonormal badis, . . ., e, }
of T, M and an orthonormal basi§e,, 11, . . . €2, } Of TPLM such that (a) the subspace spanned by
es, ..., ey istotally real, (b)K(e; A es) = inf K atp, and (c) the shape operators, = A.,,
r=n++1...,2m take the following forms

a 0 0
0 b 0 0
Apy1 = 0 0 ¢ 0 , (3.7)
0 0 O c
¢ dp 0 .0
d, —cy 0
A, = 0 0 , T=n+2,....2m (3.8)
0 0 O 0

wherea + b = ¢ ande¢,, d, € R.
PrRoOF: By Theorem 3.1, we have (3.3) which implies

n2 n
"2 ey Lty —2)h

o < 2(n — 1) 2

n n

1 n
1302 | Y (Per,e)) + D0 P (Peses) + 5 3 g*(Peivey)

J=3 Jj=3 ,j=3
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n?(n — 2)

< G IR G+ =2 39)

If the equality in (3.6) holds, then both inequalities in (3.9) become equalities . Clearly, the
second inequality in (3.9) is an equality if and only if Spgs,...,e,} is totally real. Thus,
the equality in (3.6) implies condition (a) of the theorem. Moreover, it is clear that we also have
K(e; N e2) =inf K atp. The remaining part of the theorem follows from Theorem 3.1. [
Theorem3.3— Let M be ann-dimensional submanifold of an(> 3)-dimensional general-
ized complex space fordf (f1, fo). If f» > 0, then we have

n?(n —2)

1 3
on < 20 1) \|H||2—|—§(n—|—1)(n—2)f1—|—§an. (3.10)

The equality in (3.10) holds identically if and onlyrifis even and\/ is holomorphic

PROOF: For the case of, > 0, we must maximize the terfiP||> — 20(r) in (3.3). The
maximum value is reached fQP||? = n andO(r) = 0, that is,M is holomorphic. Sop is even.
Hence, (3.10) is obtained with equality holding if and only: ifs even and\/ is holomorphic. [

Concerning the strings of invariani$n, ..., ny), a result forg-slant submanifolds was ob-
tained in [12]. Now, we can also prove two more general results for any kind of submanifolds,
depending again on functiofs. We also study the equality cases.

Theorem3.4 — Let M be ann-dimensional submanifold of am-dimensional generalized
complex space form/ (f1, f2) satisfyingf> < 0. Then we have

5(n1, . ,nk) < c(nl, .. ;nk)HHHQ + b(nl, . ,nk)fl (311)

for anyk-tuple (nq,...,n;) € S(n). The equality case of inequality (3.11) holds at a peirt M
if and only if there exists an orthonormal basis . . ., ea,, at p such that the shape operators of
in M(f1, f2) at p take the following forms

AT 0

A, = : R , r=n+1,...,2m, (3.12)
0 ... A

0 o

wherel is an identity matrix andi} are symmetria;; x n; submatrices such that
trace(A]) = ... = trace(4}) = uy. (3.13)

PROOF: Let M be a submanifold of a generalized complex space foffif;, fo).
Let (n1,...,nk) € S(n). Put
n?(n+k—1->n))

1=2 sy I (= D= 3R P (3.14)
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Substituting (3.2) in (3.14), we have
R’ H|[> =5+ hl*), v=n+k=Y n (3.15)

Let Ly, ..., Ly be mutually orthogonal subspacesigiV/ with dim L; = n;,j =1,...,k. By
choosing an orthonormal bagis, . . . , es;,, atp such that

L] = Span{enl+“.+nj71+1, ey €n1+...+nj}a ] = 1, ey k
ande,. 1 is in the direction of the mean curvature vector, we obtain from (3.15) that
n 2 n
<Z> STCED 325 DUTU D b DI FENRCET
=1 =1 1#£j r=n+21i,5=1

wherea; = b i =1,... n.
We set

Al:{1,...,n1},...,Ak:{n1—I—...—l—nk_l—|—1,...,n1—|—.‘.—|—nk}.

In other words, the equation (3.16) can be rewritten in the form

(50 = (o S e 3 5o

i=1 i#£j r=n+21,j=1

— Z Gy O3, — Z AayABy — -+ — Z Ao Ay, | s

2<a1 #B1<n1 ag#B2 ar#Pr
az, 2 € Ao, ... au, By € Ay, (3.17)
where we put
ar = ai,a2 =as+ ...+ anq,
d3 = an1+1 +...+ a’nl-‘rnQu L 7dk+1 = an1+...+nk_1+1 + ...+ an1+...+nk7
k42 = Opy4ogng+ls -5 Oyl = Q.

Applying Lemma 2.1 to (3.17), we can obtain the following inequality

Z Uy 0B, + Z Y e e Z Aoy, Ay

a1<p1 ag<fBy ap <Pk
1 2m n
A n+1 - r\2
S Leyoeel 3 S0
1<J r=n+21i,j=1

Oéj,ﬂjEAj, j=1,... k. (3.18)
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Furthermore, from (2.2) and Gauss’ equation we see that

n;(n; —1
T(L;) = j(]2)f1+3f2 Z 9*(eq,, Peg;)
o <fBj

2m
+ 3N (b s, — (Bs)?), B €A, j=1,... k. (3.19)
r=n+1a;<p;

Thus, combining (3.18) and (3.19) we get

k
(L)t (L) > Z+Z<Wf1+3f2‘1’(flj)>

‘ 2

7=1

1 2m 1 2m k 2

r \2 T
5 2. 2 (el +5 X0 D | X b,
r=n+1 (a,B)¢A2 r=n+2j=1 \a;€A;

> "+i i =) g () (3.20)
= 9 ~ 9 1 2 7 ) .

whereA = AjU...UAy, A? = (A1 xA)U...U(Ag x Ay). Consequently, from (2.3), (3.14)

and (3.20) we can obtain (3.11). If the equality in (3.11) holds at a poititen the inequalities in
(3.18) and (3.20) are actually equalitiespatin this case, by applying Lemma 2.1, (3.17), (3.18),
(3.19) and (3.20), we also obtain (3.12) and (3.13). The converse can be verified by a straight-
forward computation. O

Theorem3.5 — Let M be ann-dimensional submanifold of am-dimensional generalized
complex space form/ (f1, f2) satisfyingf> > 0. Then we have

3
6(ny,...,ng) < clng,...,n)||[H||? +b(ny,...,ng)f1+ 5f2|yPH2 (3.21)

for any k-tuple (n1,...,n,) € S(n). Moreover, the equality case of inequality (3.21) holds at a
pointp € M if and only if there exists an orthonormal basis . .., es,, at p such that the shape
operators of M in M(fy, f») atp take the forms (3.12)

PrROOF: By using (3.20) and; > 0, one gets (3.21). g

Let us point out that, according to the result of [17] which we recalled in Sectionf2 jsfnot
identically zero, Theorems 3.2 and 3.3 reduce just to Theorems 3 and 4 of [8], and Theorem 3.4 is
just Theorem 8.1 of [10]. Nevertheless, all these results would be usgfuHf0, and the last one
is also true in dimensiod.
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4. 5-INVARIANTS OF SUBMANIFOLDS OF GENERALIZED SASAKIAN SPACE FORMS

Now, let M be an(n+1)-dimensional submanifold isometrically immersed if2a:+1)-dimensional
generalized Sasakian space fo/ﬁﬂ(fl, f2, f3), such thatV is tangent to the structure vector field
¢ of M. Then, the Riemannian curvature tengbon M (f1, f2, f3) is given by

RX,Y,Z,W) = fi{g(X,W)g(Y,Z) —g(X,Z)g(Y,W)}
+fo{9(X, 0Z)g(oY, W) — g(Y,6Z)g(¢.X, W)
+29(X, ¢Y)g(¢Z, W)}
+3{n(X)n(Z)g(Y, W) —n(Y)n(Z)g(X, W)
+n(Y)n(W)g(X, Z) — n(X)n(W)g(Y, Z)}, (4.1)

and the scalar curvatureof M atp can be obtained by

27(p) = (n + 12| H[* = [|al[* + (n + Dnfi + 3f[TI* - 2nfs, (4.2)

where||H||? and||h||? are the squared mean curvature and the squared norm of the second funda-
mental form.

To state a result similar to Theorem 3.1, given a ppiat M and a plane section C 7,,M, we
need to recall from [14] the functioh(7) = (n(X))? + (n(Y))?, whereX, Y are any orthonormal
vectors spanning. Then, we obtain:

Theorem4.1 — Let M be an(n + 1)-dimensional submanifold of @m + 1)-dimensional
generalized Sasakian space foﬂ7m( f1, f2, f3) such thatM is tangent to the structure vector field
¢ of M. Then, for any poinp € M and any plane section C T,M, we have

(n+1)2

-k < S (U R+ )

2
3 <”1;' - @m) fo— (n— B(m)fs. “.3)

The equality holds at a poipte M if and only if there exists an orthonormal baéis, . . ., e,+1}
for T,M and an orthonormal bas{g,,+2, - . . , e2m+1} for T,-M such that(a) m = Span{e1, ez}
(b) the shape operators, = A, =n+2,...,2m + 1, take the following forms:

a 0 0 ... O
0 b 0 ... 0
0 ¢ ... 0 , 4.49)

An+2 = 0
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¢ d. 0
dr —c 0
A,=10 0 0 , r=n+3,....2m+1 (4.5)
0O 0 0 ... 0
wherea + b = cande,, d, € R.
ProOF: If we put
n+1)>2
p=or DD i s 1yngy — 3ITIP S + 20 @6)
and we substitute (4.2) into (4.6), we have
(n+ D2[H|[* = n(||h[]* + p). (4.7)

Letw C T,,M be a plane section. We choose an orthonormal frége . ., e, 1 } of T, and
an orthonormal basiée,, 12, . . ., €2 +1} Of TpiM such thatr is spanned by, e; ande,, 5 is in
the direction of the mean curvature vectér Hence, (4.7) gives

n+1 2 n+1 2m+1
(Z h;;“) =n Y REPE? D (REP 4+ >0 (hy, ,

1=1 i=1 i#£] r=n+3 1,j

and so, by applying Lemma 2.1, we obtain:

2m+1
2hTPRESE = Y (R Y Y (h (4.8)
i#j r=n+3 i,j

On the other hand, from (4.1) and the Gauss equation we find:

K(r) = fi1+30(n)fa—®(7)fs

2m—+1
HRE2hE? = (B2 4+ > (R sy — (hia)?). (4.9)
r=n—+3
Then, from (4.8) and (4.9) we get:
p 2m—+1
K(r) > [+30(mf—mfs+5+ D D {(h)*+ (1)}
r=n+2 j>2

2m+1 2m+1

+ > () Z > (hr +1 Z (R, +h5y)%.  (4.10)

z;é]>2 r=n+31,j>2 r=n+3
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Finally, combining (4.6) and (4.10), we obtain (4.3).
If the equality in (4.3) holds, then the inequalities in (4.8) and (4.10) become equalities. Thus,
we have:

W= nt = ht =0, it > 2
r T __hr _

1 = 0, r=n+3,....m; ¢,j57=3,...,n+1;
hﬁ3+hn+3 ..:hﬂ““+h2m+1_o

Furthermore, we may choosg, es such thath’f;r2 = 0. Moreover, by applying Lemma 2.1, we

also have:

hn+2 + hn+2 — hn+2 — hn+2

n+1 n+1°

Therefore, with respect to the chosen orthonormal basis . . , ea,,+1}, the shape operators 8f
take the forms (4.4) and (4.5).

The converse follows from a direct calculation. O

As in the previous section, we can obtain some Chen inequalities for any kind of submanifolds
as an application of this result. Now, they depend on the signs of faaihd f3 and they appear in
the following corollary whose proof follows directly from Theorem 4.1.

Corollary 4.1 — Let M be an(n + 1)-dimensional submanifold of @m + 1)-dimensional
generalized Sasakian space folt?zf(fl, f2, f3) such thatM is tangent to the structure vector field
¢ of M. Then, the following inequalities are satisfied:

) If fo <Oandf; <0,

< CEPO ) ey o DED
i) If f, < 0andfs > 0,
Sur < (n+1)227£n_1)]H|2+Wfl—(n—l)fg.
i) 1t f > 0andf; <0,
o (n—|—1)227£n—1)|H|2+ (n_1)2(n+2)f1+3|z;H?fQ_nf&
V) If f» > 0andfs > 0,
5ar < (”+1)22(”_1)|H|2+M2(”+2>f +3”T”2 — (= 1)fs.

Moreover, we can improve Theorem 4.1 by working with generalized Sasakian space forms
endowed with arfa, 3) trans-Sasakian structure, i.e., such that

(Vx9)Y = a(g(X,Y)E —n(Y)X) + B(g(¢X,Y)E —n(Y)$X) (4.11)
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for any vector fieldsX, Y, «, 8 being two differentiable functions on the ambient manifold. In such
a case, it is easy to see from (4.11) that

Vi€ = —apX + (X —n(X)¢)

and hence
h(X,&) = —aNX (4.12)

for any tangent vector fiel. Actually, some important examples of trans-Sasakian generalized
Sasakian space forms were obtained in [1]. Then, we can prove the following theorem for plane
sections orthogonal to the structure vector field:

Theorem4.2 — Let M be an(n + 1)-dimensional submanifold of @m + 1)-dimensional
generalized Sasakian space foﬂ?ﬁ(fl, f2, f3) such thatM is tangent to the structure vector field
¢ of M. If M has an(a, 3) trans-Sasakian structure, then for any pojint M and any plane
sectionr C T,,M, orthogonal to&,, we have

-1 1)2
- wm < (PSR )
Jealia e 22
+ 3(15 - -6 ) fo—nfs - ?|INIP. (4.13)
The equality holds at a poipte M if and only if there exists an orthonormal basis , . . ., e, 41}
for T,M and an orthonormal basie,, 12, . . . , e2m+1} for TpLM such that(a) e,4+1 = &

(b) m = Span{ey, e2} (c) the shape operatord, = A, ,r =n+2,...,2m+1, take the following
forms

a 0 0 2
0 —a 0 :
Apio = , (4.14)
" 0 0 0,5 urt?
P
¢ dy 0 1y
A, = dr —er 0 : , r=n+3,....2m+1 (4.15)
0 0 On—2 py
Wm0

wherec,., d, € R.
PrROOF: Let us considefe, ..., e,+1} an orthonormal basis fdf,M and{e, 2, ..., €2m+1}
an orthonormal basis chpLM such thak, 1 = &, m = Span{e1, e2} ande,, 2 has the direction
of the mean curvature vectéf. Then, by following the same steps as in the proof of Theorem 4.1,
we obtain the inequality
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n — n 2 2
ok = M5 (UEE R s ) 43 (150 - em) - s

2
2m—+1 n+1 1 2m+1
- Z Z zn+1 2 Z ( :L+1,n+1)2a (416)
r=n+2 i=1 r=n-+2

in which we have preserved the terms related to the structure vector field. But,igsn (o, 3)
trans-Sasakian manifold, it follows from (2.1) and (4.12) that

2m—+1 n+1 2m—+1

2 2 2
Z Z zn—l—l —CY HNH ) Z ( :L—I—l,n-l-l) =0.
r=n-+2 i=1 r=n-+2

Therefore, we obtain (4.13). The study of the equality case can be done in a similar way of that of
Theorem 4.1, by taking now into account that

hniFQ hn+2 hn+2 ] _ hzi% 1 = -0
by virtue of (4.12). O
From the above theorem, we can also state some general inequalities, but now we have to con-
sider the invariang?); defined by the second named author in [5] by

031 (p) = 7(p) — infp K (p),
foranyp € M, where
(infpK)(p) = inf{ K () : plane sections orthogonal tct, }.

Itis obvious that’?, < dp;.
In fact, we obtain the following corollary whose proof follows directly from Theorem 4.2:
Corollary 4.2 — Let M be an(n + 1)-dimensional submanifold of @m + 1)-dimensional
generalized Sasakian space foMf{ 1, f», f3) such thatM/ is tangent to the structure vector field
¢ of M. If M has an(«, 3) trans-Sasakian structure, then the following inequalities are satisfied:

i) If £, <0,
2 _ _
57 < (n+1)2 (n 1)|H‘2+wfl_nf3_a2\|]\r||2,
n 2
i) If fo >0,
6P < (n+1)2(n_1)]H!2+ (n_1)<n+2)f +3HTH2 —nfz — o?||NJ||*.

2n 2
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On the other hand, concerning the strings of invariagts, . . ., n;), we can obtain for a gen-
eralized Sasakian space form some results similar to those of the previous section for a complex
space form. To do so, we just have to introduce the function

T(L)= D ((nle)) + (n(e;)),
1<i<j<r

L being a subspace @f,M of dimensionr > 2 spanned by an orthonormal bagis, . .., e, }.
Then, by following similar steps to those in the proof of (3.20), we can state the following inequality:

Theorem4.3 — Let M be an(n + 1)-dimensional submanifold of @m + 1)-dimensional
generalized Sasakian space foﬂ?f( f1, f2, f3) such thatM is tangent to the structure vector figfd
of M. Given(ni,...,n;) € S(n), forp € M let L; be annj-plane section o, M, j =1,... k.
Then, we have

=Y (L) < (g, |[HIP+b(na, ) fo
j=1

+3 W—i V(L) | fo—(n zkjr (4.17)
B P 2 P 3. .

From Theorem 4.3 we directly obtain:

Corollary 4.3 — Let M be an(n + 1)-dimensional submanifold of @&m + 1)-dimensional
generalized Sasakian space foM{fl, f2, f3) such thatM is tangent to the structure vector field
¢ of M. Then, for anyk-tuple (n1, ..., n;) € S(n), the following inequalities are satisfied:

) If f2 <0andf; <0,

d(ni,...,ng) < C(nl,...,nk)||HH2—}—b(nl,...,nk)fl —nfs.

0(ny .o yng) < c(nn, . np)|[H|P 4 0(n, . ong) fr = (n = k) fa.

T2
o) < el ) |HIP 4 (s, i) o+ 30 fy
iv) If fo > 0andfs; > 0,
> HTH2 B
d(niy...,nk) <cny,...,ng)||H||* +b(n1,...,ng)f1+3 fa—(n—k)fs.
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Finally, let us give some information about Chen inequalities fat-alimensional submanifold
M which is normal to the structure vector figddf a (2m + 1)-dimensional generalized Sasakian
space formZ\Z(fl, f2, f3). In such a case, the Gauss’ equation is given from (4.1) by

R(X7Y7 Z, W) = fl{g(Xa W)Q(K Z) - g(X, Z)g(Y, W)}

+fo{9(X, 02)g(dY, W) — g(Y, 6 2)g(6X, W) + 29(X, ¢Y )g(62, W)}
+g(h(X, W),h(}/, Z))—g(h(X, Z)7h(Y7W)) (418)

and we can calculate the scalar curvatued A/ at a pointp as

27(p) = n?[[H|* = ||h]]* + n(n — 1) f1 + 32T, (4.19)

which look like equations (3.1) and (3.2), respectively. Therefore, working from (4.18) and (4.19)
with the same techniques, we would obtain the similar results corresponding to Theorems 3.1-3.5.
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