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In this article, we investigate sharp inequalities involvingδ-invariants for submanifolds in both

generalized complex space forms and generalized Sasakian space forms, with arbitrary codi-

mension.
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1. INTRODUCTION

To study submanifolds of a Riemannian manifold, we must consider some intrinsic invariants and

the extrinsic ones as well. Among invariants, Riemannian invariants are the intrinsic characteristics

of the Riemannian manifold. In fact, curvature is known as the most naturally important intrinsic

invariant according to Berger in [4]. In this regard, sectional, scalar and Ricci curvatures are mostly

concerned.

In [10] B.-Y. Chen introduced new types of curvature invariants (called theδ-invariants), by

defining two strings of scalar-valued Riemannian curvature functions, namelyδ(n1, . . . , nk) and

1The second author is partially supported by the research project BFM2001-2871-C04-04 (MEC) and the PAI group

FQM-327 (Junta de Andalucı́a, 2004).
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δ̂(n1, . . . , nk) for every(n1, . . . , nk) satisfyingn1 < n, nj ≥ 2 andn1 + . . . + nk ≤ n. The first

string ofδ-invariants,δ(n1, . . . , nk), extend naturally the Riemannian invariant introduced in [6, 7].

There are many papers studyingδ-invariants. For instance, in [8] B.-Y. Chen established sharp

inequalities for submanifolds of a complex space form, while in [15], Oiaga and Mihai investigated

δ-invariants for slant submanifolds in this kind of ambient spaces. In [12], Kimet al. studied

them in generalized complex space forms. We can also refer to some papers on Chen’s inequalities

in Sasakian space forms (see [5, 11, 14]) and Arslanet al., ([2, 3]) studiedδ-invariants for sub-

manifolds in locally conformal almost cosymplectic manifolds and in(κ, µ)-contact space forms.

Recently, the fourth named author ([13, 18]) investigated the sharp inequalities involvingδ-invariant

for CR-submanifolds and totally real submanifolds in locally conformal Kaehler space forms, re-

spectively.

In this paper, we studyδ-invariants for any kind of submanifolds of either generalized complex

space forms or generalized Sasakian space forms, with arbitrary codimension.

2. PRELIMINARIES

An almost Hermitian manifold(M̃, J, g) is said to be a generalized complex space form if there

exist two functionsf1 andf2 onM̃ such that

R̃(X, Y )Z = f1{g(Y, Z)X − g(X, Z)Y }
+f2{g(X, JZ)JY − g(Y, JZ)JX + 2g(X,JY )JZ},

for any vector fieldsX,Y, Z onM̃ , whereR̃ denotes the curvature tensor ofM̃ (see [17]). In such a

case, we will writeM̃(f1, f2). Many authors have studied these manifolds and their submanifolds.

For example, one main reference concerning these spaces is [17], in which Tricerri and Vanhecke

established an important obstruction for their existence in dimensions greater than or equal to 6.

In fact, in these dimensions a generalized complex space form reduces to a complex space form.

Nevertheless, Olszak provided some interesting examples of 4-dimensional generalized complex

space forms with non-constant functions in [16].

On the other hand, a generalized Sasakian space form is an almost contact metric manifold

(M̃, φ, ξ, η, g) such that its Riemannian curvature tensor is given by

R̃(X,Y )Z = f1{g(Y,Z)X − g(X,Z)Y }
+f2{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}
+f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ},

f1, f2, f3 being differentiable functions oñM . We will write M̃(f1, f2, f3). These spaces were

defined and studied by the first two named authors and Blair in [1]. In that paper, they also gave
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some procedures to construct interesting examples by using warped products and conformal changes

of metric.

Given a submanifoldM of a generalized (either complex or Sasakian) space formM̃ , we also

useg for the induced Riemannian metric onM . We denote bỹ∇ the Levi-Civita connection oñM

and by∇ the induced Levi-Civita connection ofM . Then the Gauss and Weingarten formulas are

given respectively by

∇̃XY = ∇XY + h(X, Y ),

∇̃XV = −AV X + DXV

for vector fieldsX,Y tangent toM and a vector fieldV normal toM , whereh denotes the second

fundamental form,D the normal connection andAV the shape operator in the direction ofV . The

second fundamental form and the shape operator are related by

g(h(X,Y ), V ) = g(AV X, Y ).

Moreover, the mean curvature vectorH on ann-dimensional submanifoldM is defined by

H = (1/n) traceh.

For p ∈ M and anyX ∈ TpM , we write eitherJX = PX + FX or φX = TX + NX,

wherePX, TX ∈ TpM , FX, NX ∈ T⊥p M , depending on the ambient space being a generalized

complex space form or a generalized Sasakian space form. If{e1, . . . , en} is an orthonormal basis

of TpM , we put either

||P ||2 =
n∑

i,j=1

g2(Pei, ej),

or

||T ||2 =
n∑

i,j=1

g2(Tei, ej), ||N ||2 =
n∑

i=1

|Nei|2. (2.1)

Moreover, ifπ ⊂ TpM is a plane section atp ∈ M it is easy to see that

Θ(π) = g2(Pe1, e2)

(or, similarly,Θ(π) = g2(Te1, e2) in the almost contact metric case) is a real number in[0, 1] which

is independent on the choice of the orthonormal basis{e1, e2} of π.

For ann-dimensional Riemannian manifoldM , we denote byK(π) the sectional curvature of

M associated with a plane sectionπ ⊂ TpM, p ∈ M . For any orthonormal basise1, . . . , en of the

tangent spaceTpM , the scalar curvatureτ atp is defined by

τ(p) =
∑

i<j

K(ei ∧ ej).
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If we put (inf K)(p) = inf{K(π) : plane sectionsπ ⊂ TpM}, then the Riemannian invariant

δM introduced by B.-Y. Chen in [6, 7] is given by:

δM (p) = τ(p)− (inf K)(p).

If L is a subspace ofTpM of dimensionr ≥ 2 and{e1, . . . , er} is an orthonormal basis ofL,

then the scalar curvatureτ(L) of ther-plane sectionL is defined by

τ(L) =
∑

α<β

K(eα ∧ eβ), 1 ≤ α, β ≤ r. (2.2)

If L is a2-plane section,τ(L) is nothing but the sectional curvatureK(L) of L. As B.-Y. Chen

points out in [9], geometrically,τ(L) is nothing but the scalar curvature of the imageexpp(L) of L

atp under the exponential map atp. We set either

Ψ(L) =
∑

1≤i≤j≤r

g2(Pei, ej) or Ψ(L) =
∑

1≤i≤j≤r

g2(Tei, ej).

For an integerk ≥ 0,S(n, k) denotes the finite set consisting of unorderedk-tuples(n1, . . . , nk)
of integers≥ 2 satisfyingn1 < n andn1 + . . . + nk ≤ n, whileS(n) denotes the set of unordered

k-tuples withk ≥ 0 for a fixedn. For eachk-tuple (n1, . . . , nk) ∈ S(n), the two sequences of

Riemannian invariantsS(n1, . . . , nk)(p) andŜ(n1, . . . , nk)(p) are defined respectively by

S(n1, . . . , nk)(p) = inf{τ(L1) + . . . + τ(Lk)},
Ŝ(n1, . . . , nk)(p) = sup{τ(L1) + . . . + τ(Lk)},

whereL1, . . . , Lk run over allk mutually orthogonal subspaces ofTpM such thatdimLj = nj ,

j = 1, . . . , k. The two strings of Riemannian curvature invariantsδ(n1, . . . , nk)(p) and

δ̂(n1, . . . , nk)(p) introduced by B.-Y. Chen in [10] are given by

δ(n1, . . . , nk)(p) = τ(p)− S(n1, . . . , nk)(p),

δ̂(n1 . . . , nk)(p) = τ(p)− Ŝ(n1, . . . , nk)(p). (2.3)

Clearly, δ(n1, . . . , nk) ≥ δ̂(n1, . . . , nk) for any k-tuple (n1, . . . , nk) in S(n). For more ex-

planations about theseδ-invariants and their relationship with that introduced in [6, 7], we refer to

[9].

For each(n1, . . . , nk) ∈ S(n), letc(n1, . . . , nk) andb(n1, . . . , nk) denote the positive constants

given by

c(n1, . . . , nk) =
n2(n + k − 1−∑

nj)
2(n + k −∑

nj)
,

b(n1, . . . , nk) =
1
2


n(n− 1)−

k∑

j=1

nj(nj − 1)


 .
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We give the following lemma for later use.

Lemma2.1 — ([6]) Leta1, . . . , an, b ben + 1 (n ≥ 2) real numbers such that

(
n∑

i=1

ai

)2

= (n− 1)

(
n∑

i=1

a2
i + b

)
.

Then,2a1a2 ≥ b, with the equality holding if and only ifa1 + a2 = a3 = . . . = an.

3. δ-INVARIANTS OF SUBMANIFOLDS OF GENERALIZED COMPLEX SPACE FORMS

Let M be ann-dimensional submanifold isometrically immersed in a generalized complex space

form M̃(f1, f2) of complex dimensionm. Then, the Gauss’ equation is given by

R(X, Y, Z, W ) = f1{g(X, W )g(Y, Z)− g(X, Z)g(Y, W )}
+f2{g(X, JZ)g(JY, W )

−g(Y, JZ)g(JX, W ) + 2g(X, JY )g(JZ,W )}
+g(h(X, W ), h(Y, Z))− g(h(X,Z), h(Y, W )), (3.1)

whereR is the Riemannian curvature tensor ofM andR(X,Y, Z, W ) = g(R(X,Y )Z,W ). Hence,

it is easily seen that the scalar curvatureτ of M atp is obtained by

2τ(p) = n2||H||2 − ||h||2 + n(n− 1)f1 + 3f2||P ||2, (3.2)

where||H||2 and||h||2 are the squared mean curvature and the squared norm of the second funda-

mental form.

The following result was obtained as Theorem 3.3 of [12]:

Theorem3.1 — ([12]) Let M be ann-dimensional submanifold of anm(≥ 3)-dimensional

generalized complex space form̃M(f1, f2). Then, for any pointp ∈ M and any plane section

π ⊂ TpM , we have

τ −K(π) ≤ n− 2
2

(
n2

n− 1
||H||2 + (n + 1)f1

)
+ 3

( ||P ||2
2

−Θ(π)
)

f2. (3.3)

The equality holds at a pointp ∈ M if and only if there exists an orthonormal basis{e1, . . . , en}
for TpM and an orthonormal basis{en+1, . . . , e2m} for T⊥p M such that(a) π = Span{e1, e2} (b)
the shape operatorsAr = Aer , r = n + 1, . . . , 2m, take the following forms:

An+1 =




a 0 0 . . . 0
0 b 0 . . . 0
0 0 c . . . 0
...

...
...

...
...

0 0 0 . . . c




, (3.4)
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Ar =




cr dr 0 . . . 0
dr −cr 0 . . . 0
0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0




, r = n + 2, . . . , 2m (3.5)

wherea + b = c andcr, dr ∈ R.

Let us point out that the normal vectoren+1 appearing in the above theorem is in the direction

of the mean curvature vectorH.

As an application of this result, the authors of[12] also obtained some B.-Y. Chen inequalities

for θ-slant submanifolds of a generalized complex space form. Now, we can prove some more

general results, depending on the functionf2 being negative or positive:

Theorem3.2— Let M be ann-dimensional submanifold of anm(≥ 3)-dimensional general-

ized complex space form̃M(f1, f2). If f2 ≤ 0, then we have

δM ≤ n− 2
2

(
n2

n− 1
||H||2 + (n + 1)f1

)
. (3.6)

The equality holds at a pointp of M if and only if there exist an orthonormal basis{e1, . . . , en}
of TpM and an orthonormal basis{en+1, . . . e2m} of T⊥p M such that (a) the subspace spanned by

e3, . . . , en is totally real, (b)K(e1 ∧ e2) = inf K at p, and (c) the shape operatorsAr = Aer ,

r = n + 1 . . . , 2m take the following forms:

An+1 =




a 0 0 . . . 0
0 b 0 . . . 0
0 0 c . . . 0
...

...
...

...
...

0 0 0 . . . c




, (3.7)

Ar =




cr dr 0 . . . 0
dr −cr 0 . . . 0
0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0




, r = n + 2, . . . , 2m (3.8)

wherea + b = c andcr, dr ∈ R.

PROOF : By Theorem 3.1, we have (3.3) which implies

δM ≤ n2(n− 2)
2(n− 1)

||H||2 +
1
2
(n + 1)(n− 2)f1

+3f2




n∑

j=3

g2(Pe1, ej) +
n∑

j=3

g2(Pe2, ej) +
1
2

n∑

i,j=3

g2(Pei, ej)



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≤ n2(n− 2)
2(n− 1)

||H||2 +
1
2
(n + 1)(n− 2)f1. (3.9)

If the equality in (3.6) holds, then both inequalities in (3.9) become equalities . Clearly, the

second inequality in (3.9) is an equality if and only if Span{e3, . . . , en} is totally real. Thus,

the equality in (3.6) implies condition (a) of the theorem. Moreover, it is clear that we also have

K(e1 ∧ e2) = inf K atp. The remaining part of the theorem follows from Theorem 3.1. ¤
Theorem3.3 — Let M be ann-dimensional submanifold of anm(≥ 3)-dimensional general-

ized complex space form̃M(f1, f2). If f2 ≥ 0, then we have

δM ≤ n2(n− 2)
2(n− 1)

||H||2 +
1
2
(n + 1)(n− 2)f1 +

3
2
nf2. (3.10)

The equality in (3.10) holds identically if and only ifn is even andM is holomorphic.

PROOF : For the case off2 ≥ 0, we must maximize the term||P ||2 − 2Θ(π) in (3.3). The

maximum value is reached for||P ||2 = n andΘ(π) = 0, that is,M is holomorphic. So,n is even.

Hence, (3.10) is obtained with equality holding if and only ifn is even andM is holomorphic. ¤
Concerning the strings of invariantsδ(n1, . . . , nk), a result forθ-slant submanifolds was ob-

tained in [12]. Now, we can also prove two more general results for any kind of submanifolds,

depending again on functionf2. We also study the equality cases.

Theorem3.4 — Let M be ann-dimensional submanifold of anm-dimensional generalized

complex space form̃M(f1, f2) satisfyingf2 ≤ 0. Then we have

δ(n1, . . . , nk) ≤ c(n1, . . . , nk)||H||2 + b(n1, . . . , nk)f1 (3.11)

for anyk-tuple(n1, . . . , nk) ∈ S(n). The equality case of inequality (3.11) holds at a pointp ∈ M

if and only if there exists an orthonormal basise1, . . . , e2m at p such that the shape operators ofM

in M̃(f1, f2) at p take the following forms:

Ar =




Ar
1 . . . 0

...
...

... 0
0 . . . Ar

k

0 µrI


 , r = n + 1, . . . , 2m, (3.12)

whereI is an identity matrix andAr
j are symmetricnj × nj submatrices such that

trace(Ar
1) = . . . = trace(Ar

k) = µr. (3.13)

PROOF : Let M be a submanifold of a generalized complex space formM̃(f1, f2).
Let (n1, . . . , nk) ∈ S(n). Put

η = 2τ − n2(n + k − 1−∑
nj)

(n + k −∑
nj)

||H||2 − n(n− 1)f1 − 3f2||P ||2. (3.14)
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Substituting (3.2) in (3.14), we have

n2||H||2 = γ(η + ||h||2), γ = n + k −
∑

nj . (3.15)

Let L1, . . . , Lk be mutually orthogonal subspaces ofTpM with dim Lj = nj , j = 1, . . . , k. By

choosing an orthonormal basise1, . . . , e2m atp such that

Lj = Span{en1+...+nj−1+1, . . . , en1+...+nj}, j = 1, . . . , k

anden+1 is in the direction of the mean curvature vector, we obtain from (3.15) that
(

n∑

i=1

ai

)2

= γ


η +

n∑

i=1

a2
i +

∑

i6=j

(hn+1
ij )2 +

2m∑

r=n+2

n∑

i,j=1

(hr
ij)

2


 , (3.16)

whereai = hn+1
ii , i = 1, . . . , n.

We set

∆1 = {1, . . . , n1}, . . . ,∆k = {n1 + . . . + nk−1 + 1, . . . , n1 + . . . + nk}.

In other words, the equation (3.16) can be rewritten in the form

(
γ+1∑

i=1

āi

)2

= γ


η +

γ+1∑

i=1

(āi)2 +
∑

i6=j

(hn+1
ij )2 +

2m∑

r=n+2

n∑

i,j=1

(hr
ij)

2

−
∑

2≤α1 6=β1≤n1

aα1aβ1 −
∑

α2 6=β2

aα2aβ2 − . . .−
∑

αk 6=βk

aαk
aβk


 ,

α2, β2 ∈ ∆2, . . . , αk, βk ∈ ∆k (3.17)

where we put

ā1 = a1, ā2 = a2 + . . . + an1 ,

ā3 = an1+1 + . . . + an1+n2 , . . . , āk+1 = an1+...+nk−1+1 + . . . + an1+...+nk
,

āk+2 = an1+...+nk+1, . . . , āγ+1 = an.

Applying Lemma 2.1 to (3.17), we can obtain the following inequality

∑

α1<β1

aα1aβ1 +
∑

α2<β2

aα2aβ2 + . . . +
∑

αk<βk

aαk
aβk

≥ η

2
+

∑

i<j

(hn+1
ij )2 +

1
2

2m∑

r=n+2

n∑

i,j=1

(hr
ij)

2,

αj , βj ∈ ∆j , j = 1, . . . , k. (3.18)
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Furthermore, from (2.2) and Gauss’ equation we see that

τ(Lj) =
nj(nj − 1)

2
f1 + 3f2

∑

αj<βj

g2(eαj , P eβj )

+
2m∑

r=n+1

∑

αj<βj

(hr
αjαj

hr
βjβj

− (hr
αjβj

)2), αj , βj ∈ ∆j , j = 1, . . . , k. (3.19)

Thus, combining (3.18) and (3.19) we get

τ(L1) + . . . + τ(Lk) ≥ η

2
+

k∑

j=1

(
nj(nj − 1)

2
f1 + 3f2Ψ(Lj)

)

+
1
2

2m∑

r=n+1

∑

(α,β)/∈∆2

(hr
αβ)2 +

1
2

2m∑

r=n+2

k∑

j=1


 ∑

αj∈∆j

hr
αjαj




2

≥ η

2
+

k∑

j=1

(
nj(nj − 1)

2
f1 + 3f2Ψ(Lj)

)
, (3.20)

where∆ = ∆1∪ . . .∪∆k, ∆2 = (∆1×∆1)∪ . . .∪ (∆k×∆k). Consequently, from (2.3), (3.14)

and (3.20) we can obtain (3.11). If the equality in (3.11) holds at a pointp, then the inequalities in

(3.18) and (3.20) are actually equalities atp. In this case, by applying Lemma 2.1, (3.17), (3.18),

(3.19) and (3.20), we also obtain (3.12) and (3.13). The converse can be verified by a straight-

forward computation. ¤
Theorem3.5 — Let M be ann-dimensional submanifold of anm-dimensional generalized

complex space form̃M(f1, f2) satisfyingf2 > 0. Then we have

δ(n1, . . . , nk) ≤ c(n1, . . . , nk)||H||2 + b(n1, . . . , nk)f1 +
3
2
f2||P ||2 (3.21)

for anyk-tuple (n1, . . . , nk) ∈ S(n). Moreover, the equality case of inequality (3.21) holds at a

point p ∈ M if and only if there exists an orthonormal basise1, . . . , e2m at p such that the shape

operators ofM in M̃(f1, f2) at p take the forms (3.12).

PROOF : By using (3.20) andf2 > 0, one gets (3.21). ¤
Let us point out that, according to the result of [17] which we recalled in Section 2, iff2 is not

identically zero, Theorems 3.2 and 3.3 reduce just to Theorems 3 and 4 of [8], and Theorem 3.4 is

just Theorem 8.1 of [10]. Nevertheless, all these results would be useful iff2 = 0, and the last one

is also true in dimension4.
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4. δ-INVARIANTS OF SUBMANIFOLDS OF GENERALIZED SASAKIAN SPACE FORMS

Now, letM be an(n+1)-dimensional submanifold isometrically immersed in a(2m+1)-dimensional

generalized Sasakian space form̃M(f1, f2, f3), such thatM is tangent to the structure vector field

ξ of M̃ . Then, the Riemannian curvature tensorR̃ onM̃(f1, f2, f3) is given by

R̃(X, Y, Z, W ) = f1{g(X, W )g(Y, Z)− g(X, Z)g(Y, W )}
+f2{g(X, φZ)g(φY, W )− g(Y, φZ)g(φX, W )

+2g(X, φY )g(φZ, W )}
+f3{η(X)η(Z)g(Y, W )− η(Y )η(Z)g(X,W )

+η(Y )η(W )g(X,Z)− η(X)η(W )g(Y, Z)}, (4.1)

and the scalar curvatureτ of M atp can be obtained by

2τ(p) = (n + 1)2||H||2 − ||h||2 + (n + 1)nf1 + 3f2||T ||2 − 2nf3, (4.2)

where||H||2 and||h||2 are the squared mean curvature and the squared norm of the second funda-

mental form.

To state a result similar to Theorem 3.1, given a pointp ∈ M and a plane sectionπ ⊂ TpM , we

need to recall from [14] the functionΦ(π) = (η(X))2 + (η(Y ))2, whereX,Y are any orthonormal

vectors spanningπ. Then, we obtain:

Theorem4.1 — Let M be an(n + 1)-dimensional submanifold of a(2m + 1)-dimensional

generalized Sasakian space form̃M(f1, f2, f3) such thatM is tangent to the structure vector field

ξ of M̃ . Then, for any pointp ∈ M and any plane sectionπ ⊂ TpM , we have

τ −K(π) ≤ n− 1
2

(
(n + 1)2

n
||H||2 + (n + 2)f1

)

+3
( ||T ||2

2
−Θ(π)

)
f2 − (n− Φ(π))f3. (4.3)

The equality holds at a pointp ∈ M if and only if there exists an orthonormal basis{e1, . . . , en+1}
for TpM and an orthonormal basis{en+2, . . . , e2m+1} for T⊥p M such that(a) π = Span{e1, e2}
(b) the shape operatorsAr = Aer , r = n + 2, . . . , 2m + 1, take the following forms:

An+2 =




a 0 0 . . . 0
0 b 0 . . . 0
0 0 c . . . 0
...

...
...

...
...

0 0 0 . . . c




, (4.4)
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Ar =




cr dr 0 . . . 0
dr −cr 0 . . . 0
0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0




, r = n + 3, . . . , 2m + 1 (4.5)

wherea + b = c andcr, dr ∈ R.

PROOF : If we put

ρ = 2τ − (n + 1)2(n− 1)
n

||H||2 − (n + 1)nf1 − 3||T ||2f2 + 2nf3 (4.6)

and we substitute (4.2) into (4.6), we have

(n + 1)2||H||2 = n(||h||2 + ρ). (4.7)

Let π ⊂ TpM be a plane section. We choose an orthonormal frame{e1, . . . , en+1} of TpM and

an orthonormal basis{en+2, . . . , e2m+1} of T⊥p M such thatπ is spanned bye1, e2 anden+2 is in

the direction of the mean curvature vectorH. Hence, (4.7) gives

(
n+1∑

i=1

hn+2
ii

)2

= n





n+1∑

i=1

(hn+2
ii )2 +

∑

i6=j

(hn+2
ij )2 +

2m+1∑

r=n+3

∑

i,j

(hr
ij)

2 + ρ



 ,

and so, by applying Lemma 2.1, we obtain:

2hn+2
11 hn+2

22 ≥
∑

i6=j

(hn+2
ij )2 +

2m+1∑

r=n+3

∑

i,j

(hr
ij)

2 + ρ. (4.8)

On the other hand, from (4.1) and the Gauss equation we find:

K(π) = f1 + 3Θ(π)f2 − Φ(π)f3

+hn+2
11 hn+2

22 − (hn+2
12 )2 +

2m+1∑

r=n+3

(hr
11h

r
22 − (hr

12)
2). (4.9)

Then, from (4.8) and (4.9) we get:

K(π) ≥ f1 + 3Θ(π)f2 − Φ(π)f3 +
ρ

2
+

2m+1∑

r=n+2

∑

j>2

{(hr
1j)

2 + (hr
2j)

2}

+
1
2

∑

i 6=j>2

(hn+2
ij )2 +

1
2

2m+1∑

r=n+3

∑

i,j>2

(hr
ij)

2 +
1
2

2m+1∑

r=n+3

(hr
11 + hr

22)
2. (4.10)
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Finally, combining (4.6) and (4.10), we obtain (4.3).

If the equality in (4.3) holds, then the inequalities in (4.8) and (4.10) become equalities. Thus,

we have:

hn+2
1j = hn+2

2j = hn+2
ij = 0, i 6= j > 2;

hr
1j = hr

2j = hr
ij = 0, r = n + 3, . . . , m; i, j = 3, . . . , n + 1;

hn+3
11 + hn+3

22 = . . . = h2m+1
11 + h2m+1

22 = 0.

Furthermore, we may choosee1, e2 such thathn+2
12 = 0. Moreover, by applying Lemma 2.1, we

also have:

hn+2
11 + hn+2

22 = hn+2
33 = . . . = hn+2

n+1 n+1.

Therefore, with respect to the chosen orthonormal basis{e1, . . . , e2m+1}, the shape operators ofM

take the forms (4.4) and (4.5).

The converse follows from a direct calculation. ¤
As in the previous section, we can obtain some Chen inequalities for any kind of submanifolds

as an application of this result. Now, they depend on the signs of bothf2 andf3 and they appear in

the following corollary whose proof follows directly from Theorem 4.1.

Corollary 4.1 — LetM be an(n + 1)-dimensional submanifold of a(2m + 1)-dimensional

generalized Sasakian space form̃M(f1, f2, f3) such thatM is tangent to the structure vector field

ξ of M̃ . Then, the following inequalities are satisfied:

i) If f2 ≤ 0 andf3 ≤ 0,

δM ≤ (n + 1)2(n− 1)
2n

|H|2 +
(n− 1)(n + 2)

2
f1 − nf3.

ii) If f2 ≤ 0 andf3 > 0,

δM ≤ (n + 1)2(n− 1)
2n

|H|2 +
(n− 1)(n + 2)

2
f1 − (n− 1)f3.

iii) If f2 > 0 andf3 ≤ 0,

δM ≤ (n + 1)2(n− 1)
2n

|H|2 +
(n− 1)(n + 2)

2
f1 + 3

||T ||2
2

f2 − nf3.

iv) If f2 > 0 andf3 > 0,

δM ≤ (n + 1)2(n− 1)
2n

|H|2 +
(n− 1)(n + 2)

2
f1 + 3

||T ||2
2

f2 − (n− 1)f3.

Moreover, we can improve Theorem 4.1 by working with generalized Sasakian space forms

endowed with an(α, β) trans-Sasakian structure, i.e., such that

(∇̃Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX) (4.11)
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for any vector fieldsX,Y , α, β being two differentiable functions on the ambient manifold. In such

a case, it is easy to see from (4.11) that

∇̃Xξ = −αφX + β(X − η(X)ξ)

and hence

h(X, ξ) = −αNX (4.12)

for any tangent vector fieldX. Actually, some important examples of trans-Sasakian generalized

Sasakian space forms were obtained in [1]. Then, we can prove the following theorem for plane

sections orthogonal to the structure vector field:

Theorem4.2 — Let M be an(n + 1)-dimensional submanifold of a(2m + 1)-dimensional

generalized Sasakian space form̃M(f1, f2, f3) such thatM is tangent to the structure vector field

ξ of M̃ . If M̃ has an(α, β) trans-Sasakian structure, then for any pointp ∈ M and any plane

sectionπ ⊂ TpM , orthogonal toξp, we have

τ − K(π) ≤ n− 1
2

(
(n + 1)2

n
||H||2 + (n + 2)f1

)

+ 3
( ||T ||2

2
−Θ(π)

)
f2 − nf3 − α2||N ||2. (4.13)

The equality holds at a pointp ∈ M if and only if there exists an orthonormal basis{e1, . . . , en+1}
for TpM and an orthonormal basis{en+2, . . . , e2m+1} for T⊥p M such that(a) en+1 = ξp

(b) π = Span{e1, e2} (c) the shape operatorsAr = Aer , r = n+2, . . . , 2m+1, take the following

forms:

An+2 =




a 0 0 µn+2
1

0 −a 0
...

0 0 0n−2 µn+2
n

µn+2
1 · · · µn+2

n 0


 , (4.14)

Ar =




cr dr 0 µr
1

dr −cr 0
...

0 0 0n−2 µr
n

µr
1 · · · µr

n 0


 , r = n + 3, . . . , 2m + 1 (4.15)

wherecr, dr ∈ R.

PROOF : Let us consider{e1, ..., en+1} an orthonormal basis forTpM and{en+2, ..., e2m+1}
an orthonormal basis forT⊥p M such thaten+1 = ξp, π = Span{e1, e2} anden+2 has the direction

of the mean curvature vectorH. Then, by following the same steps as in the proof of Theorem 4.1,

we obtain the inequality
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τ −K(π) ≤ n− 1
2

(
(n + 1)2

n
||H||2 + (n + 2)f1

)
+ 3

( ||T ||2
2

−Θ(π)
)

f2 − nf3

−
2m+1∑

r=n+2

n+1∑

i=1

(hr
i,n+1)

2 +
1
2

2m+1∑

r=n+2

(hr
n+1,n+1)

2, (4.16)

in which we have preserved the terms related to the structure vector field. But, asM̃ is an(α, β)
trans-Sasakian manifold, it follows from (2.1) and (4.12) that

2m+1∑

r=n+2

n+1∑

i=1

(hr
i,n+1)

2 = α2||N ||2,
2m+1∑

r=n+2

(hr
n+1,n+1)

2 = 0.

Therefore, we obtain (4.13). The study of the equality case can be done in a similar way of that of

Theorem 4.1, by taking now into account that

hn+2
11 + hn+2

22 = hn+2
33 = . . . = hn+2

n+1 n+1 = 0

by virtue of (4.12). ¤
From the above theorem, we can also state some general inequalities, but now we have to con-

sider the invariantδDM defined by the second named author in [5] by

δDM (p) = τ(p)− infDK(p),

for anyp ∈ M , where

(infDK)(p) = inf{K(π) : plane sectionsπ orthogonal toξp}.

It is obvious thatδDM ≤ δM .

In fact, we obtain the following corollary whose proof follows directly from Theorem 4.2:

Corollary 4.2 — LetM be an(n + 1)-dimensional submanifold of a(2m + 1)-dimensional

generalized Sasakian space form̃M(f1, f2, f3) such thatM is tangent to the structure vector field

ξ of M̃ . If M̃ has an(α, β) trans-Sasakian structure, then the following inequalities are satisfied:

i) If f2 ≤ 0,

δDM ≤ (n + 1)2(n− 1)
2n

|H|2 +
(n− 1)(n + 2)

2
f1 − nf3 − α2||N ||2.

ii) If f2 > 0,

δDM ≤ (n + 1)2(n− 1)
2n

|H|2 +
(n− 1)(n + 2)

2
f1 + 3

||T ||2
2

f2 − nf3 − α2||N ||2.
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On the other hand, concerning the strings of invariantsδ(n1, . . . , nk), we can obtain for a gen-

eralized Sasakian space form some results similar to those of the previous section for a complex

space form. To do so, we just have to introduce the function

Υ(L) =
∑

1≤i<j≤r

((η(ei))2 + (η(ej))2),

L being a subspace ofTpM of dimensionr ≥ 2 spanned by an orthonormal basis{e1, . . . , er}.
Then, by following similar steps to those in the proof of (3.20), we can state the following inequality:

Theorem4.3 — Let M be an(n + 1)-dimensional submanifold of a(2m + 1)-dimensional

generalized Sasakian space form̃M(f1, f2, f3) such thatM is tangent to the structure vector fieldξ

of M̃ . Given(n1, . . . , nk) ∈ S(n), for p ∈ M let Lj be annj-plane section ofTpM , j = 1, . . . , k.

Then, we have:

τ −
k∑

j=1

τ(Lj) ≤ c(n1, . . . , nk)||H||2 + b(n1, . . . , nk)f1

+3


 ||T ||2

2
−

k∑

j=1

Ψ(Lj)


 f2 − (n−

k∑

j=1

Υ(Lj))f3. (4.17)

From Theorem 4.3 we directly obtain:

Corollary 4.3 — LetM be an(n + 1)-dimensional submanifold of a(2m + 1)-dimensional

generalized Sasakian space form̃M(f1, f2, f3) such thatM is tangent to the structure vector field

ξ of M̃ . Then, for anyk-tuple(n1, . . . , nk) ∈ S(n), the following inequalities are satisfied:

i) If f2 ≤ 0 andf3 ≤ 0,

δ(n1, . . . , nk) ≤ c(n1, . . . , nk)||H||2 + b(n1, . . . , nk)f1 − nf3.

ii) If f2 ≤ 0 andf3 > 0,

δ(n1, . . . , nk) ≤ c(n1, . . . , nk)||H||2 + b(n1, . . . , nk)f1 − (n− k)f3.

iii) If f2 > 0 andf3 ≤ 0,

δ(n1, . . . , nk) ≤ c(n1, . . . , nk)||H||2 + b(n1, . . . , nk)f1 + 3
||T ||2

2
f2 − nf3.

iv) If f2 > 0 andf3 > 0,

δ(n1, . . . , nk) ≤ c(n1, . . . , nk)||H||2 + b(n1, . . . , nk)f1 + 3
||T ||2

2
f2 − (n− k)f3.
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Finally, let us give some information about Chen inequalities for ann-dimensional submanifold

M which is normal to the structure vector fieldξ of a (2m + 1)-dimensional generalized Sasakian

space formM̃(f1, f2, f3). In such a case, the Gauss’ equation is given from (4.1) by

R(X,Y, Z, W ) = f1{g(X,W )g(Y,Z)− g(X, Z)g(Y, W )}
+f2{g(X,φZ)g(φY, W )− g(Y, φZ)g(φX, W ) + 2g(X,φY )g(φZ, W )}
+g(h(X,W ), h(Y, Z))− g(h(X,Z), h(Y, W )) (4.18)

and we can calculate the scalar curvatureτ of M at a pointp as

2τ(p) = n2||H||2 − ||h||2 + n(n− 1)f1 + 3f2||T ||2, (4.19)

which look like equations (3.1) and (3.2), respectively. Therefore, working from (4.18) and (4.19)

with the same techniques, we would obtain the similar results corresponding to Theorems 3.1–3.5.
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