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1. INTRODUCTION 

Decision making is an integral part of our daily lives. 
It ranges in scope from the individual to the largest 
groups and societies, including nations and, ultimately, 
organization at the global level. It considers situations 
ranging in complexity from the simple to the most com­
plex involving multiple objetives. 

Because of the diversity of situations in which multi-
objective decision problems can arise and because of the 
multiplicity of factors that are involved, the literature on 
the subject produced since the early 1960s is large, as 
well as diverse in emphasis and style of treatment, and 
the general indication is that this trend will continue. 
Theoretical and methodological developments have been 
based on a number of different viewpoints, reflecting the 
breadth of disciplines involved. 

The term multiobjective decision-making process refers 
to the entire process of problem solving, consisting es­
sentially of the five steps. 

1. Initiation Step: Recognition of the need for 
change and diagnosis of the system. 

2. Problem-Formulation Step: Problem definition 
with specification of objectives and identification 
of attributes or objectives measures. 

3. System-Modeling Step: Construction of model to­
gether with paramenter estimation. 

4. Analysis-Evaluation Step: Generation of the set of 
alternatives and estimation of the values of at­
tributes. Decision. 

5. Implementation Step: Implementation and réévalu­
ation. 

An important class of multiobjective decision prob­
lems is the vector optimization problems VOP. From a 
methodological viewpoint, these are mathematical pro­
gramming problems with a vector-valued objective func­
tion. From the decision-making viewpoint, this class of 
multiobjective decision problems arises when the deci­
sion rule implies that each attribute (or objective func­
tion) is to be kept as extreme, i.e. as high or as low as 
possible. 

A Vector Optimization Problem VOP is formulated as 

Min \f,{x)J^{x\ ...J^{x)] 
subject to X eX, 

where X ^ W is nonempty, and^ denotes a real-valued 
function defined on X for 7 = 1, 2, ..., p. 

Needless to say, a maximization nonlinear program­
ming problem can be trated as a minimization problem, 
because maximize/(x) is equal to minimize -f{x). 

It is known that for this problem, the concept of opti­
mal solution found in single-objective optimization prob­
lem is not valid. The concept of an ideal point —one that 
minimizes each objective— is in general not feasible. On 
the other hand, multiple objectives are usually non-com­
mensurable and cannot be combined into a single objec­
tive. Moreover, the objectives often conflict with each 
other. Consequently, the concept of optimality for single-
objective optimization problems cannot be directly ap­
plied to VOP. The concept of Pareto optimality, charac­
terizing an efficient solution, has been introduced for 
VOP. The solutions of a VOP are referred to in the litera­
ture in general as noninferior, efficient, Pareto-optimal, 
or nondominated solutions. Other variants include weak­
ly efficient solutions, local efficient solutions, etc. 

The concept of solution for a VOP was introduced at 
the turn of the century (1896) by Pareto, a prominent 
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economist, but it is only since 1951, when Kuhn and 
Tucker published necessary and sufficient conditions for 
(proper) noninferiority, that considerable effort has been 
devoted to developing procedures for generating nonin-
ferior solutions to a VOP. 

The above problem VOP generalizes the following 
classic Scalar Optimization Problem that is usually for­
mulated as follows 

SOP Min 9(x) 
subject to: x eX ^ R", 

where 0 : X ^ R̂ ' ^ (R. 

The study of the solutions of a multiobjective pro­
gramming problem may be approached from two aspects; 
one, trying to relate them with the solutions to the scalar 
problems, whose resolutions has been studied extensively 
and another, trying to locate conditions which are easier to 
deal with computationally and which guarantes effi­
ciency. As much in one case as in the other, convexity 
concept plays an important role, as a fundamental condi­
tion in order to obtain the desired results. 

In the past few years, extensive literature the other 
families of more general functions to substitute the con­
vex functions in the mathematical programming has 
grown immensely. Such functions are called generalized 
convex functions. Within these and because of their im­
portance, we point out the in vex and preinvex functions, 
defined be Hanson [2], Craven [3] and Elster and Nehse 
[4] and studied extensively by other authors [18], [19]. 

In this paper we utilize the properties of generalized 
convexity functions to obtain results which will allow us 
to characterize the solutions of the multiobjective pro­
gramming problems. 

This paper consists of seven parts. In Section 1 and 2 
we define a general vector optimization problem and in­
troduce some basic definitions and properties for these 
problems. Section 3 and 6 discuss relations between vec­
tor optimization problem and some scalar problems asso­
ciated. Section 4 presents a collection of the most import­
ant definitions of generalized convexity appeared in the 
last few years. Section 5 study local efficiency under 
generalized convexity assumption. Finally, Section 7 we 
examine necessary and sufficient conditions of optimal-
ity for vector optimization problems, with and without 
differentiability and analyze the weakest convexity as­
sumptions necessary for stablish these conditions. 

2. DEFINITIONS AND PROPERTIES 

The following convention for equalities and inequali­
ties will be used. If x, y e IR", then 

• X = y iff X,. = y¡, i = 1, ..., p; 

• x D ^ y iff x.^};., / = 1, ..., p; 

• X ^ J iff X, ^ y., i = I, ..., p with strict inequality 
holding for at least one /; 

• X <y iff X. < y¡, i = 1, ...,/?; 

Let Z be a monempty subset of IR''. 

Definition 2.1. A point, x e X, is said to be an Effi­
cient Solution of VOP if there is no x e X such that 
f(x)^f(x). 

The set of efficient solutions will be denoted by S(X). 

Definition 2.2. A point, xeX, is said to be a Weakly 
Efficient Solution of VOP if there is no x e X such that 
fix) <f{x). 

The set of weakly efficient solutions will be denoted by 
7(/S{X). 

Definition 2.3. A point, xeX, is said to be a Proper­
ly Efficient Solution of VOP if there exists a scalar M > 
0 such that, for each i, we have 

fM)-fj(x) 
^ M , 

for some j such that ffpc) > fix) whenever x e X and 

m) <f(x). 
The set of properly efficient solutions will be denoted 

by Pg{X). 

It is easy to verify that 

Pg{X) ^ g(X) ^ 7{/S(X). 

Definition 2,4. A point, x e X is said to be a Local 
Efficient Solution of VOP if there exists ô > 0, such that 
X is an efficient solution of VOP in X n B(x, <3), where 
B(x, Ô) is a ô-neighborhood around x. 

The set of local efficient solutions will be denoted by 

Again, it is easy to see that 

^£{X) ^ S(X). 

Locally properly efficient and locally weakly efficient 
solutions can be defined in a similar way. 
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3. COMMON APROACHES 
TO CHARACTERIZING EFFICIENT 
SOLUTIONS 

In order to operate the notion of efficient solutions, we 
relate it to a familiar concept. The most common strategy 
is to characterize efficient solutions in terms of optimal 
solutions of appropiate scalar optimization problems. 
Among the many possible ways of obtaining a scalar 
problem from VOP, the following are the most common­
ly used. 

(i) The weighting problem. Let W = {w/w e R'\ 
n 

Wj ^ 0, and ^ Wj = 1} be a set of nonnegative 

weights. The weighting problem is defined for 
some w G W as 

(P(w)) Minimize w^/(x) 

subject to X G Z ^ [R". 

(ii) The kth-objective s-constraint problem 

(P^(8)) Minimize /^(x) 
subject to fjix) ^ 8j, 7 = 1 , ..., /?, j 7̂  k, 

XEX ^ R\ 
where e = (gj, ..., ê _,, ê î, ..., s^f e W~^ 

For a given point x, we shall use the symbol P/x) 
to represent the problem P^(£), where 8j = fjlx), 
j 7̂  L 

Now, we describe fundamental resuls concerning the 
characterization of an efficient solution of VOP in terms 
of solutions of the SOPs above, [8]. 

• Result 1, X is an efficient solution of VOP iff x solves 
P (̂x) for every k= 1,2, ..., p. 

• Result 2. If X solves P (̂x) for some k and if the sol­
ution is unique, then x is an efficient solution of 
VOP. 

• Result 3. X is an efficient solution of VOP if there 
exists WEW such that x solves P(w) and if either one 
of the following two conditions holds: 

(i) Wj > 0 for all j = 1, ..., p, or 

(ii) X is the unique solution of P(w). 

• Result 4. Let w eW with w > 0 be fixed. If x solves 
P(w), then X is properly efficient for VOP. 

• Result 5. Let w G Wbe fixed. If jc solves P(w), then x 
is weakly efficient for VOP. 

• Result 6. Ifx solves Pj^(x) for some k, then x is weak­
ly efficient for VOP. 

In order to give necessary conditions for Results 4, 5 
and 6, we will introduce some useful concepts. 

4. GENERALIZED CONVEXITY 

In this section, we present various types of functions 
that generalize to convex and concave functions, but that 
share only some of their desirable properties. As we will 
see, many of the results presented later in this paper do 
not require the restrictive assumption of convexity but 
rather the less restrictive assumptions. 

Definition 4.1. Let 0 : X ^ be. Then 9 is a 

• quasiconvex funtion in the convex set X if for each 
Xj, JC2 G X, the following inequality is true, 

9(Àx, + (1 - X)X2) ^ max{9(x,), 9(x2)} VA G [O, 1]. 

• strictly quasiconvex function in the convex set X if 
for each Xj, ̂ 2 G X with 9(x^) ^ 9{x2), we have 

9(Xx^ + (1 - X)X2) ^ max{9(x^\ 9(x2)} VA G (O, 1). 

Every strictly quasiconvex function is not quasicon­
vex. To illustrate this assertion, let us consider the 
following function given by Karamardian. 

9(x) = 
1 if X = 0 
0 if X ^ 0 

By definition, f is strictly quasiconvex, however, f is 
not quasiconvex, since for all x ^ 0, we have that 
0 = {x -h {(-x), 9{x) = 9{-x) = 0 and 9(0) > 9(x). 
So, we shall define another version of quasiconvexity 
that contains to quasiconvex and strictly quasicon­
vex funtions. 

• explicity quasiconvex function in the convex set X if 
9 is a quasiconvex and strictly quasiconvex function 

The class of explicity quasiconvex fuctions contains 
strictly the class of convex functions. Because, a 
function can be explicity quasiconvex and strictly 
concave. The function 9 : R'^ -^ R, 9(x) = +-sjx illus­
trates the above assertion. 

• preinvex function on Z /f Vx,, X2 G X and VA G [0, 1] 
there exists a vector r](x^, X2) G R" such that 

9(x2 + Ar¡(x^, X2)) ^ A0(xi) + (1 - À)9(x2). 

Zang, Choo and Avriel [17] studied fuctions whose 
local minima are global minima. They noted that the 

https://www.researchgate.net/publication/265364131_Optimality_Conditions_and_Duality_Theorems_for_Multiobjective_Invex_Programs?el=1_x_8&enrichId=rgreq-49425d1170de1dd24ba5931060e5de66-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg1ODI3O0FTOjE1MTg0MjIxODU4MjAxN0AxNDEzMjEzNDE0NzE3


470 A. Pascual-Acosta et al. Rev.RAcadCienc.Exact.Fis.Nat. (Esp), 1999; 93 

vector Xj - ^2 does not play an essential role in the 
caracterization of global minima in the case of con­
vex and quasiconvex functions. Therefore, it can be 
replaced by a general vector r]{x^,x^. In fact, a func­
tion strictly concave can be preinvex, as it can seen 
in the following example, where 0 : [R ^ R, 0{x) = 

- w 

?|(x„ x^) = 

jf -^2^0 and Xj ^ 0 
if X2 ^ 0 and x^^O 

if ^2 > 0 and x^<0 

if X2 < 0 and x,>0 

It is clear that 

convexity => explicity quasiconvexity => quasiconvexity 

and that taking rj(x^, X2) = Xj - X2, we also have that 

convexity => pre-invexity 

However, it is not possible to stablish a general rela­
tion between quasiconvex and preinvex functions, be­
cause there exist quasiconvex functions which are not 
preinvex functions, and there exist preinvex functions 
which are not are quasiconvex functions. 

In the above definitions we do not suppose any dif­
ferentiability assumptions on the functions. Many pro­
gramming problems involve differentiable functions. It is 
important then to take advantage of this property. So, we 
present some definitions where we suppose that func­
tions are differentiable. 

Definition 4.2. Let 6 : X ^ R" -> U be a differenti­
able function on the open set X. Then 6 is a 

• pseudoconvexfunction in the convex set X if^x^, X2EX 
have that 

0(x,) - e{x2) < 0 => voix^Y (jcj - X2) < 0. 

For differentiable functions, it is also possible to re­
place the vector x, - X2by a general vectorial func­
tion rj(x^, X2), in the same way that scalar case. 

• invex function on X if for all x,, X2 G Z there exists 
?7(x,, X2) e W such that 

0(x,) - 6(X2) > /7(x„ X2)̂  V0(X2). 

• p s eudoinv ex function on X if for all X|, X2 G X there 
exists f¡{x^, X2) G IR" such that 

rj(x^, X2Y V9(X2) ̂  0 => 0(x,) - 9(X2) ^ 0. 

• quasiinv ex function on X if for all x,, X2 e X there 
exists ^(Xj, X2) e IR" such that 

0(x,) - 0(X2) ̂  0 => /f(x„ X2)'' V0(X2) < 0. 

It is clear that 

convexity => pseudoconverxity =^ 
invexity => pseudoinvexity. 

For a vectorial function /(x) the same concepts apply 
in the sense that the above definitions hold for each com­
ponent of/. For preinvex, invex and pseudoinvex func­
tions, it is required that the vector Y¡ be the same for each 
component of/. 

For the scalar functions, the class of invex functions 
and the class of pseudoinvex functions coincide, as it is 
shown in [6]. This does not happen in the vectorial case. 

5. LOCAL EFFICIENCY 

We shall study local efficient solutions under general­
ized convexity assumptions for the objetive function. 
The following results are generalizations of the ones in 
the scalar case for the minima points. 

Theorem 5.1. Let X be a nonempty convex subset of 
R" and let f be an explicity quasiconvex function defined 
onX. Ifx is a local efficient solution of VOP, then x is a 
global efficient solution. 

Proof. Let x be such that x e ^S{X) and x ^ 5(X), 
then there exists y eX such that/(y) ^ / ( x ) . 

Since X e ^£{X), there exits ó > 0 such that x G S(B(X, 

Ô) n X). Let z e (x, y) n B(x, ¿), where (x, y) denotes the 
line joining x, and y, defined as 

(x, y) = {xeX/x = Àx-h {I- À)y, X e (0,1)}. 

For each index k such that / (y ) = / (x ) we have that 

Uz) ^ max{f,(y), f,{x)} = f,{x). ( 1 ) 

For each index / such that / ( j ) <fi{x) we have that 

f{z) < max{f(xl f(y)} = fix). (2) 

Combining (1) and (2), it is obvious that each ¿ > 0, there 
exists z eX n B(x, ô) such that/(z) ^ / (x) . Therefore 
X ^ ^S{X) and this contradicts the hypothesis. D 

The result is also true for preinvex functions as shown 
the following theorem. 

Theorem 5.2. Let f be pre-invex on X. Ifx is a lo­
cally (weakly) efficient solution of VOP, then x is an 
(weakly) efficient solution of VOP. 

Proof. Let x be a locally efficient solution for VOP, 
then there exists a è such that x G S(B(X, Ô) n X). Let us 
suppose that there exists another y G X such that 
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fiy) ^ / ( x ) . A s / i s a pre-invex function on X, there exists 
a vector Y¡{X, y), such that 

fix + X?](x, y)) á A/(x) + (1 - X)f(y), VA e [0,1]. 

Let z(À) = x + Àf](x, y). For a suitable AQ, Z(AQ) G 5(X, á) 
n X, and so/(z(Ao)) ^/C-^)- And this is a contradiction. 

For weakly efficient solutions the proof is similar, n 

For properly efficient solutions we have next result, 
whose proof can be found in [16]. 

Theorem 5.3. Let f be pre-invex on X. If x is a lo­
cally properly efficient solution of VOP then x is a 
properly efficient solution of VOP. 

Some authors have shown that the hypothesis of con­
vexity is rather restrictive, giving results for more gen­
eral functions. 

In fact, Hanson [2] proved that the theorem holds for 
in vex functions. Craven and Glober [21] also proved that 
this characterizes in vex functions. 

Theorem 7.2. A function, 9, is invex in X if and only 
if every critical point of 6 is a global minimizer of 9 in X. 

Problems so far considered have no restrictions. Now, 
we study the case where the problem includes some con­
straints. We first define them. 

The Constrained Scalar Optimization Problem is for­
mulated as. 

6. SCALAR PROBLEMS 

In this Section, we give results that characterize the 
VOP solutions by solving some scalar optimization pro­
blems. In fact, these results provide necessary conditions 
for the ones studied in Section 3. To do it, we use the 
concepts introduced in Section 4. 

Beato et al. proved next result involving explicity 
quasiconvex function [19]. 

Theorem 6.1. IfX is a convex subset ofW and fis an 
explicity quasiconvex function defined on X, then x e 
TC^SiX) if and only if x solves P¡,{x) for some k. 

The result in Theorem 6.1 is stronger than those con­
sidered in Section 3, because the only required condition 
is that X solves Pj,{x) for some k and no uniqueness of 
solutions is required. 

Next theorem characterize properly and weakly effi­
cient solutions for VOP using weighting scalar problems 
[16], [20]. 

Theorem 6.2. Let f be pre-invex on X. Then x is 
properly (weakly) efficient in VOP if and only ifx solves 
F(w), with w eW and w > 0 (H^ ^ 0). 

7. OPTIMALITY CONDITIONS 

(CSOP) Min 
subject to: g ( x ) ^ 0 , 

xeX Ç 

where 9 : X and g \X ^ 

For constrained problems the invexity defined by Han­
son [2] is a sufficient condition, but not a necessary con­
dition for every Kuhn-Tucker point to be a global mini-
mizer. Martin [14] defined a weaker invexity notion, 
called Kuhn-Tucker invexity or KT-invexity, whick is 
both necessary and sufficient to establish the Kuhn-
Tuker conditions. 

Definition 7.1. The scalar programming problem 
CSOP, is said to be KT-invex on the feasible set with 
respect to rj, if for any x,, ^2 G X with g(x,) = 0 and 
g(x2) ^ = 0 , there exists rj(x^, X2) e W such that 

9(x,) - 9(X2) ^ ?/(xi, X2)'^V9(x2l 
-fj(x,,x,fVg^(x,)^0, " V,e/(X2), 

where ¡{x-^) = {i : / = 1, ..., m such that gi(x2) = 0}. 

For scalar constrained problems, Martin [14] gave the 
following result. 

Theorem 7.3. Every Kuhn-Tuker stationary point of 
problem CSOP is a global minimizer if and only if CSOP 
is KT-invex. 

In the scalar optimization problem whose objetive 
function in convex and differentiable, it is well known 
that stationary points coincide with optimal points, as it 
is stated in the following result. 

Theorem7.1. Let9:X ^ U" -^Ubeadiferentiable 
and convex function on the convex and open set X, then 

X is a global minimun of 9 in X <=> V0(x) = 0 

7.1. Unconstrained Multiobjective Programming 
Problems 

In this section, we characterize the solutions for an un­
constrained multiobjective programming problem. As in 
the scalar case, the concept of invexity function plays an 
important role. Next definition generaUzes the concept of 
invexity for the p-dimensional case. 
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Definition 7.2. Letf: X ^W -^Wbea differenti-
able function on the open setX. Then fis a vector invex 
function on X, with respect to rj, if for all x¡, ^2 6 X, there 
exists rj(x^, X2) e W such that, 

fix;) -/(x2)^V/(x2)/7(Xi, X2), 

where Vfix^) is a matrix of dimensions p x n, whose rows 
are the gradient vectors of each component of the func­
tion valued at the point X2. 

Since our purpose is to establish conditions for multi-
objective problems, similar to those given by Kuhn-
Tucker for the scalar problems, we need to define an 
analogous concept to the stationary point or critical point 
for the scalar function. 

Definition 7.3. A feasible point, xeX, is said to be a 
Vector Critical Point (VCP) to VOP if there exists a 
vector XeU^ with A ^ 0 such that A^/(x) = 0. 

Scalar stationary points are those whose vector gradi­
ents are zero. For vector problems, the vector critical 
points are those such that there exists a non negative lin­
ear combination of the gradient vectors of each compo­
nent of the objective function, valued at that point, equal 
to zero. In the case /? = 1 it is easy to see that both con­
cepts coincide. 

For properly efficient solutions, Geoffrion [22] proved 
next result. 

Theorem 7.4. Let x be a properly efficient solution 
for VOP. Then there exists A > 0 such that X^Vfix) = 0. 

Later, Craven [3] established the following theorem 
for weakly efficient solutions of VOP. 

Tiieorem 7.5. Let xbe a weakly efficient solution for 
problem VOP. Then there exists X^O such that X^VfQc) = 0. 

Then, every weakly efficient solution is a vector criti­
cal point, but to establish reciprocal we need some con­
vexity hypotheses. 

For properly efficient solutions Weir [23] proved. 

Theorem 7.6. Let^x e X be a feasible point and sup­
pose that there exists X> 0 such that UVf{x) = 0 and fis 
invex function with respect to rj in X, then x is a properly 
efficient solution for VOP. 

A similar result for weakly efficient solutions was pro­
ved by Osuna, Beato and Rufián [24]. 

Theorem 7.7. Let x be a vector critical point to 
problem VOP and let f be an invex function at x with 
respect to f\, then x is a weakly efficient solution for VOP. 

We have proved that if the vector objetive function is 
invex, then all vector critical points are weakly efficient 
solutions. That equivalence is true under weaker condi­
tions. To prove this assertion, we first define the 
pseudoinvexity concept for vector functions. 

Definition 7.4. Letf: X ç R" -> W be a differenti-
able function on the open set X. Then, f is a vector 
pseudoinvex function on X, with respect to rj, if for all 
Xj, ^2 G X there exists rj(x^, X2) e R", such that, 

fix,) -fix^) < 0 => Vfix2)riix,, X2) < 0. 

It is clear i f / i s invex, / is pseudoinvex too. 

Now, we prove that Theorem 7.7 is also true if the 
objective function is pseudoinvex on X. Moreover, this 
characterizes the class of vector pseudoinvex functions. 

Theorem 7.8. All vector critical points are weakly 
efficient solutions if and only iff is a vector pseudoinvex 
function on X. 

Proof. Let us suppose that all vector critical points 
are weakly efficient solutions and let x e TùSiX), then 
the system 

fix)-fix) <Q 

has no solution \n x eX. 

i = 1, ..., A 

On the other hand, if x is a VCP then 32 such that 
X^Vfix) = 0. Applying Gordan's theorem [25] the next 
system has no solution at M G IR" 

V/(xfw < O / = 1, ...,/? 

and the reciprocals are also true. Thus, if there exists x e 
X such that fix) <fix), then there exists rjix, x) e W such 
that Vfix)r]ix, x) < 0, and so , / i s pseudoinvex on X. 

Now, let us assume that/ is pseudoinvex on X and sup­
pose that X is a vector critical point but that it is not a 
weakly efficient solution. Then there exists another point 
X e X such that/(x) </(x) , thus Vfix)riix, x) < 0. 

On the other hand, there exists X e W, A ^ 0, such that 
X^Vfix) = 0. And this is a contradition to Gordan's alter­
native theorem. 

Last theorem coincides with the one proved by Mar­
tin [14] for the scalar case, since in this case the invex 
and pseudoinvex functions coincide. 

7.2. Constrained Multiobjective Programming 
Problems 

Consider the following Constrained Vector Optimiz­
ation Problem CVOP. 
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CVOP 

where g : X 

Minimize 
subject to: 

f{x) = (f,(x), 

xeX ^U" 

,m) 

Now, we give results that extend the well known ones 
due to Kuhn-Tucker and Fritz-John for scalar program­
ming problems, where they established relationships be­
tween the solutions of a constrained scalar programming 
problem and the points which fulfill certain conditions 
known as the saddle point optimality criteria [26]. So, we 
first give new definitions of saddle points for the vec­
torial case. 

Definition 7.5. {x, r, v) G R" XWX R'" is said to be a 
Vector Fritz-John Saddle Point/or Problem CVOP if 

-ff{x) + v^ g{x) ^ r^fix) + v^ g(x) ^ rf{x) + v^ g(x), 

Vv^O, Vx e X, 

(f, v) ^ 0. 

Ifr^O then (x, r, v) is said to be a Vector Kuhn-
Tucker Saddle Point/or Problem CVOP. 

The advantages of these saddle point conditions for 
CVOP in contrast to those already existing in the litera­
ture, [16], [27], [28], [29], [30], [31], is that the multiplier 
for the restrictions is a vector and not a function or a 
matrix, but above all that the vector saddle point condi­
tions are scalar conditions, not vector conditions, due to 
which it is not necessary to solve any vector problem in 
order to find the vector saddle points, which simplifies 
the task. Let us note that Definition 7.5 coincides with 
Fritz-John and Kuhn-Tucker definitions if / is a scalar 
function. 

Next result (Osuna, Rufián and Ruiz, [20]) is similar to 
the well known one in the scalar case. 

Lemma 7.1. /f (x, f, v) is a vector Fritz-John saddle 
point and there exists a point x e X such that g(x) < 0 
(Slater's constraint qualification) then (x, f, v) is a vector 
Kuhn-Tucker saddle point. 

The following theorem [16], [20] shows that under 
certain convexity conditions, all weakly and properly ef­
ficient points are vector saddle points. This result is simi­
lar to the one for the scalar case that relates the optimal 
solutions and the Kuhn-Tucker or Fritz-John saddle 
points. 

Theorem 7.9. Let if, g) be a pre-invex function on X 
and let x be a weakly efficient in CVOP, then there exists 
(f, v) ^ 0 such that (x, r, v) is a vector Fritz-John saddle 
point for CVOP. 

Moreover, if x is properly efficient in CVOP and the 
Slater's constraint qualification is satisfied, then (x, r, v) 
is a vector Kuhn-Tucker saddle point with r > 0. 

Just as in the scalar case, the sufficient condition of 
optimality does not require any convexity hypotheses, as 
stated next theorem [20], [22]. 

Theorem 7.10. If (x, r, v) is a vector Kuhn-Tucker 
saddle point, then x is weakly efficient for CVOP. 

Moreover, if r > 0 then x is properly efficient for 
CVOP. 

Let us note that, for weakly efficient solution, it is 
not necessary that each r¿ be strictly positive, being 
enough f ^ 0. 

Now, we characterize weakly efficient solutions for 
the CVOP using concepts similar to Fritz-John and 
Kuhn-Tucker optimality condition concepts, and assum­
ing tha t /and g are differentiable functions on the open 
setX. 

We denote by Vf{x) e IST'''' whose rows are the gradi­
ent vectors of each component of/, V/ Vfj(x)j =l...p and 
we denote by Vg(x) G A/'"'"' the gradient matrix of g. 

Definition 7.6. A feasible point, xeX, is said to be a 
Vector Fritz-John Point (VFJP) to the problem CVOP, 
if there exists a vector (À, p) e W^"\ with {k, p)^0 such 
that 

X^Vfix) + ¡I'Vgix) = 0, 

-pg{x) = 0. 

(2a) 

{2b) 

Definition 7.7. A feasible point, x e X is said to be a 
Vector Kuhn-Tucker Point (VKTP) to the problem 
CVOP, if there exists a vector {X, Ji) e IR̂ """, with 
(À, jü) ^ 0 and À ^ 0 such that 

A^V/(x) + fi^Vgix) = 0, 

fig(x) = 0. 

(3a) 

(3è) 

Observe that in Definition 7.7 it is not necessary À to 
be strictly positive; it is sufficient that X ^ 0. 

The following results, due to Osuna, Beato and Rufián 
[33], extend the scalar case in a natural way. In fact, the 
above definitions coincide with the Fritz-John and Kuhn-
Tucker conditions when / i s a numerical function. 

Theorem 7.11. Let x be a weakly efficient solution for 
problem CVOP, then there exist X and Ji such that x is a 
vector Fritz-John point for CVOP. 

If we add a constraint qualification, we can be sure that 
I is not equal to zero. 
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Theorem 7.12. Let supposse that the Kuhn-Tueker 
constraint qualification is satisfied at x for problem 
CVOP. Let X be a weekly efficient solution for this prob­
lem, then there exist X and Ji such that x is a vector Kuhn-
Tucker point for problem CVOP. 

If X is a properly efficient solution, then I > 0. 

To establish reciprocal of the Theorem 7.12, we need a 
generalized convexity hypothesis. As in the scalar case, 
we prove that KT-invexity for the optimization problem 
is sufficient for all vector Kuhn-Tucker points to be 
weakly efficient solutions. 

We first define a KT-invex multiobjective program­
ming problem. 

Definition 7.8. The problem CVOP is said to be a 
vector KT-invex problem on the feasible set with re­
spect to rj, if for any x^ X2 G X, with g(x^) = 0 and 
g{x^ = 0 there exists rj(x^, X2) G R", such that 

f(xi) -f(x2)^^ Vf{x^)n{x,, X2), 

-V^/(x2)?7(^i, ^2) ^ 0 V/ G /(X2). 

Now, we give the following theorem for vector KT-
invex problems, whose proof can be found in [33]. 

Theorem 7.13. Every vector Kuhn-Tucker point is a 
weakly efficient solution if problem CVOP is KT-invex. 

As for the unconstrained problems, to ensure that 
weakly efficient solution for CVOP to be a vector Kuhn-
Tucker point for problem CVOP, the KT-invexity condi­
tion can be relaxed. So, we define a weaker generalized 
convex condition for a vector programming problem. 

Definition 7.9. The problem CVOP is said to be a 
vector KT-pseudoinvex problem whith respect to Y¡, if 
for any x,, X2 G X, with g(x,) = ^ and g{x^ = ^ there 
exists /̂ (Xj, X2) G IR", such that 

/ ( x ) - / ( x ) = > V / ( x ) ; 7 ( ^ , x ) < 0 , 

-ygiix)r¡{x, x) ^ 0 V/ G /(x). 

It is easy to see that if CVOP is KT-invex then CVOP 
is KT-pseudoinvex, too. 

Now we prove that this condition is necessary and suf­
ficient for the set of vector Kuhn-Tucker points and the 
set of weakly efficient point to be the same. 

Theorem 7.14. Every vector Kuhn-Tucker point is 
weakly efficient for CVOP if and only if problem CVOP 
is a KT-pseudoinvex problem. 

Proof. Let x be a vector Kuhn-Tucker point for 
CVOP and let us suppose that this problem is KT-

pseudoinvex. We will see that x is weakly efficient for 
CVOP. 

If there exists another feasible point x such that 
fix) < / (x) , then 

Vf(x)r](x, x) > 0 => TVf(x)ri(x, x) < 0 Vl ^ 0. (4) 

Since X was assumed a VKTP, it verifies that 

J'VfixMx, X) + ^ -^j VgjixUx, X) = 0. (5) 
j e /(S) 

From (4) and (5), we have that 

X -^j ^gjixMx, X) > 0. (6) 

CVOP is KT-pseudoinvex, then 

-ygj{x)n{x, x) ^ 0, V; G I(x). 

Since by hypothesis Jij ^ 0, we have that 

-/¿.Vg/x)/|(x, x ) ^ 0 V ; G I ( X ) , 

and therefore, 

X lij Vgj{x)rj(x, x) ^ 0, 
j e /(.v) 

which contradicts (6). 

To show the reverse, let us suppose that every vector 
Kuhn-Tucker point is a weakly efficient solution. If x is a 
vector Kuhn-Tucker point, then there exists A ^ 0 and 
/ï^O such that. 

x'Vfix) + X nj v^,(x) = 0. (7) 

By Motzkin's alternative theorem [26], the following 
system does not have any solution 

Vf{x)u < 0, / = 1, ...,/7, 

Vgj(x)u ^ 0 , je I(x). 
(8) 

If X is a VKTP, then x is weakly efficient and, therefore, 
the system 

fix)-fix) <0, i= l,...,p. 
(9) 

does not have any solution. 
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If X is not a VKTP, then (7) does not have any solution. 
This implies that (8) has a solution. 

If X is not a VKTP then x is not a weakly efficient point 
and (9) does not have any solution. 

Then, for all JC e Z with g{x) ^ 0, if/.(x) <fi{x)), there 
exists Y¡{x, x) such that 

Vf¡(x)rj(x, x) < 0, / = 1, ..., p, 

-Vgj(x)f]{x,x)^0, V.G/(x) . 

The Vx, X G Z verifying g(x) ^ 0, ^(x) ^ 0, we have that 

fix) -fix) <0=> mx)rjix, x) < 0, 

and 

-Vg/x)f/(x,x)^0, V.G/(x). 

Therefore, C V O P is a KT-pseudoinvex problem. D 
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