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The four-spin operators are suspected to have a significant amplitude and an impact on the collective
properties in spin ladders and magnetic two-dimensional lattices. They originate from cyclic circulation of
electrons(ring current$. Starting from a simple Hubbard Hamiltonian one may establish their form from a
fourth order expansion of quasidegenerate perturbation theory. This form slightly deviates from the generally
assumed biquadratic expression. From a quantitative point of view, their amplitude can be assessed from
accurateab initio explicitly correlated wave functions and energies on embedded clusters. The present work
shows that symmetry-broken density functional theory calculations may also provide estimates of the four-
body operator amplitudes, but reliable results require the use of a large Fock component in the exchange
functional.
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[. INTRODUCTION change. This section also shows the possible occurrence of
the four-body operators which involve hopping between sec-
The Heisenberg Hamiltonians were introduced in theond neighbor sites, i.e., those placed in the diagonal of the
1930'9 2 to rationalize the properties of magnetic systemsplaquette. Section Ill discusses the procedure to determine
This Hamiltonian can be derived as an effective Hamil-the amplitudes of the four-body corrections frab initio
tonian, working on the space generated by the products ¢gfmbedded cluster calculations. Previous works have used the
the highest multiplicity ground state of the magnetic centerseigenenergies and wave functions coming from extended
It can be obtained from\-electron Hamiltoniangeither ex-  configuration interactior(Cl) calculations:*'® The present
act or simplified through the perturbative expansion in the Work proposes a procedure to obtain an estimate of the four-
frame of the quasidegenerate perturbation the@®PT).  body terms from density functional theoDFT) based
The leading operators appear as first and second order copymmetry-broken calculations, as frequently practiced for
tributions and concern the two-body effective exchange inthe two-body exchanges. As is well known, the quality of
teractionsJ;; between the sites andj. The magnitude of Such estimates —strongly depends on the ~exchange
these interactions decreases very rapidly as a function of tH&inctional="~=* As shown on the case of a series of spin
distance between the centérandj. ladders compounds and 2D cuprates, the mixing of the Fock
Strictly speaking, these terms are not unique, higher ordend Slater exchanges which provides correct estimates of the
corrections introduce four-spin and six-spin terms. The defirst neighbor interactions happens to lead to values of the
velopments from simplifiedi-electron Hamiltonians such as four-body terms which agree with trab initio CI results.
the Hubbard Hamiltonian for half-filled band, with one elec-
tron per site, show that the four-body operators are important Il. FORMAL ASPECTS
in four-member rings. Respectively, the six-body terms play
a role in the six-member rings. From a chemical point of
view, these contributions can be related with the antiaromatic The spin Hamiltonians, with respect to the exact Hamil-
and aromatic character of the four-member and six-membeonian, must be considered as effective Hamiltonians, in the
rings, respectivel§.Similar derivations have been performed strict and rigorous definition of this concept. The effective
by solid state physicistsRecently these many-body effects Hamiltonians for a givefN-electron system work in a model
have been suspected to play a role in the physics of spigpaces, the dimension of whichy, is much smaller than the
lattices, involving square or rectangular plaquet@s.For  Hilbert space relative to the exact HamiltonidnCalling Pq
instance, their role has been invoked to resolve contradicthe projector on the model space
tions regarding the properties of two-leg ladd&r§’Ab initio

A. Formal requirements for a four-spin effective Hamiltonian

guantum chemical calculations have provided direct esti- Heff= P He P . (1)
mates of the amplitude of these terms, which confirm their
physical importancé?~16 The N eigenvectors and eigenvalues of the effective

Section Il of the present work returns on the origin of the HamiltonianH®™ fulfill two requirements(i) the eigenener-
four-body corrections. Starting from a Hubbard Hamiltoniangies are the eigenenergiestdfand ii) the eigenvectors are
all the fourth order corrections involving circulation of elec- projections of the corresponding eigenvectorddobnto the
trons on the four-member rings are established. The resultingnodel space.
spin operators slightly deviate from the usually accepted bi- TheseN eigenvectors oH define a stable subspace, called
quadratic form of the Heisenberg Hamiltonian, although theythe target spacé’. Hence theseN eigenvectorsy,, of H
coincide regarding the most important four-spin cyclic ex-belonging toS’:
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TABLE I. The effective spin Hamiltonian on the basis of the model spac&fer0. X j,,, refers to the
sum over all the first-neighbor interactioAs= j,c+ jpgt+jadt ibey B=jactibdtiabtcd-

la,bc,d] la;b,cd]| la;b c;d] la;bic,d| la;bicid| la;b,c,d]
_Zjnn_hl
hl _Ejnn_ hl
Jbe Jad —A—h,
Jad Ibe h, —A—h,
J_cd J_ab J_bd J_ac _B_h3
Jab Jed Jac Jbd h3 _B_h3
H|¥m) = Eml ) (2 spanned by thél eigenstates of having the largest pro-

jections on the model space. For the magnetic regime of
interactions the target states are usually the lowest eigenvec-
tors of H.
H Psyf) = Eml Psth),  V thme S (3) Fr_om Fhese basic considerations one can see that a spin
) ) Hamiltonian has no reason to be reducible to two-body op-
This basic equation leads to the spectral definition of theerators, as usually assumed in Heisenberg Hamiltonians
Bloch effective Hamiltoniaf?

define entirely the effective Hamiltoniar®™ by the condi-
tions

Hieis= > 3i;SS;. (10
Hgf;foch: m21N |P5¢m>Em< PS%'* (4) (i

. ) They in principle will present four-body, six-body. . ,
where|Psyr,) represents the biorthogonal vector associate¢yperators, since the matrix elementrtf" between two spin

to [Psym). Actually the projections of the(orthogonal gistributionse, and ¢, differing by four, six . . . , spins has
eigenvectors oH onto the model space have in general nopg reason to be zero:

reason to be orthogonal. They define an overlap m&rix

Sin= (Pl Psthr) 5 (BilH" by = 2 (AU En(mlda). (1D
and '
. The simplest approach to establish the structure of an
Pstym=S""Psifm. (6)  Heisenberg Hamiltonian starts from a Hubbard single band
Hamiltonian. The metallic on-site singly occupied orbitals

The Bloch effective Hamiltonian is non-Hermitian. K& i,j,..., aresupposed to have been optimized, including
matrix elements are defined from thé conditions imposed  yariational delocalization tails on the ligands surrounding the

by Eq.(4). o _ o metal ions. In this Hamiltonian
An Hermitian definition of the effective Hamiltonian was

proposed a few years later by des Cloize&lrthogonal-

izing the projected eigenvectol®si,,) through a least- H b= tij(aiTTajT"'aJTTaiT+aiTLaji+aLai1)
moving S~ 2 transformation )
{inh =S~ VA Psifn} (7) +U ning, (12
I

the des Cloizeaux effective Hamiltonian is such that ) _ ) S ]
the t integrals are intersite hopping integrals addis the

Hgfél Y =Em ¥l), (8) on-site Coulomb repulsion. The neutral valence-bond deter-
minants have an energy zero, the singly ionic ones have an

HSC= ZlN | ) Em{ ¥l 9 TABLE II. The effective spin Hamiltonian on the basis of the
m=4 model space foiS,=1. The term—ZX; j; corresponds to-j/,

The spin Hamiltonians concern half-filled bands. For sites Jac” Jaa>
with spin 1/2 the model space is spanned by the neutral
valence-bond determinants, i.e., by those where each site
bears one and only one electron. These determinants all have -3, j/,
the same space part and only differ by the spin distributions. ity -3 i
The resulting effective Hamiltonian therefore appears as a il iie -3l
spin-only Hamiltonian. For &,=0 2n-site problem the di-
mension of the model space @5, and the target space is

and similarly for the rest.

|abic,d;| |abjcd| |abjc,di| |aibyc;d|

Jad Ibd Jed =2 jai

094435-2



ORIGIN AND EVALUATION OF THE FOUR-SPIN . .. PHYSICAL REVIEW B9, 094435 (2004

by 44, Pt
TN
a b I
a) D BLCEN
tGC
ZZId tbc di TC T l
ba
d c
- bt P
La
b) he
FIG. 1. First and second-neighbor hopping integrals in a
plaquette.
energyU. The second order expression of the intersite effec- | i T T

tive exchange can be obtained by using the quasidegenerate
perturbation theory

J=—1. (13)
0] h3
Let us consider now a four-site problem. The model space
is six dimensional fo5,=0, spanned by determinants which
may be associated two by two: i T T l

¢ =la()b(Me(HdMI, ¢r=lahb(l)e(Dd(], (14
do=[a()b( eI, dz=la(Db(Me(Hd()], (15

$s=la(Mb(e(dM, - gz=la(Db(Te(Hd(L)]. (16) . -
recall the expression of the fourth order contribution to the
They generate one quintet, three triplet, andeffective Hamiltonian. Ifl, J, K, L represent vectors of the
two singlet states. For S,=1, the four deter- model spaceg, B, y being vectors of the outer space,
BN and DB DA e
a c , and |a c generate
three triplet and one quintet states. In a six-dimensional; ) 5, % (V]a)alVIB)BIVIV){¥IVII)
space an Hermitian effective Hamiltonian may in principle @By AaABAYy
have [ (36+6)/2]=21, {([C5,]2+C5,)/2}, different matrix

FIG. 2. The three four-body term&) circular movement of the
electronsh;, (b) simultaneous exchange along the légs and(c)
simultaneous exchange across the rumgs

elements. However it must obey symmetry constraints and _ 2 (HV[a)(a|VIB)(BIVIK)(K|V|JI)
the eigenvectors have to commute wh The number of a,B.K Aa®AB
degrees of freedom is much lower. By imposing the zero of
energy to the upper multiplet state, the sum of the matrix . (HV]a)(a|VIK)}KIV[B)BIV]I)
elements on each linér column is zero. There are five aBK Aa?AB
eigenenergy differences, only one degree of freedom in the
singlet eigenvectors and three in the triplet eigenvectors, i.e., 5 (IV]a)(a|VIK){K[VIL)XL|V|JI)
nine degrees of freedom. The effective Hamiltonian matrix +a,K,L Aad :
for S,=0 will take the form shown in Table I. Thg,, and
h, parameters concern, respectively, two-body spin exchange 17
operators and four-body operators. Fey=1 the effective
Hamiltonian matrix takes the form shown in Table Il. The } b ! } b }
spin algebra imposes some relations betwggn j;,,, and
h, quantities. — — - -
B. Perturbative derivation d| fe | b NN b |
o B Y J

While the two-body operators appear at second order ot

the quasidegenerated perturbation the@{pPT), it is nec- FIG. 3. Contribution toh, due to the cyclic circulation of the
essary to go to fourth-order to permute four spins. Let usour electrons of the plaquette.
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FIG. 4. Cyclic contributions to the exchange of two spins on the FIG. 6. Cyclic correction to the diagonal energy.
same bond.

to aring, that is, it is a four-body correction to the two-body
where A« represent the zero-order energy differené&s  operator, which results from the electronic circulation along
—E9%, the ring.
|_aet consider now a four-atom rindrig. 1), with top, tpe, Notice that the fourth order correction linked to the cyclic
t.q, andt,q being hopping integraléhet, andt, 4 integrals circulation on the ring does not bring any contribution to the
being Zer@_ We can go from |a(T)b(l)C(T)d(l)| to h2 and h3 terms, i.e., to the interaction between
la(])b(1)c(])d(1)| through a cyclic circulation of elec- |a(T)b(1)c(l)d(1)[ and[a(])b(])c(T)d(1)| [Fig. Ab)] or
trons[Fig. 2@)], for instance, as in Fig. 3, which will lead to between |a(T)b(l)c(1)d(T)| and |a(l)b(T)c(T)d(l)]
a contribution toh; equal to [Fig. 20)] because we have imposed=tpy=0. It is pos-
sible to check that th@32%s operators commute witls?

tantoctedtaa and that their eigenenergies for the triplet and quintet states
Gabea= " 3 - (18)  are equal forS,=0 andS,=1.
The possible contributions are numerous and lead to C. Comparison with biquadratic spin operators
It is worth comparing the so-obtained four-body correc-
tabtbclcdlda tions to the classical expression in terms of biquadratic spin
hy=40 U3 =40abca- (19) operators for a ring
Howeve_r, it should be noticed that such c_yclic fourt_h or- ()gichuda:;]ggg{(g’ag’b)(g’cga)+(§;§;)(§b§c)
der corrections also appear between determinants which dif-

fer only by two spins, either on a bond, for instance, from 1
la(1)b(1)e(1)d(1)] to |a(l)b(T)e(1)d(1)] as in Fig. 4, or ~(SaSe) (SpSa) — 75
between nonbonded atoms, for instance, from

la(T)b(D)e(1)d(1)] to |a(T)b(T)e(1)d(1)| as in Fig. 5. The constant 1/16 has been introduced to put to zero the
Diagonal corrections also exist, for instance as in Fig. 6. energy corrections on the quintet state. For the same reason,

The final fourth order contributions may be written in a the two-body Heisenberg Hamiltonian is then shifted from its

matrix form in terms ofy,pcq quantities. Let us caldierso)  usual form and becomes

the operator foiS,=0 and03%(;, its S,= 1 counterpart. A

(20

careful and exhaustive counting of all cyclic corrections lead Hoo— 2 3. §§_ }) 21)
to the matrix representation of the four-body operators re- Hels™ g4 =1l 14
ported in Tables Il and IV.

The coupling between |a(T)b(])c(7)d(])] and The termJ‘ﬁ}ﬁgd has been established to bet8W?2 for a
|a(l)Tb(]r)c$l)Td(T)| which is the largest term square plaquetttMore generally it is possible to write
(hia,,a58,8g:8q;8¢1@p | 8ar =400 COmMmMutes four
sping.l T?wTe ColthdeTr telrst olnIyTexchange two spins but they only Jing =80t aptpctedtaa/ U= 80gapcq- (22)

act in presence of two other spins in the plaquette. FOhe matrix re ; : ; ;
. . . presentation of this operatorgg,.q units for
instance, in the coupling betweefa(])b(1)c(1)d(1)| g —q is shown in Table V and in Table VI fdb.= 1.

and |a(})b(")c(Md()], (— 129abcoa;Tagla€TagladlaCTabTaal)’ The four-spin permuting operator

the spinsc andd appear as spectators, b_ut this correction tol a(1)b(1)c(1)d(1)Xa(h)b()e(1)d(l)|, which is the
the exchange betweenandb only exists ifa andb belong  |5rgest one,  coincide with the exact perturbative value

(4094pc0)- The deviations on the off-diagonal elements

ol 0 Nt N oot ! (*£2gapcg are small, but they result in more significant de-
viations on the diagonal @B,,c.q for S,=0). Hence the
- - - - fourth order corrections do not coincide with the usual for-
J mulation. It can be shown that the operator strictly derived
f ; et " ' 8 o y f 7 f from the fourth order perturbative expansion can be written
as
FIG. 5. Cyclic contributions to the exchange between two non-
bonded atomys. ° Opeia= Ot 0, (23)
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TABLE IIl. Matrix representation of)30% (o) 0perator forS,=0 in the perturbation-based effective Hamil-

tonian, in terms ofy,pcq UNItS.

la,b;c d| la;b,c,d| la;b,c;d] lasb;c d| lajb;cid| la;b,c d]|
‘WSS&%) 8
40 8
—-12 —-12 8
—-12 —-12 0 8
—12 —12 8 8 8
—-12 —-12 8 8 0 8
where the operatod’ is For a general cluster, the total four-body operator will be

the sum of the three four-body operators corresponding to
the three possible four-step circulations along the edges of a
(possibly irregular tetrahedroff*

U[abcd] — ,Oabcd+ @adbc_l_ Oacdb_ (26)

The extended Heisenberg Hamiltonian can be written

~ - 1 - 1 -11,16
+(Sb d—4)sasc+ S8 4) Sasb} (24 s
. biqua_ == 1 ijkl| S\ e &
and S,=S,=S,=S;=1/2 are the local spin momentum. HHeiS—<__> Jij &Sj—z +<%>erg (S5)(&S)
i ]

This difference between the two formulations results in a
correction to the two-body interaction values

e s 1
+(35|)(5j5k)—(5isk)(515|)—§3}, (27
4t2 4t Janed
JHeis:v_E:Jpert_ 20 °

(25)
where J;; corresponds to the nearest-neighbor exchange or

Now 'if the ¢,. and ¢,, hopping integrals are not  the second-neighbor exchange depending on the relative po-

negligible, one should consider as well the circuits  gjtion of i andj andJjj<, represents the three types of four-
a—d—b—c— [Fig. 20b)] ad a—c—d—b—

body cyclic interactions:J2?¢%=2n,, J2dP¢=2h, and
[Fig. 2(c)]. They will generate similar corrections in terms of Jacd{: 2)'/1 The matrix I’ennrgesent altion f"(1)9f this Zextended
quantities g ,ape=laglpatpelea/U° a0 gucap="laclcalpatan/ g - P

173 which contribute fo @(ascf’d nd @E'g)bc operators, where § is Heisenberg Hamiltonian, involving two-body and four-body

the absol lue of S. (0 or 1 terms is shown in Table VII.
e absolute value of S, (Oor 1). Similarly, the perturbation-based Hamiltonian can be writ-
The four-spin exchanges which commute couples

of a« and (B pairs of spins on opposite bonds, for in- ten as
stance, |a()b(e(Dd(D)| into [a(T)b(Te(1)d(])]
through the a—d—b—c— circulation, #,, will have a 1 B o
40g 445 amplitude. The %5 operator will similarly have Hﬂeerig=2 Jij(SiSj_Z)+ E JH%[(S‘SJ)(SKS)
an amplitude 40g,. 4, . Of course the a—d—b—c— and (i (iikl)
a—c—d—b— cyclic terms also affect the two-body spin N I 1
exchanges, as does the a—b—c—d— circulation. +(SS)(§S) - (SSI(§S) - 1_6}
TABLE IV. Matrix representation of the)30%(;, operator for 1 iy kil qitike | e L
S,=1 in the perturbation-based effective Hamiltonian, in terms of - ! l_o(Jring+‘Jring+Jring) SiSj_ 2 S -
Oabcg UNItS. )
(28)
b.c.d b c.d b,c,d b,c,d . . . . .
abieidi| [aibeidil fabredil [@ibieidi] g iy representation of this perturbation-based Hamil-
0385t -4 tonian is shown in Table VIII. Comparing Tables VII and
8 —4 VIl makes clear the difference between the two formalisms.
—12 8 -4 In the case of a rectangle, with andt, on the external
8 —12 8 —4 bonds and, on the diagonal of the rectanglas occurs in

ladder cupratés

094435-5



CARMEN J. CALZADO AND JEAN-PAUL MALRIEU PHYSICAL REVIEW B 69, 094435 (2004

TABLE V. Matrix representation of the biquadratic operator in the Heisenberg extended matf$x for
=0 in gapcq UNItS.

la|byc d] lajb cid| |a|bc;d] |a;bscd| la;byc,d| lasb,c d|
‘«@E‘i'éﬁi(m 0
40 0
—-10 —10 0
—10 —10 0 0
—10 —10 10 10 0
—10 —10 10 10 0 0
(t”tL)z energy difference between the lowest singlet and triplet
Gabcd=— 3 (29 states.
Density functional theory uses an unrestricted formalism
(titg)? and performs a calculation of the highest component of
adbc:“_d, (30)  the upmost multiplet and a symmetry-broken calculation for
us the lower value of5,, which is a mixture of spin eigenstates.
Approximated projections of the low spin determinant pro-
(tita)? vide values of the coupling constaft.
Jacdb™ 3 (31
U
As a result one sees that A. Ab initio calculations
hy Gagbe [ta)? Jg Performing ab i.nitio _CI calculat?ons on four-site frz.ag—.
—== :(—) =—, (320  ments make possible direct and simultaneous determination
h1 Gabea 1 Iy of the amplitude of the first- and second-neighbor two-body
) exchanges, as well as of the four-body operators. This deter-
%: gacbd:(t_d) :J_d (33) mination proceeds through the use of the effective Hamil-
N1 Qapea \ti) o tonian theory according to the formalism of BlGélor des

These relations are also valid for the canonical biquadratiglo'zeaw% and implies the knowledge of the exact energies

expression of the four-body effects. All these developmenténd projections of the eigenfunction on the model space.

have been obtained from the Hubbard Hamiltoni initio For a general case of an arbitrary irregular tetrahedron
calculations, which involve more physical effects, may in©N€ May always extract the amplitude of the six two-body

principle lead to values of the four-body effects deviatingoperators and the three Ferms of the fpur-body operators from
from the above relations. the knowledge of the five energy differences between the
quintet, three triplet and the two singlet states, and the de-
grees of freedom in the coefficients of the wave functions,
namely, three for the triplet manifold and one for the singlet
states. Actually, looking, for instance, at ti&=1 triplet
which has expanded on four determinants, the orthogonality
with the quintet state and the normalization leave only two

The amplitudes of the two-body exchange operafcase  degrees of freedom for the lowest triplet state. The second
usually obtained from energy differences on two-site frag+riplet must be also orthogonal to the first one, reducing its
ments, properly embedded in the Madelung field. Wabn  degrees of freedom to one, and the third one is entirely de-
initio CI calculations are performed, the magnetic coupling isermined by the orthogonality to the other two triplet states
obtained as the energy difference betwsérglgenfunctlons. and the quintet. A similar rationalization is possible in the
For instance, for two centers with,=1/2, J is equal to the singlet manifold.

TABLE VI. Me_ttrix representgtion of th_e biquadra_tic operator in el SZCV?] erét‘{? E_)o;gczl sy;)tr((a)r%zgitcj:ritu df;/a(s)f thbrzgnspir? Xlglggfrg
the extended Heisenberg matrix 85=1, in g,pcq UNItS. (SrCw05, CaCuy0s,, and SpCu0s) and of the 2D square
spin lattice LaCuQ, has been recently reportétThese val-
ues have been included in Tables IX-XII, together with the

Ill. NUMERICAL EVALUATION OF THE FOUR-BODY
OPERATORS FROM AB INITIO CALCULATIONS
ON PLAQUETTES

lajbicidi| |a;bjcidi| |a;bicidy| |ajbicid]

Ofneac) -10 DFT results reported in the next section. The model used for
10 -10 the different compounds are shown in Fig. 7.
-10 10 —-10 Since theab initio derivation has produced prejudiceless
10 —10 10 -10 estimates of the two-body exchange interactions between

first and second neighbor centers and of the three four-body

094435-6
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TABLE VII. The extended Heisenberg Hamiltonian on the basis of the model spa&=#d¥ for a rectangular plaquettéor instance, in SIG0O3).

lajbic d| lajhb cid| la b cidy la;b;c d] lajb;c,d| la;bc dy
—JL—JH
hy =J,-J
1 1 1 1
39— 2(hy+hy—hg) 2= z(hy+hy—hg) —Jj=Jq
33— (hy+hy—hy) 39— (hy+hy—hy) h, —-J-Jq
33, —7(hy—hy+hy) 3, — 1(hy—hy+hg) 3J4— 7(—hy+hy+h3) 3da— 1(—hy+hy+hy) -3, —Jq4
33, —7(hy—hy+h3) 33, — 1(hy—hy+hg) 3J4— 7(—hy+hy+h3) 3da— 1(—hy+hy+hy) ha -J,—Jq

TABLE VIII. The perturbation based effective Hamiltonian on the basis of the model spa&=fd@ for a rectangular plaquettéor instance, in SrC05).

la,b;c d;]

lajb,cid|

lajb,cid;| la;bicd] la;bicd| la;b,c d]|

-3, —Jj+5(hy+hy+hg)

hy

33)— t5(hy+hy) +5hs

33)— 15(ha+hy) +5hs

1
2

1

2

J,—36(hy+hg) +2h,

J,—36(hy+hg) +2h,

-3, -+ 5(hy+hy+hg)
33— 16(hi+hy) +5hg
33— 16(hi+hy) +3hy
33, —i5(hy+hg) +2h,

33, — 16(hy+ha) +2h,

h, _J|\_Jd+%(hl+h2+h3)
2da+ shy—T5(ho+hy) 2dat shi—5(haths) =3 =gt 5(hythythy)
3da+shy—15(hy+hy) 34+ 2hi—16(hy+hy) hs —J3,—Jg+5(hy+hythy)

"NIdS-dN0O4 3HL 40 NOILVYNTVAI ANV NIDIHO

7002) GEV60 ‘698 MIINTY TVIISAHA
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TABLE IX. Exchange couplings for L#uQO, in meV (h, TABLE XI. Exchange couplings for CaG@; in meV. per4 and
=h3). perd and biqua represent, respectively, the extraction usinbiqua represent, respectively, the extraction using the perturbation-
the perturbation-based effective Hamiltonieifg. 28 and the bi-  based effective HamiltoniafEq. 28 and the biquadratic Heisen-

quadratic Heisenberg formulatidi&q. 27. berg formulation(Eq. 27.
J \]d 2h1 2h2 J” JL ‘]d Zhl 2h2 2h3

Cl perd 125 7.8 14 1 Cl perd 148 15 0.7 4 1.3 ~1072

biqua 124 7.0 14 1 biqua 147 15 0.2 4 1.3 ~1072
B3LYP perd 198 16 64 B3LYP per4 218 20 2 16

biqua 195 125 64 biqua 217 19 1 16
33% Fock perd 131 6.9 20 33% Fock per4 138 13 0.85 5

biqua 130 6.0 19 bigua 138 13 0.6 5

terms, it is possible to check the consistency of the Heisenhave equal amplitudes. For an isosceles trapeze, there are
berg Hamiltonian and the possible deviation from E@2)  two distinctS,=1 energies, thre&§,=0 energies, and five
and(33). energy differences, while four different two-body operators
In all the systems the second-neighbor excharlgeare  and three four-body terms exist. In this case, an exact extrac-
antiferromagnetic and much smaller than the first-neighbotion of all the parameters is not possible, it is necessary to
interaction, also antiferromagnetic. Th&;/J ratio for  assume that the four-body operators involving hopping in the
La,CuQ, is in good agreement with the square of the ratio ofdiagonal g, andh;) are negligible in order to fix the four
the hopping integrals as determined in a previous Wdrk.  two-body operators and the dominant four-body term. This is
The four-body termsh; which imply circulation of the the situation faced in the three-leg laddes®@i05 since the
electrons between only nearest-neighbor sites are mudbond in the internal leg must be considered as different to the
larger than the four-body ternts, andh; which arise from  external leg.
the circulation of electrons involving hopping between sec- For a rectangle, there are just 08g=1 energy, three,

ond neighbors. More quantitatively the ratibs/h; and =0 different solutions and four energy differences. In this
hs/h; compare rather well with the ratiak/J, andJq/J; case, there are six exchange operattinsee two-body op-
in agreement with Eq$32) and(33) as shown in Table XIIl.  erators and three four-body termsSo as in the previous
case, it is necessary to neglect theandhs terms in order to
B. DFT calculations establish the three two-body amplitudes and the dominant

The same systems have been considered to test the vali ur-body term. These comments are relevant for the two-leg

: ; dders (SrCu0O5; and CaCuOs3).
ity of the hereafter proposed DFT procedure. In these hlghlya 3 3
correlated systems one may generate specific self-consiste tFOr a square plaquette we have de-1 energy and two

solutions for each distributions of spin on the four magnetict :g SdOIUtlon?,t 9210 thre% ?k?erm; dlffirednc?s. The'ge abref two
centers. The number of independent solutions depend on WO-body amplitudes an ree four-body terms. AS betore,

being one forS,=2, four forS,=1, and three fofS,=0 we neglect then, andhg terms. This is the situation in the

For an irregular tetrahedron these eight solutions have difZD square lattice as LEUO, system.
ferent energies and then we have seven energy differences,
which is not sufficient to extract the nine amplitudes of the ) s . .
general effective spin operator§our first-neighbor ex- perd ano! biqua represent, reSpe.Ct'V?Iy‘ the_extraction using the
changes, two second-neighbor exchanges, and three fOLE’?rt.urbat'.()n'based effective HamiltoniaBiq. 28 and the biqua-
body term$. When the system presents any symmetry, somer"thIC Heisenberg formulatiofEq. 27.

TABLE XII. Exchange coupling values for SEu;05 in meV.

energies become identical and also some two-body operators 3 3 3y 2h, 2h, 2h,
TABLE X. Exchange couplings for SrG@3; in meV. per4d and (| perd  197ext) 177 18 39 4.1 3.3
biqua represent, respectively, the extraction using the perturbation- 210nt)
based effecti\_/e HamiltoniafEq. 28 and the biquadratic Heisen- biqua 19%ext 177 14 39 41 33
berg formulation(Eq. 27. 208(int)
3 3 I oh, 2h, 2h, B3LYP perd 22;1;Ienxtt)) 227 27 110
Cl perd 2045 160 164 34 41 27 bigua 24Qext) 221 21 120
biqua 203 157 13 34 41 27 222int)
B3LYP per4d 247 231 27 120 33% Fock perd  16&xt) 154 12 37
biqua 241 225 21 120 154(int)
33% Fock per4 166 157 12 39 biqgua 162ex) 152 10 40
biqua 164 155 10 39 153(int)
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(a.1) (b.1) TABLE XIIIl. Comparison between theb initio four-body term
ratio and second and first-neighbor exchanges ratio. In all cases the
(V] values coming from the biquadratic Heisenberg Hamiltonian have
) ) been used.
hZ/hl Jd/‘]L h3/h1 ‘]d/JH
o @ srcyo; 0.12 0.08 0.08 0.07
o SKCU;Os 0.10 0.08 0.08 0.06
La,CuO, 0.07 0.05 0.07 0.05
J
J I hy
T Iy Elahybyetnanl = Blawypean = 9= 5
Iy (36)
J h,
@2) (b2 Ejacbenami~ Elampeany =I+Ja— 5
" (37)
ext \\Jd P hl
U RN Ejachbnena)~ Blampeyan = +Ja= 5
) (39)
€2 In the case of the extended Heisenberg Hamiltonian, we have

FIG. 7. Models used imb initio and DFT calculations: G®;,
plaquettes and first-neighbor TIP’s environment models (&)
La,CuQ,, (b1 SrCy0; and CaCyOs;, and(cl) SrCuzOs com-

Ejahb(hyehdi ™ Ejacybheydm =i +Jp, - (39

pounds. Gray, small black and big dark circles correspond, respec- Bjanpenan) = Elampwyewyan =+ Ja. - (40
tively, to Cu, O, and counterions atoms {3y Ca"?, or La"®). B
Types of exchange interactions ifa2 the LaCuQ, square Elacnbhetndn~ Elampean=Jde tJ¢- (41

plaquette,(b2) the SrCyO; and CaCyO; rectangular plaquette, . ) .
and(c2) the SpCu,0; irregular rectangular plaquette. AII_ the calcqlaﬂon; have been performed with hybrid
functionals, which mix Fock and Slater exchanges. The

o . e original B3LYP mixingf® is known to overestimate the delo-

The procedure consists m_the |d¢nt|f|cat|_on of the ENeIYY-qlization of the magnetic orbitals between the metal and
of the broker_1-symme_try s_olut|0ns_W|t_h the QIagonaI elememi’lgand@0 and to lead to overestimated antiferromagnetic
of the effective Hamiltonian matrix, involving not only the

four-body terms as in Tables lll and IV and V and VI, but nearest-neighbor exchanges. Better agreement with the ex-

also two-body exchange between first and second neighbo eriment is obtained when around a 33% of Fock exchange
y 9 9NDOTR: 1sed in the exchange functioddt® 21t must be noticed

For instance, in a rectangular plaquette the energy dlfferenct%at small errors in thd values give strong deviations in the

between theS,=2 |a(T)b(1)c(1)d(1)| wave function and :
the |a(1)b(T)c(1)d(1)| S,=1 solution can be identified Igfri]gog_y tirgﬁ}g;’e to the quadrafidependence of these
ring .

with Both kinds of mixing have been used, the results are
shown in Tables IX-XII. The models used are the same as in
J+J+dg hy ab initio calculationgFig. 7). GAussiaN9eg” has been used to
Elahypyethanl = Blawpmeman=——> —— T 1 perform DFT calculation&
(34) The amplitudes of the parameters are almost identical for

the extraction using the perturbation-based effective Hamil-
in the perturbation based effective Hamiltonian and with ~ tonian and the biquadratic Heisenberg formulatiper4 and
biqua, respectively, in Tables IX—XlIthe differences being
lower than 3% of error. In all the systems the amplitude of all
_ A9ty ﬂ the exchange operations are overestimated when B3LYP is
Ela(hb(hemam|~ Elawpmemdn == t2 i i i
used. It would be noted that the four spin cyclic term is
(35 unlikely large, going up to half of the first neighbor interac-
tion in SrCy0s. Increasing the percentage of Fock exchange
in the Heisenberg extended Hamiltonian. For the thege a better agreement with the CI results is obtained. The four-
=0 solutions the energy difference with respect to the quinbody operator also compares quite well with thie initio
tet state may be identified in the perturbation based effectivestimates. The largest amplitude concerns the Spggys-
Hamiltonian as tem.
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IV. CONCLUSIONS

For half-filled band, with one electron in one magnetic
orbital per site, spin Hamiltonians can be seen as effective
Hamiltonians defined in the model space of all neutral va-
lence bond determinants. They may be obtained from the
N-electron Hamiltonian, for instance, the Hubbard Hamil-
tonian, through an order-by-order perturbative expansion, in
the frame of the quasidegenerate perturbation theory. The
two-body exchange operators appear at order one (direct ex-
change) and two (kinetic exchange). For four-member rings
a—b—c—d— the fourth-order expansion introduces
four-body operators, which commute four spins and
corrections to the two-body operators. These corrections
result from the cyclic circulation of electrons along the
ring. The precise form of these corrections, in terms of
Sabed="Laptpeteatdal U, have been reported. The so-obtained
spin Hamiltonian has been compared with the usual form of
the Heisenberg Hamiltonian with biquadratic four-spin op-
erators, and it was shown that this canonical form incorpo-
rates four-body cyclic corrections in the two-body exchange.
When hopping integrals between second-neighbor atoms are
not negligible, two other four-body operators have to be con-
sidered.

PHYSICAL REVIEW B 69, 094435 (2004

culations, make possible, through the theory of effective
Hamiltonians, a prejudiceless evaluation of the two-body ex-
changes and all four-body effects. The ratios between the
amplitudes are consistent with those predicted from the Hub-
bard Hamiltonian.

This work has also discussed the possibility to evaluate
the amplitude of four-body cyclic effects from DFT
symmetry-broken energies. The information is not sufficient
for an evaluation of all the amplitudes, and one has to sup-
pose some of the terms to be negligible. The reliability of the
results dramatically depends on the exchange potential em-
ployed. The popular B3LYP which is known to overestimate
the first-neighbor magnetic coupling by a factor between 1.5
and 2, leads to unreasonably large values of the dominant
four-body effect. Increasing to 33% the Fock component of
the hybrid exchange not only provides satisfactory values of
the nearest-neighbor coupling constant but also produces a
reliable estimate of the leading four-body term.
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