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We analyze the global stability properties of some methods of predictive control. We particularly
focus on the optimal control function introduced by de Sousa Vieira and Lichtenberg [Phys. Rev. E
54, 1200 (1996)]. We rigorously prove that it is possible to use this method for the global stabili-
zation of a discrete system x,,;=f(x,) into a positive equilibrium for a class of maps commonly
used in population dynamics. Moreover, the controlled system is globally stable for all values of the
control parameter for which it is locally asymptotically stable. Our study highlights the difficulty of
obtaining global stability results for other methods of predictive control, where higher iterations of
f are used in the control scheme. © 2010 American Institute of Physics. [doi:10.1063/1.3432558]

In many situations, the mechanisms of control of chaos
and targeting seek not only to suppress any possible cha-
otic behavior, leading the system to a suitable equilib-
rium, but also to make its basin of attraction as large as
possible. While local stability analysis is not difficult to
address, in general, global stability results are often
based on numerical observance. We tackle this problem
for some methods of predictive control and succeed in
proving a sharp result of global stabilization valid for a
wide family of maps usually employed in the mathemati-
cal modeling of discrete systems.

I. INTRODUCTION

We discuss the issue of global stabilization of a chaotic
dynamical system into an equilibrium employing prediction-
based control (PBC), that is, techniques for control of chaos
that use predicted iterations of the system. As far as we
know, these methods were introduced for discrete dynamical
systems by Ushio and Yamamoto.! However, we point out
that in the case of stabilization of fixed points, the same
method was first suggested by de Sousa Vieira and
Lichtenbelrg;2 using a combination of a nonlinear delayed
feedback control (DFC) method® and a technique of Socolar
et al.,! they arrived at an “optimal” control technique that
overcomes some admitted drawbacks of the DFC method.
Some interesting generalizations of PBC methods were in-
troduced by Polyak and Maslov.>°

One of the advantages of predictive control methods is
that conditions for local stabilization of fixed points in terms
of the control parameter are easy to find."* However, the
problem of global stabilization is more difficult to address,
and, except for very particular maps,z’7 only conclusions
based on simulations can be found in literature so far.® As
explained by Bocaletti er al. (Ref. 8, Sec 4.1), when talking
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about the problem of targeting, in many practical situations,
it is important to drive most trajectories of a dynamical sys-
tem to a periodic orbit that yields superior performance over
the others according to some criteria. Thus, the problem of
targeting consists not only of choosing an appropriate attrac-
tor but also making its basin of attraction as large as possible.

Among the dynamical systems exhibiting chaos, a well-
known family is given by one-dimensional maps of the form

xn+1:f(xn), (1)

where f is a unimodal function with a unique positive equi-
librium K. Examples of such maps employed in the modeling
of population dynamics are the quadratic map f(x)
=rx(1-x), the exponential (Ricker) map f(x)=xe"!™, and
the generalized Beverton-Holt map f(x)=rx/(1+x?) (see
Ref. 9). Here, r and 7y are positive parameters intrinsic to the
model, such as the natural growth rate. It is worth noticing
that, although these three maps can be considered discrete
approximations of the continuous logistic equation, the
Ricker and the Beverton—Holt models have more biological
meaning (see, e.g., Ref. 10).

One important property, shared by these and other mod-
els, is that they exhibit chaos for some values of the
parameters,11 but multistability is not possible; this means
that even if they have an infinite number of periodic orbits, at
most one of them can be attracting. In particular, if the
unique positive equilibrium K is asymptotically stable [that
is, |f'(K)| < 1], then it is a global attractor. A very interesting
mathematical derivation of this property is due to Singer,12
who used the Schwarzian derivative as a fundamental tool.

In this setting, an important control problem consists of
stabilizing the unique positive equilibrium, keeping the glo-
bal property, that is, in such a way that all positive trajecto-
ries converge to the equilibrium. The aim of most of the
proposed mechanisms of control of chaos consists of stabi-
lizing one of the unstable periodic orbits (UPOs) embedded
in a chaotic attractor either by adjusting a parameter of the
model, or modifying the state variable, by introducing an

© 2010 American Institute of Physics
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external parameter that one can control to drive the chaotic
system to a stable situation. The first strategy has its origin in
the seminal work of Ott, Grebogi, and Yorke;13 although it
was successfully applied in physics, it is difficult to imple-
ment in ecological systems (for more comments and refer-
ences, see Ref. 8, Sec. 2). The second group of methods
seems to be the most appropriate when we try to manage
biological systems since intrinsic parameters such as the
growth rate are, in general, difficult to modify, while external
parameters such as migration, culling, or enrichment are
more easily controllable (for further discussion and refer-
ences see, e.g., Ref. 14).

One of the methods suggested in this context is the con-
stant feedback (CF) method,"” which consists of modifying
the one-dimensional system (1) to

X = flx,) = C, 2)

where C is a positive constant. Gueron'® proved analytically
that for a general family of unimodal maps, it is always
possible to find values of C for which Eq. (2) has a stable
positive equilibrium. However, the region of attraction is
usually small and many trajectories are driven to zero. Bio-
logically, this means that only intermediate values of the
population size survive after control, while the others go to
extinction due to the Allee effect.'®!”

The first author recently proved18 a result of global sta-
bilization for the proportional feedback (PF) control method,
which modifies Eq. (1) to

Xn+1 =f(7xn)9 (3)

where ye (0,1). In population dynamics, this means that a
percentage of the population is removed by migration or har-
vesting.

The other interesting strategy of control is based on a
threshold mechanism. The idea of incorporating a self-
regulatory threshold dynamics on a chaotic system goes back
to the work of Sinha and Biswas'® and Glass and Zheng20
(see also Refs. 21 and 22). This strategy of control has also a
clear interpretation in biological terms, corresponding to
control measures such as culling of a stock population, hunt-
ing or catching of a managed population stock, or treatment
of infectious diseases (for more comments and further refer-
ences, see Ref. 23).

In this paper, we focus on global stabilization of system
(1) using predictive feedback control. Methods of predictive
control to stabilize an unstable 7-periodic orbit of the
discrete-time system (1) have the form!

Xns1 = g(xm un) ’

where the control input u, is determined by the difference
between the predicted state f7(x,) and the current state x,,
that is,

uy =fT(xn) —Xn-

As usual, fT is defined as the Tth iteration of f, and it is used
as a prediction of x,,r. For T=1 (stabilization of fixed
points), the simplest scheme of PBC is written as
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X+l =f(xn) - a’(f(xn) - xn)’ 4)

where « is a real control parameter. Equation (4) is exactly
the control proposed by de Sousa Vieira and Lichtenberg
(Ref. 2, Sec. III) to avoid some handicaps of the DFC
method, such as the increase in dimensionality of the system3
and the so-called odd limitation number.**

Some additional good properties of the control law (4)
underlined in Ref. 2 are that the fixed points of the controlled
system are the same as those in the uncontrolled system,
knowledge of the location of the UPO is not necessary, and it
is easy to implement in the sense that the control term con-
tains only the amplified versions of the input and output of
the dynamical system.

In our main result, we prove that for a family of unimo-
dal maps, including the quadratic map, the Ricker map, and
the generalized Beverton—Holt map, the optimal nonlinear
control of de Sousa Vieira and Lichtenberg leads to the glo-
bal stabilization of a chaotic system into its positive equilib-
rium. Moreover, this is true for all values of the parameters
for which local stabilization is possible. We also discuss the
case of more general methods of predictive control, showing
that this result of global stability is no longer valid.

This paper is organized as follows: in Sec. II, we state
our main assumptions and recall some related results. Sec-
tion III is devoted to establish the main global stability result.
In Sec. IV, the issue of local and global stability is discussed
for other PBC methods. Finally, in Sec. V, we discuss the
main conclusions and directions for future research. The
proofs and auxiliary results are placed in Appendixes A and
B.

Il. STATEMENT OF THE PROBLEM

First, we introduce some general properties and notation
that will be used throughout the paper from now on. Denote
by I=[0,b] a real interval (b=+ is allowed). The map
f:I—1 that defines the dynamical system (1) will be a C*
function satisfying the following properties:

(A1) f has only two fixed points: x=0 and x=K>0, with
S (0)>1.

(A2) f has a unique critical point ¢ <K in such a way that
f(x)>0 for all xe(0,c), f'(x)<0 for all x e (c,b).

(A3) (Sf)(x) <O for all x# ¢, where

ri 3 sy
) 2\f(x)

is the Schwarzian derivative of f.
(A4) f"(x) <0 for all x € (0,c¢).

(SH)x) =

These assumptions are motivated by the fact that many
maps usually employed in discrete models fulfill them. In
particular, the quadratic map for all »>1, the exponential
map for all >0, and the generalized Beverton—Holt map for
r>1 and y=2 (see Ref. 12). We notice that if f satisfies
(A3) and f”(0) <0, then condition (A4) holds; otherwise, f’
would have a positive local minimum, which contradicts the
maximum principle (Ref. 12, Proposition 2.4). Thus, the
family of maps satisfying conditions (A1)—(A4) is essentially
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FIG. 1. (Color online) Graph of the map f(x)=4x*(1-x) and the line y=x.
The iterates of initial points xo<<1/2 converge to zero (Allee effect).

the family of S-unimodal maps considered by Collet and
Eckmann (Ref. 25, Sec. I1.4) (see also Ref. 26, Sec. 5.3).
Similar conditions were assumed for CF control in Refs. 16
and 17 and for PF in Ref. 18. Besides the above-mentioned
maps, there are other functions satisfying conditions (Al)-
(A4), which do not come from population dynamics; an ex-
ample is the sine map f(x)=rsin(mx), 0=x=1, with
re(l/a, 1) (Ref. 27, p. 369).

When used in population models, maps satisfying con-
dition (A4) correspond to compensation models, where the
per capita production is a decreasing function of the popula-
tion density [see, e.g., Ref. 28 (Sec. 1.2) and Ref. 29 (Sec.
1.4)]. This condition is not satisfied by depensation models,
for which the per capita production is smaller than one for
low values of the population density. The latter models ex-
hibit the so-called Allee effect, which means that if the initial
population size is below a critical parameter, the population
will die out. An example is the generalization of the qua-
dratic map f(x)=rx*(1-x) (see Ref. 28). In Fig. 1, we plot
the graph of this map with r=4; although it has a unique
positive fixed point and a unique critical point (maximum), it
does not satisfy (A4) and exhibits the Allee effect.

Condition (A3) is a more technical assumption. The
Schwarzian derivative was first introduced into the study of
one-dimensional dynamical systems by Singer,12 and it be-
came a valuable tool (see, e.g., Refs. 25 and 26). Although it
is difficult to give a biological interpretation of it, it is a
remarkable fact (already observed by Singer) that the most
usual maps employed in the modeling of population dynam-
ics satisfy condition (A3). We recall'” that if f satisfies con-
ditions (A1) and (A3), and f'(K)=-1, then K is a global
attractor of system (1).

We notice that, for a €[0,1], the method (4) is well-
defined in the sense that, since f:/— I, the modified map

Fo(x) == f(x) = a(f(x) —x) = ax + (1 - a)f(x)

also maps [ into I because F,(x) is a convex combination of
x and f(x). This property does not hold for general DFC and
PBC methods. If we think of population models, this is im-
portant because negative values of the population do not
make sense. We limit our discussion to this range of values
of the control parameter «.

Chaos 20, 023124 (2010)

The method (4) was applied in Ref. 2 to the quadratic
map, with r>3 [to ensure that K is unstable for f(x)
=rx(1-x)]. The authors observed that the positive fixed
point K=1-1/r is locally stable for the controlled system if
a>(r=3)/(r-1):= a. Moreover, the equilibrium X is a glo-
bal attractor for system (4) for all a € (ay,1). However, as
pointed out later by McGuire et al., the quadratic map is a
very particular case since the modified map F, is still qua-
dratic. Hence, it trivially shares the global stability properties
of f.

For general unimodal maps, function ¥, does not inherit
properties (A2) and (A3); usually, the shape of F, is no
longer one-humped for > 0. For example, the exponential
map f(x)=xe" ' is bimodal for 0<a<e'2/(1+e?) and
increasing for "2/ (1+¢"2)<a<1.

Thus, although numerical experiments suggest that K is
still globally attracting for F, when |F/(K)| <1, an analytic
proof of this result is not available. Our main result in this
paper fills this gap for the family of maps satisfying condi-
tions (Al)—(A4).

lll. GLOBAL STABILIZATION

In this section, we state our main result. As before, we
denote F(x)=ax+(1-a)f(x).

We begin with a preliminary result, which is of indepen-
dent interest.

Proposition 1: Assume that f'(x)<0 and F|(x) <0 for
all x in an interval JCI. If (Sf)(x)<0 for all x € J, then
(SF,)(x) <0 for all xe J and all a < (0,1).

As an immediate consequence of Proposition 1 and
Theorem 5 in Ref. 31, we get the following corollary.

Corollary 1: If f satisfies conditions (Al)—(A3), and
[ (K)<=-1, then the family of maps {F,:a < (0,1)} under-
goes a period-doubling Dbifurcation at ay=(f"(K)+1)/
(f"(K)=1), where F;O(K)=—1.

Corollary 1 solves an open problem posed in Ref. 7.
There, the authors proposed to investigate the conditions un-
der which period doubling occurs for general unimodal
maps, which are being stabilized at a fixed point using con-
trol (4). They showed that if f has a negative Schwarzian
derivative, then the same property is inherited by F, when
the positive feedback parameter « is sufficiently small. Cor-
ollary 1 proves that period doubling occurs regardless of the
value of « € (0, 1) necessary for stabilization.

Next we formulate our main result.

Theorem 1: Assume that f satisfies conditions (Al)-A4),
and define F (x)=f(x)—a(f(x)-x). If F.(K)=-1, then the
positive equilibrium K is a global attractor of Eq. (4) on
(0,b).

The proofs of Proposition 1 and Theorem 1 can be found
in Appendix A.

As an example, consider the Ricker map f(x)=xe
which satisfies conditions (A1)-(A4) for all »>0. The posi-
tive equilibrium K=1 is globally stable for r=2, then it un-
dergoes a typical sequence of period-doubling bifurcations,
and it becomes chaotic for r>2.6924."

According to Corollary 1 and Theorem 1, for all r>2,
the family of maps {F,(x)=ax+(1-a)xe’'™:ae[0,1)}

r(1-x)
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25—

FIG. 2. (Color online) Bifurcation diagram for the controlled system (5)
with r=3 and « as the bifurcation parameter. The value a=0 corresponds to
the uncontrolled (chaotic) system; the equilibrium becomes globally asymp-
totically stable after the bifurcation point @=1/3 (vertical dashed line).

experiences a period-halving bifurcation at a=(r—2)/r in
such a way that the positive equilibrium is globally attracting
for the controlled system

r(1-x,) r(l-x,) _ xn) (5)

Xpsl = Xp€ - a(xne
forall @ e [(r—2)/r,1). We show the bifurcation diagram for
r=3 in Fig. 2. The equilibrium is stabilized in a period-
halving bifurcation at @=1/3 (see the vertical dashed line).
Theorem 1 ensures that, for «=1/3, all orbits starting at
Xxo>>0 converge to the positive equilibrium K=1.

Next we give a numerical validation of Theorem 1 by
means of a statistical approach applied to Eq. (5) with r=3;
this method not only illustrates our main result but also pro-
vides significant rates of convergence, not dependent on the
initial condition.

First we choose randomly 2000 initial conditions in the
interval [0,2.5], which is invariant and attracting for the map
f. See Fig. 3, where we show the distribution of this sample
and its evolution after 15 iterations of f. Since the uncon-
trolled system is chaotic, no periodic pattern is appreciated.
We notice that, in Figs. 3-8, n denotes the number of itera-
tions.

Figure 4 shows the distribution of the random sample
after 15 iterations of the controlled system for a=0.35,
which is close to the bifurcation point. It can be observed
that the iterates of all initial conditions approach the positive
equilibrium. The convergence is faster for larger values of «,
as it is shown for @=0.4 and the same number of iterations.

Next we estimate the probability density function of the
random variable provided by the sample we chose using a
kernel density estimation. We use the kernel density approxi-
mation

1 < X=X;
¢(x)=%§ k(T)

where (x;)!2, is the sample, k is the standard Gaussian func-
tion

Chaos 20, 023124 (2010)
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FIG. 3. (Color online) Distribution of a sample of 2000 random initial
conditions in the interval [0,2.5], and the evolution of the uncontrolled sys-
tem (a=0) after 15 iterations.

k(x - xi) - L —(x - )cl~)2/2h2
h e

and h is a smoothing bandwidth. We use

m m
h= (max{xi} - min{x,}) 4.
i=1 i=1

Our simulations with different samples of random initial
conditions show that, when evolved under the equations of
the controlled system (5), the approximation of the probabil-
ity density function converges to a delta function located at
the positive fixed point.

In Fig. 5, we represent the initial density function and its
evolution after 50 iterations of the uncontrolled system [Eq.
(5) with @=0]. As observed before, there is no periodic pat-
tern. The evolution of the density function for a=0.35 (close
to the bifurcation point @=1/3) after 15 and 50 iterations is
shown in Fig. 6. The convergence to the delta function is
faster for larger values of «, as shown in Fig. 7 for a=0.4:
after only 15 iterations, the density function is highly con-
centrated at the positive equilibrium point K=1.
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FIG. 4. (Color online) Evolution of the random sample of 2000 initial con-
ditions in the interval [0,2.5] after 15 iterations of the controlled system for
@=0.35 and a=0.4.

To further illustrate this numerical validation, we show
in Fig. 8 the time series of the solution of Eq. (5), with r=3
and initial point xy=0.5, for =0.35 and a=0.4.

IV. OTHER METHODS OF PREDICTIVE CONTROL

The global control attained with the method of de Sousa
Vieira and Lichtenberg has the restriction that, in general, the
perturbation required to stabilize all trajectories around the
positive equilibrium is relatively large. In this regard, we
emphasize that, while targeting problems usually require
small perturbations, there are situations where large pertur-
bations are more appropriate. For example, this is the case of
interventions in population dynamics, where the control
problem can be seen as a strategy for sustainable develop-
ment (e.g., by culling or enrichment).' %%

In order to reduce the control perturbation, an interesting
generalization of PBC methods was introduced by Polyak
and Maslov.”® Their main idea consists of using higher itera-
tions of the map f as predicted states. To stabilize a fixed
point, this method has the form

Chaos 20, 023124 (2010)

n=0

b(x)

o=0, n=50

0.5 10 1.5 20 25

(b) X

FIG. 5. (Color online) Approximation of the probability density function for
the random variable corresponding to a sample of 2000 random initial con-
ditions in the interval [0,2.5], and its evolution after 50 iterations under the
uncontrolled system (5) with r=3 and a=0.

X1 = f06) + (= 1™ (" (x,) = " (x), (6)

where m is a positive integer and € >0. Notice that the case
m=0 is equivalent to Eq. (4), with the usual notation
) =x.

Now, assume that f is a map satisfying conditions (A1)—
(A4) and K is an unstable equilibrium of Eq. (1). Then,
f(K)<-1, and it is easy to check that K is asymptotically
stable for Eq. (6) if

(.,
f(K) -1

J(K)

Then, the bifurcation point ¢, defined in the statement of
Corollary 1 for Eq. (4) is replaced by g,=(-1/f"(K))"«a,
when control (6) is applied. For example, for the chaotic
exponential map f(x)=xe*'™, we have f'(K)=2 and
ap=1/3. Thus, &,,=ay/2", which means that the perturba-
tion of f in Eq. (6) can be made as small as desired, choosing
a sufficiently big value of m.

Some disadvantages of this control method are that (a) it
is computationally more expensive than Eq. (4), especially
for large m, and (b) it is not ensured (see the example below)
that the modified map
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FIG. 6. (Color online) Evolution of the approximation of the probability
density function for the random variable corresponding to a sample of 2000
random initial conditions in the interval [0,2.5] after 15 and 50 iterations
under the controlled system (5) with r=3 and a=0.35.

Fon(x) = f(x) + (= )™ e (7" (x) = 7(x)

is well-defined for m = 2. We notice that the scheme for m=1
is still well-defined for € € [0, 1] because

Fo1(0) = f() + 8(f7(0) = f(x)) = (1 = £)f(x) + &/(x)

is a convex combination of f(x) and f2(x).

A natural question is whether or not the global stability
result valid for m=0 still holds for Eq. (6) when m>0. In
Ref. 6, it is claimed that this is an expected property, con-
firmed by simulation results using the quadratic family.
However, we show that, in general, the asymptotic stability
of the equilibrium is only a local property. Indeed, even
when the equilibrium is locally stable, system (6) can have
other stable periodic orbits, including new fixed points.

For example, for m=2 and the chaotic quadratic map
f(x)=3.9x(1-x), the fixed point K=0.7435 is locally stable
for Eq. (6) when &>¢,=0.086. However, for any & arbi-
trarily close to &,, there is a new fixed point K| in such a way
that all orbits starting at a point x,<K; converge to zero.
This means that the control method induces an Allee effect.
In Fig. 9(a), we plot the function

Fon(0) = f(x) = e(f () = 2 (x),

with £=0.1 (solid line); for the sake of comparison, we also
include the graph of function f(x)=3.9x(1-x) corresponding

Chaos 20, 023124 (2010)

a=04, n=5

O(x)

30
25

20

20 25

05 1.0 1.5 20 25
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FIG. 7. (Color online) Evolution of the approximation of the probability
density function for the random variable corresponding to a sample of 2000
random initial conditions in the interval [0,2.5] after 5 and 15 iterations
under the controlled system (5) with r=3 and a=0.4.

to the uncontrolled system (dashed line) and the line y=x. A
magnification of the graph of F,, between 0 and 0.05 is
included in Fig. 9(b) to emphasize the new positive fixed
point K;=~0.016 06 and the Allee effect.

In Appendix B, we prove that a global stability result
holds for m=1 in Eq. (6) when f is the quadratic map, but
this is an exception. In general, even for m=1, the conclu-
sions of Corollary 1 and Theorem 1 are no longer valid.

Consider m=1 in Eq. (6), that is,

Xn+1 =f(xn) + S(fz(xn) _f(xn))a (7)

with f(x)=xe’!™. The family of maps F, (x)=f(x)
+e(f2(x)-f(x)) undergoes a period-doubling bifurcation at
£=1/6~0.166, where F; (1)=—1. The fixed point K=1 is
locally stable for €>1/6, but this equilibrium coexists with
an attracting 2-cycle until this cycle disappears in a tangent
bifurcation at e =~0.1958. After this value, the positive fixed
point seems to be globally attracting, but only until a new
fixed point appears at €=0.4605. In Fig. 10, we show the
bifurcation diagram for & € [0,0.3]. The unstable fixed point
is represented by a dashed line between £=0 and e=1/6.
The other dashed lines represent an unstable 2-cycle that
disappears (with the attracting 2-cycle) after a saddle-node
bifurcation at £ ~0.1958.
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FIG. 8. (Color online) Time series for the controlled system (5) with r=3;
the values of the control parameter are @=0.35 and @=0.4. In both cases,
the initial point is x,=0.5, and 60 iterations were made.

V. CONCLUSIONS AND DIRECTIONS FOR FUTURE
RESEARCH

We have analyzed the global stability properties of some
methods of predictive control. We particularly focused on the
optimal control function introduced by de Sousa Vieira and
Lichtenbelrg.2 Based on their analysis of the logistic map,
they affirmed that this method has good global stabilizing
properties, thus decreasing the sensitivity to noise. Our main
result (Theorem 1) comes up with a rigorous analytic proof
of this observation for a family of maps commonly used in
modeling of discrete-time systems. Moreover, we have given
a positive answer to some questions related to the preserva-
tion of the period-doubling route to chaos in the controlled
system posed in Ref. 7.

We have reviewed as well the local and global properties
of stabilization of fixed points of more general PBC meth-
ods. An important property of these methods is that they do
not increase the dimension of the system; thus, the study of
local stability is easier than in other control techniques.
However, our study highlights the difficulty of obtaining glo-
bal stability results when using higher iterations of the map f
in the control scheme.

de Sousa Vieira and Lichtenberg proposed a generaliza-
tion of their optimal method to stabilize UPOs with prime
period T7>1 by using the map F,7(x)=/"(x)—a(f’(x)-x).
Assume that we aim to stabilize an UPO of period 7=2" of
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FIG. 9. (Color online) (a) Graphs of functions f(x)=3.9x(1-x) (dashed line)
and F,,(x)=f(x)—&(f*(x)—f2(x)), with £=0.1 (solid line). The fixed points
are obtained as the intersections with the line y=x. (b) Magnification of the
graph of F,, between 0 and 0.05; the fixed point K, ~0.016 06 induces an
Allee effect: all initial conditions below K, are driven to zero under succes-
sive iterations of F ,.

a chaotic map f using this method. An interesting problem to
study is whether or not it is possible to get a globally stable
T-periodic orbit in the sense that it attracts all initial condi-
tions, which are not an element of the other UPOs. Numeri-
cal simulations suggest that this is true for 7=2 and f satis-

25

2.0

15 ]
X 10
0.5 7 ]
0.0 i ‘ L
0.00 0.05 0.10 0.15 0.20 025 0.30
€

FIG. 10. (Color online) Bifurcation diagram for the controlled system (7)
with f(x)=xe’'™ and & as the bifurcation parameter. The fixed point K
=1 is locally asymptotically stable but not globally stable between 0.166 and
0.1958. The dashed lines indicate instability.
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fying conditions (A1)—(A4); to find a proof of this result
would be a nice improvement of Theorem 1. However, the
answer to this problem is, in general, negative for 7> 2. For
example, the quadratic map f(x)=4x(1-x) has two distinct
four-periodic orbits with the same multiplier u=-16; thus,
global stabilization of one of them is not possible with this
control scheme.

An additional application of the new results proved in
this paper is that the controlled map F,(x)=ax+(1-a)f(x) is
used as a model in population dynamics when a probability
of surviving the reproductive season (iteroparous popula-
tions) is assumed. If f means the nonlinear density growth of
the population, the model

Xp+1 = Foz(xn) =ax, + (1 - a)f(xn) (8)

assumes that a fraction « of energy is invested into adult
survivorship rather than reproduction (for more details, see
Refs. 10 and 30). Thus, Theorem 1 shows that even if f is
chaotic and the survivorship parameter « is large enough, the
population is stabilized into the positive equilibrium regard-
less the initial size of the population. We notice that organ-
isms might evolve into such strategy (survival rather than
reproduction) under bad environmental conditions; this
means that a population whose fecundity encodes for chaos
can stabilize itself at its equilibrium density. For a nice dis-
cussion on the evolutionary advantage of self-control, see
Ref. 34. As stated there, this makes a difference between
ecological systems and physical or chemical systems.

Regarding the application of PBC methods to population
problems, an important drawback is that their implementa-
tion requires full knowledge of the model equation. Although
the exact form of the original map is difficult to obtain, in
some cases good census data are available (see, e.g., Ref. 35,
where census data of a freshwater fish population were col-
lected every fourth month over 20 years); this allows one to
derive a stock-recruitment relationship that fits well into
some known function, such as the Ricker map. Then, the
model can be validated, and the control method could be
implemented to stabilize the population. On the other hand,
while another admitted drawback in the application of pre-
dictive control in the process industries is that a quick com-
putation upon observation must be performed (see, e.g., Ref.
36), in the setting of population dynamics, the time scales are
different; for instance, in a fish farm, the control (4) can
provide an assessment on whether next season harvesting
should be incremented or, conversely, some enrichment is
needed to stabilize the stock size.

We mention that the control method (4) can help not
only to stabilize the population but also to avoid extinction
(see Ref. 30). For further discussion and references on the
application of control methods to population problems, espe-
cially to prevent extinction, we refer to Ref. 33. Related re-
sults on global stability in Eq. (8) for particular choices of f
were proved in Refs. 37 and 38.
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APPENDIX A: PROOF OF THE MAIN RESULT
Proof of Proposition 1: Since f'(x) <0 and (Sf)(x) <0

for all x € J, we have

") <&)2 . (f'(x))?
i ) T35

for all x € J. Using that F(x) <0 on J, the previous inequal-
ity, and the obvious relations

Fix)=a+(1-a)f'(x), F.(x)=0-a)f"(x),

F(x)=(1-a)f"(x),

we get, for all x € J,

reAN2
2F 5 (x) =2(1 - a)f"(x) > 3(1 - a)(JJU"(TZ)))
2 (P
- Fl(x)-a Fix)

This inequality implies that (SF,)(x) <O0.

To use Proposition 1 to prove our main result, we need
the following auxiliary result from Ref. 39.

Lemma 1: (Reference 39, Corollary 2.9) Let g:(0,b)
—[0,b] be a continuous map with a unique fixed point K
such that (g(x)—x)(x—K) <0 for all x# K. Assume that there
are points 0=a<K<d=b such that the restriction of g to
(a,d) has at most one turning point and (whenever it makes
sense) g(x)=g(a) for every x=a and g(x)=g(d) for every
x=d. If g is decreasing at K, assume additionally that (Sg)
X (x)<O0 for all x € (a,d) except at most one critical point of
g and —1=g'(K)<O0. Then K is a global attractor of g.

Proof of Theorem 1: Notice that f'(0)>1 implies that
F!(0)>1 for all ae[0,1). On the other hand, F/(x)
=0 f (x)=—a/(l-a).

If F, has no critical points, then it is strictly increasing,
and therefore K is a global attractor because F,(x)>x for
x € (0,K) and F(x)<x for x € (K,b). Notice that this hap-
pens when f’(x)>-a/(1-«) for all x € (0,b).

Next, since (Sf)(x) <0 for all x# ¢, f can have at most
one inflexion point in (c¢,b). First we consider the case when

f has no inflexion points in (c,b). Then f” is strictly decreas-

ing in (c,b), and there is at most one point ¢; > ¢ such that
F!(c;)=0. Clearly, ¢, is a local maximum of F, since
F!(x)>0 on (0,c¢;) and F|(x)<0 on (c;,b). If ¢;>K, then
F!(K)>0, and it follows that K is globally attracting. Thus,
we can assume that ¢ <c;<K. Since F(x)=<F,(c,) for all
x € (0,c;] and, by Proposition 1, (SF,)(x)<0 on (c;,b), an
application of Lemma 1 with a=c;, d=b proves that K is a
global attractor of F,,.

It remains to consider the case when f has an inflexion
point y in (c¢,b). It is clear that f attains a global minimum
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at f'(y). If f'(y)=-a/(1-a), then F,, is strictly increasing,
and therefore, K is a global attractor. Thus, we assume that
f'(v)<-a/(1-a). In this case, there are at least one, and at
most two critical points ¢;<y<c, of F,. If there is only
one, it is a local maximum, and this case is solved as the
previous one. If there are two critical points, then F, is in-
creasing on (0,c¢;) U (c,,b) and decreasing on (c;,c,). Thus,
we can apply again Lemma 1, with a=c,, d=c,. The proof is
complete.

APPENDIX B: GLOBAL STABILIZATION
FOR THE QUADRATIC MAP

Consider the quadratic map f(x)=rx(1-x); f maps the
interval [0,1] into itself if 0 =r=4. It is well known that the
positive fixed point K=1-1/r is globally stable for 1 <r=3
and unstable for »>3. Here, we only consider the unstable
case.

Proposition 2: The PBC scheme (7) stabilizes locally the
positive equilibrium of f(x)=rx(1-x) for all £>g(r)
=(r=3)/(r?=3r+2). Moreover, K is a global attractor on
[0,1] for all € € (g,(r),&,(r)), where e,(r)=4/(r—1)

Proof: As mentioned in Sec. IV, the modified map
F.(x)=f(x)+&(f*(x)—f(x)) maps [0,1] into [0,1], and K is
asymptotically stable for the controlled system if & >g,(r).
Moreover, it is easy to check that K=1-1/r is the unique
positive fixed point of F, if and only if & <e,(r)=4/(r—1).

In order to apply Lemma 1, we first prove that
(SF,)(x) <0 for all noncritical points of F,. Indeed, notice
that F(x)=(He°f)(x), where H(x)=x+&(f(x)—x). Since f and
H are quadratic maps, they have a negative Schwarzian de-
rivative. Thus, the result follows from the composition rule
(S(He£))(x)=(SH)(f(x)) (f (2))*+(SH)(x) (see, e.g., Ref. 12,
Theorem 2.1).

Next, observe that F, has either only the critical point
¢=1/2 (local maximum) or three critical points ¢; <c<c;
in the latest case, F,(c) is a local minimum and F,(c,)
=F,(c,) are local maxima.

If there is only one critical point, the result follows from
Singer’s theorem since F, is unimodal. If there are three
critical points, we complete the proof, applying Lemma 1 to
the interval (a,d)=(c,,1) if K>c, or to the interval (a,d)
=(cy,0y) if K<c,.
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