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1. Introduction

Let Q be a bounded open subset of RY with sufficiently smooth boundary 9 and let
A(z, s) be a real symmetric matrix which coefficients, a;; : ﬁng — R, are Carathéodory
functions.
We assume that there exists a positive constant « satisfying for every (x,s,£) € Q X
Rt x RV,
A(z,s)€ - € > al¢”. (A1)

In this paper we analyze the nonlinear eigenvalue problem
— div(A(z,u)Vu) = Au, z€Q, (Py)
u = 0, z€d9, A

where, we say that A is an eigenvalue for this problem if (P)) admits a positive and
nontrivial solution, that is, if there exists u € H}(Q), u > 0, u # 0, such that A(z,u)Vu €
(L2(2))N and

A(z,u)Vu - Vv = /\/ uv, Yv € Hy(Q).
Q Q
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In addition to the interest itself in the study of (Py), this kind of equation has been
used to model a species inhabiting in €2 where its diffusion depends on the density of the
species, which arises in more realistic models, see [3] and references therein.

Problem (Py) is well known when A does not depend on s, i.e., when A(z,s) = B(x)
with B = (b;;) and b;; € L>(2), b;; > by > 0 in €. In this case, there exists the principal
eigenvalue, denoted by A;(B), for the problem:

—div(B(z)Vu) = Au, zx€Q, (11)
u = 0, x€dq, '
being the unique eigenvalue with a positive eigenfunction, see for instance [5].
In [2], assuming that A satisfies (A4;) and
|A(x,s)] < B, foreach (z,s) € Q2 xR, (A2)

the author proved that for each r > 0, there exists A, > 0 and a positive solution
u, € HY(Q), of (Py,) such that |lu,||2 = 7. Moreover, denoting by

)\0 = )\1(14(1’, 0)),

he showed that if » — 0, then A\, — Ag and Ur converges to a positive eigenfunction
r
associated to \g in H}(Q). Finally, if A also verifies
lim A(z,s) = Aso(z), uniformly in € Q, (A3)
S§— 00
then A\, — A, and Ur goes to a positive eigenfunction associated to A in Hi () as
r
r — 00, where
Aoo 1= A1 (Ao ().

In [4], a slightly modification of (Py) is analyzed. Under conditions (A;_3), Au + h(x)
for some 0 < h € L?(2) is considered instead of Au. But the arguments used to prove
the existence of solution leads to the trivial one in the case h = 0.

In [1], assuming in addition the existence of an Osgood function w : R — R such that

|A(z, 51) — A(z, 82)| < w([s1 — s2]), (Aq)

for every (z,s1), (z,s2) € Q x R, using a bifurcation analysis, the authors study a more
general problem

— div(A(z, u)Vu) f\z,s), zeqQ,
u = 0, x € 09,

for f: R x Q xR~ R and A satisfying (4;_4). In the particular case f(\,x,s) = \s,
from their results it can be deduced the existence of an unbounded continuum (closed and
connected subset) of positive solutions bifurcating from the trivial solution at A = A\g and
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meeting with infinity at the value A = A,. Thus, as a consequence, there exists positive
solution of (Py) for A € (Ag, Axo) OF (Aso, A). In the following section we complete this
study for A satisfying (A;_4) by giving sufficient conditions for the uniqueness of positive
solution.

The main goal of this work (see Section 3) is to analyze (P)) when A is not neces-
sarily bounded and/or does not satisfy (As). In this case, we show that there exists an
unbounded continuum of positive solutions bifurcating from the trivial one at A = Ag.
If, in addition there exists a continuous function g : Ry — R, with Siiinoo g9(s) = +oo,

satisfying for every (z,s,£) € Q x Rt x RV,

Az, 5)€- € > g(s)[€]* > alg]*. (Aso)

then, the bifurcation from infinity at A = A (which exists in the bounded case) “dis-
appears”. Specifically, there exists at least a positive solution uy for A € (Mg, 00) and
[luall = oo as A — oo. However, if A is bounded in a subset of 2, then again a bifurca-
tion to infinity exists.

Along the work we will use the following notation:

o H}(Q) and E = Cy(Q) are the usual Sobolev space and the space of the continuous
functions in 2 vanishing on 9Q endowed with the norms ||ul| = ||[Vul|2 and |jullp =
supg, |ul, respectively.

e cl(D) denotes the closure of the set D.
e S denotes the set
S=cl{(\u) €R x E: uis solution for (Py), u >0, u # 0}.

Any continuum subset of S will be called a continuum of positive solutions of (Py),
although it may contain the trivial solution (A,0) for some value of A > 0.

e [ will denote both the identity matrix and the identity operator.

e Given square matrices By, By we say that By > 0 (respect. By > 0) if the quadratic
form induced by By is definite positive (respect. semidefinite positive). We say that
B; < By (respect. By < Bs) if Bo — By > 0 (respect. By — By > 0).

e The map Projp : R x E'+— R stands for the projection of the product space R x E
onto R.
2. The case of bounded matrices A

In order to study problem (Pj), let us recall that, for matrices A satisfying (A4;2),
if u € H} () is solution of (Py) then using the De Giorgi-Stampacchia Theorem ([8,
Théoréme 7.3] and [6, Theorem I or [7, Theorem 8.29]), u € C*7(Q) for some 0 < v < 1.
Moreover, if the coefficients of the matrix A satisfy

a;; € C(Q x R), for some 0 < 7' < 1, (2.1)
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then by Theorem 15.17 in [7] we have that u € C277 (Q).

We also recall that for every (\,u) € S with u € C1(Q) and u # 0, using the Hopf

maximum principle, we have that « > 0 in Q and the normal exterior derivative 2 is

One
negative in 0f).
The following lemma provides us necessary conditions in A € R for which (P)) admits
solution in some special cases.

Lemma 2.1. Assume (A1 3) and that (Py) admits a positive solution. Then

1. Mg < X (respect. <,>,>) if for every s € RT, A(x,0) < A(z,s) (respect. <,>,>).

2. Aoo > A (respect. >, <, <) if for every s € R, A (z) > A(z,s) (respect. >, <, <).

Proof. The result follows from the fact that for given symmetric matrices Bi(x),
By (x) for which there exist A1(Bp) and A1 (B2), with 0 < By < Bs then

)\1(31) = inf {/QBl(l‘)VU . Vu, u e H&(Q), ||uH2 = 1} S )\1(32)

Thus, if u € HE(Q) is a solution of (Py), we conclude by taking into account that
A=A (A(z,uw)). O

The main result of this section is the following:

Theorem 2.2. Assume (Aj_4). We have that Ao and A, are the only bifurcation
points from the trivial solution and from infinity, respectively, and there exists a con-
tinuum ¥ C S of positive solutions meeting (Ag,0) and (A, 00), in particular, (Py)
possesses a positive solution for every A € (Mg, Aoo) O A € (Moo, o). Moreover,

e the bifurcation from \g is subcritical (resp. supercritical) if there exists so > 0 such
that

Az, s) < A(z,0), (respect. A(z,s) > A(x,0)), Vs € (0,50),
e the bifurcation from A, is subcritical (resp. supercritical) if

A(z,5) < Aso(z), (resp. A(z,s) > Ax(z)), Vs € RT.

Furthermore,

o if A(2,0) < A(z,s) < Ax(x) for every s € RT, then there exists nontrivial solution
for (Py) if, and only if, A\ € (Ao, Axo), In particular Projr¥ = [Ao,Aeo). If, in
addition, A(x, s) is increasing in s and it verifies (2.1), the solution is unique.

o If A(x,0) > A(x,s) > Ao (x) for every s € RT, then there exists nontrivial solution
for (Py) if, and only if, A € (Ao, A), in particular ProjrY = (Aso, Ao)-
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Proof. The existence of the continuum ¥ of positive solutions follows by Theorem 5.1
in [1], and so the existence of positive solutions for every A in (Ag, Aoo) Or in (Moo, Ag)-

The description Projgr3, in the cases A(x,0) < A(z, s) < As(z) or A(z,0) < A(z,s) <
As(z) for every s € R, follows directly from Lemma 2.1. Moreover, arguing as in that
lemma we get the laterality of the bifurcations.

Now, assume that A(z,s) is increasing in s and (2.1) is satisfied. In order to prove
the uniqueness of solution for (Py), let us suppose that there exist A € (Mg, \»o) and
uy,us € E, solutions of (Py) with u; # us. We claim that wj,us can be chosen such
that u; < we. Indeed, this is a consequence of the existence of a sequence (A, u,) with
An — Ao and u, — 0 in E. In fact, by regularity results, u,, — 0 in C*(2). Thus, for
An < A, uy, is a subsolution for (Py) and for large n, u,, < min{uy,us}. Then, by the sub
and supersolution method, there exits w € E solution of (Py) with

Up Sw < up, Uy < w < usg.

This implies that w # u; or w # ug, and the claim is proved by taking w; = w and
Uy = U; forsomei—l 2.

Now we take v = —2 as test function in the equation satisfied by u; and v = us in that
satisfied by us. ThUb subtractmg both equalities we have that:

2
Uz

0 = /A(x,ul)Vu1~V<> f/A(x,uQ)VUgVuQ
Q U1 Q

Az, uy) <u2Vu1 — VU2> . <U2Vu1 — Vuz>
Q uy u1
—/ (A(x,uz) — A(z,u1)) Vug - Vug < 0.
Q

This contradiction gives the uniqueness. O

3. The case of unbounded matrices A

In this section, we study (P) when A is not necessarily bounded and does not satisfy
(A3z). We prove firstly that every solution of (Py) is bounded. More precisely we have

Lemma 3.1. Let A(z,s) satisfy (A1) and u € H}(Q) be a solution of (Py), then
u € E. Moreover, there exist positive constants ci,ca, 1,72 such that

lullg” < e1 + callul?>. (3.1)

Proof. Once we know that u € L*>(Q), and |Ju||2t < ¢1 + c2fju||”? for some positive
constants ¢y, ca,71, 72, then the result follows directly from the De Giorgi-Stampacchia
Theorem. Let us prove the L>(f2)-estimate. We consider for every k € R* the function
Gy :R{ — R{ given by

0 0<s<k,
s—k s> k.
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Thus, we can take v = Gp(u) as test function in the weak equation satisfied by u and
using (A;) we have

al|VGL(u)|3 < /QA(a?,u)VuVGk(u) < )\/qu(u), (3.2)

Qp,

where Qp = {z € Q: u(x) > k}.
Using the Sobolev and Holder inequalities, in the case N > 2, by (3.2) we yield, for
o

u € L"(Q2) with r > 57—, and some positive constant c,

o+ (meas ) (171771727 (3.3)

1Gk(w)3- < cllull[|Gr(u)

Taking into account that, for every h > k, Gp(u) > h — k in Qp, (3.3) implies that
(h — k)(meas Q3,)"?" < c||ul|,(meas Q)1 =1/7=1/2)]

or equivalently
cllul|? (meas )2 ~1-2"/7

s (3.4)

meas (2, <

We can now apply the Stampacchia Lemma ([8, Lemma 4.1]) to deduce that:
i) if u € L"(Q) with r > &', then u € L®(Q) and [|uflo < cl|ull,,
i) if w € L"() with r = &, then uw € L'(Q) for t € [1,00) and [|ull} < ¢+ |l
iii) if w € L™(Q) with r < &, then u € LY(Q) for t = (2_27T —dand 6 >0

2%)r 2
arbitrarily small. Moreover, |ul|l < ¢+ ¢||ul|tF°.
Since u € L () and 2* > %, we can argue as before for ro = 2*. Thus, if 2* > &
we conclude by item i). In the case 2* = % we use item ii) in order to take ry > % and
conclude again by item i). Finally, in the case 2* < % we can take

2*7'0

5>
2—29rg+2- 70

T =

As before, if rqy > % we easily conclude. In other case we take

2*7'1 5
ry = ———————— — 09.
T e-2)m e

By an iterative argument we conclude after a finite number of steps. Indeed, in other
case, we have that r, is bounded, where r,, is defined recurrently by

- 5n+1~
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where lim,,_, » §, = 0. Moreover, r,, is non decreasing and so it converges to r € (2*, %]
that satisfies
2%r

(2 —29)r 42
that is, 2* = (2 — 2*)r + 2*, which implies that » = 0 and this is a contradiction.

Observe that the estimate (3.1) follows, after this finite number of steps, from estimates
in items i)-iii), and the Sobolev embedding.

Finally, in the case N = 2 we can choose r > q%’z for any ¢ > 2 and argue as before
with 2* replaced by ¢. In this case we finish by item i). O

T =

Along this section, we assume, instead of (Az), that for each so € R there exists 3(so)
such that

|A($73)| < ﬁ(SO)’ (A2)

for (z,s) € Q x [0, s0].
We consider the truncated problems

{—div(A(x,Tn(U))VU) = M, z€, (Pyn)

u = 0, x€09,

being T}, (s) the map defined, for each n € N, by

s 0<s<n,
Tn(s):{n s>n

By Theorem 2.2, there exist X,, unbounded maximal continua of positive solutions such
that (Ao, 0) € 3, for each n € N. Now, we can prove

Theorem 3.2. Suppose that A satisfies (A, 4) and (Ay). Then, there exists an unbounded
continuum ¥ C § such that (A\g,0) € X.

Proof. Firstly, we denote by X7 the connected component of ¥ N (R x B,,(0)) con-
taining (Ao, 0). We claim that

=X fork>n. (3.5)

Indeed, if £ > n and (A, u) € X} then w is solution of (Py ). Thus, X} is a closed and
connected subset of

c{(M\u) € R x E: u is solution non-trivial of (P ,)}

containing (A, 0). So, ¥} C X,, whence we deduce that X7 C X7. We can reason
similarly and obtain that X C ¥, N (R x B,(0)), and so it follows (3.5). So, we get

¥r =lim 3},
k
Therefore, for each n € N we have a continuum

YrCcel{(Au) € Rx E: uis anon-trivial solution of (Py)}
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containing (A, 0) and if (A, u) € X then ||ulg < n.
Now, we are going to prove that

Y C St for each n € N. (3.6)
Indeed, observe that
S = %P C St N (R X By(0)) C Snpr N (R X By (0)),

so, since ZZI} is the connected component of %, 11 N (R x B,11(0)) containing (Ao, 0)
and X7 is a connected of such subset containing it, (3.6) follows.
Finally, we show that the set

satisfies the theorem. Firstly, observe that since 3, is unbounded, ¥ is also unbounded.
Indeed, since Projp ¥, is bounded, so there exists a connected subset of 3, N (R x B,,(0))
containing (Ao, 0) and intersecting with R x 9B,,(0) for each n € N; i.e., for each n € N
there exists (Ay,upn) € 7, with ||u,llo = n.

On the other hand, since X7 is connected and (A\g,0) € X7 for each n € N, it follows
that ¥ is connected.

Finally, we will prove that ¥ is closed. Let (\,u) € ¥. Since ¥ is connected, there
exists a connected and bounded set ¥ C ¥ containing (A\g,0) and (\,u). Thus, there
exists n € N such that

Y cel{(M\u) €ERx E: |Jullo <n, uis non-trivial solution of (Py )}
In particular, ¥’ € ¥,, N (R x B,(0)) whence ¥’ C ¥ and so, (\,u) € ¥" C X. O

Remark 3.3. 1. We would like to point out that the above result is true even in
the case that the limit of A(x,s) does not exist as s — oo.

2. In the case A bounded in some subset of 2, then we can conclude that ProjpX is
bounded. Indeed, assume that |A(z,s)| < v if x € B, where B is a ball such that
B C ), then using the monotony of the principal eigenvalue with respect to the
domain, we obtain

A= M (A, v) < AP (A, w) < AP (0) = yA7 (D).

3. In this case we can obtain a similar result to the main one in [2]. Indeed, for each
r > 0 there exists A\, > 0 and u,. € H}(Q) solution of (Py) with |lullg = 7.

In the next result we show that when A(z,s) tends to infinity as s — oo in the sense of
(Awo), then the bifurcation at infinity disappears, in some sense Ao, — +00 when A(z, s)
tends to infinity.
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Theorem 3.4. Assume that A satisfies (A4), (A2) and (As). Then, there exists a
continuum ¥ C S such that (Ag,0) € X.. Moreover, the interval (Ao, +00) C ProjgX and

lim [luxllo = +o0.
(X, :;\Tzoz
Proof. The existence of the continuum unbounded ¥ bifurcating from (Ao, 0) follows
by Theorem 3.2. Since A = A (A(x,u)) > Ai(al) = ari(I), there do not exist positive
solutions for A small. So, it suffices to prove that it is not possible bifurcation from
infinity. In order to do that we observe that problem (Py) can be written as

— div(B(z,u)g(u)Vu) = Au, z€Q, (Py)
u = 0, z€dQ, A
where g is given by hypothesis (A ) and
B(ZL',U) — A(x7u)
g(u)
Moreover, if we perform the change of variable
w=gw = [ gl
0
problem (P,) is equivalent to
— div(C(z,w)Vw) = Af(w), z€q, Q)
w = 0, x € 09, A

where
C(z,w) = B(z,g '(w)) and  f(w):=g "(w).

Now we argue by contradiction, and assume that there exists a sequence of solutions
(An,uy) of (Py,) such that A\, — A > 0 and |lu,|lo — 0o. Then, by (3.1) we have that
|lun]| — oo and taking w, = g(uy), it is clear that ||w,|[p — oo. In addition, since
(As) implies that a?||u,||?> < ||w,||?, we also have that ||w,|| — oco. For the normalized
sequence z, := muer we know the existence of z € H} (), such that

zp — 2z strongly in L?(€2), and a.e. in Q.

and so, taking w,, /||w,||* as a test function in (Q,, ), we obtain that

a < / C(x,wp)Vzn -V, = Ay Mzn (3.7)
Q o llwall

Now, taking into account that

f(s)

S

— 0 ass— oo,
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and that f(s) < s for each s € RT, we can argue as Theorem 5.5 in [1] and conclude
that

o [lwall ™

Indeed, we can write for every n € N

— 0, asn — oo.

fw) o fwa) o fw)
o Tl o wal o
“ Qy [lwnll

where Qg = {z € : z(z) # 0}. Thus, we only have to prove that
f(wn) o

n=0 Jo, [lwall

)

which is a direct consequence of the Lebesgue Theorem, since for a.e. & € Qq, w,(x) =
zn(z)]|wy || — 400 and then

f(wn(x))

z(xz) — 0, a.e. x € Q.
[[wn]|

Thus, taking limits in (3.7), we have that a < 0, which is a contradiction. O
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