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1. Introduction

Let Ω be a bounded open subset of RN with sufficiently smooth boundary ∂Ω and let
A(x, s) be a real symmetric matrix which coefficients, aij : Ω×R+

0 → R, are Carathéodory
functions.

We assume that there exists a positive constant α satisfying for every (x, s, ξ) ∈ Ω ×
R+ × RN ,

A(x, s)ξ · ξ ≥ α|ξ|2. (A1)

In this paper we analyze the nonlinear eigenvalue problem
{
− div(A(x, u)∇u) = λu, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(Pλ)

where, we say that λ is an eigenvalue for this problem if (Pλ) admits a positive and
nontrivial solution, that is, if there exists u ∈ H1

0 (Ω), u ≥ 0, u 6≡ 0, such that A(x, u)∇u ∈
(L2(Ω))N and ∫

Ω

A(x, u)∇u · ∇v = λ

∫

Ω

uv, ∀v ∈ H1
0 (Ω).
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In addition to the interest itself in the study of (Pλ), this kind of equation has been
used to model a species inhabiting in Ω where its diffusion depends on the density of the
species, which arises in more realistic models, see [3] and references therein.

Problem (Pλ) is well known when A does not depend on s, i.e., when A(x, s) = B(x)
with B = (bij) and bij ∈ L∞(Ω), bij ≥ b0 > 0 in Ω. In this case, there exists the principal
eigenvalue, denoted by λ1(B), for the problem:

{
− div(B(x)∇u) = λu, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.1)

being the unique eigenvalue with a positive eigenfunction, see for instance [5].
In [2], assuming that A satisfies (A1) and

|A(x, s)| ≤ β, for each (x, s) ∈ Ω× R, (A2)

the author proved that for each r > 0, there exists λr > 0 and a positive solution
ur ∈ H1

0 (Ω), of (Pλr ) such that ‖ur‖2 = r. Moreover, denoting by

λ0 := λ1(A(x, 0)),

he showed that if r → 0, then λr → λ0 and
ur

r
converges to a positive eigenfunction

associated to λ0 in H1
0 (Ω). Finally, if A also verifies

lim
s→∞

A(x, s) = A∞(x), uniformly in x ∈ Ω, (A3)

then λr → λ∞ and
ur

r
goes to a positive eigenfunction associated to λ∞ in H1

0 (Ω) as
r →∞, where

λ∞ := λ1(A∞(x)).

In [4], a slightly modification of (Pλ) is analyzed. Under conditions (A1−3), λu + h(x)
for some 0 ≤ h ∈ L2(Ω) is considered instead of λu. But the arguments used to prove
the existence of solution leads to the trivial one in the case h ≡ 0.

In [1], assuming in addition the existence of an Osgood function ω : R+
0 → R such that

|A(x, s1)−A(x, s2)| ≤ ω(|s1 − s2|), (A4)

for every (x, s1), (x, s2) ∈ Ω× R, using a bifurcation analysis, the authors study a more
general problem

{
− div(A(x, u)∇u) = f(λ, x, s), x ∈ Ω,

u = 0, x ∈ ∂Ω,

for f : R × Ω × R 7→ R and A satisfying (A1−4). In the particular case f(λ, x, s) = λs,
from their results it can be deduced the existence of an unbounded continuum (closed and
connected subset) of positive solutions bifurcating from the trivial solution at λ = λ0 and
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meeting with infinity at the value λ = λ∞. Thus, as a consequence, there exists positive
solution of (Pλ) for λ ∈ (λ0, λ∞) or (λ∞, λ0). In the following section we complete this
study for A satisfying (A1−4) by giving sufficient conditions for the uniqueness of positive
solution.

The main goal of this work (see Section 3) is to analyze (Pλ) when A is not neces-
sarily bounded and/or does not satisfy (A3). In this case, we show that there exists an
unbounded continuum of positive solutions bifurcating from the trivial one at λ = λ0.
If, in addition there exists a continuous function g : R+

0 → R, with lim
s→+∞

g(s) = +∞,

satisfying for every (x, s, ξ) ∈ Ω× R+ × RN ,

A(x, s)ξ · ξ ≥ g(s)|ξ|2 ≥ α|ξ|2. (A∞)

then, the bifurcation from infinity at λ = λ∞ (which exists in the bounded case) “dis-
appears”. Specifically, there exists at least a positive solution uλ for λ ∈ (λ0,∞) and
‖uλ‖ → ∞ as λ → ∞. However, if A is bounded in a subset of Ω, then again a bifurca-
tion to infinity exists.

Along the work we will use the following notation:

• H1
0 (Ω) and E = C0(Ω) are the usual Sobolev space and the space of the continuous

functions in Ω vanishing on ∂Ω endowed with the norms ‖u‖ = ‖∇u‖2 and ‖u‖0 =
supΩ |u|, respectively.

• cl(D) denotes the closure of the set D.

• S denotes the set

S = cl{(λ, u) ∈ R× E : u is solution for (Pλ), u ≥ 0, u 6≡ 0}.
Any continuum subset of S will be called a continuum of positive solutions of (Pλ),
although it may contain the trivial solution (λ, 0) for some value of λ > 0.

• I will denote both the identity matrix and the identity operator.

• Given square matrices B1, B2 we say that B1 > 0 (respect. B1 ≥ 0) if the quadratic
form induced by B1 is definite positive (respect. semidefinite positive). We say that
B1 < B2 (respect. B1 ≤ B2) if B2 −B1 > 0 (respect. B2 −B1 ≥ 0).

• The map ProjR : R×E 7→ R stands for the projection of the product space R×E

onto R.

2. The case of bounded matrices A

In order to study problem (Pλ), let us recall that, for matrices A satisfying (A1,2),
if u ∈ H1

0 (Ω) is solution of (Pλ) then using the De Giorgi-Stampacchia Theorem ([8,
Théorème 7.3] and [6, Theorem I] or [7, Theorem 8.29]), u ∈ C0,γ(Ω) for some 0 < γ < 1.
Moreover, if the coefficients of the matrix A satisfy

aij ∈ C1,γ′(Ω× R), for some 0 < γ′ < 1, (2.1)
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then by Theorem 15.17 in [7] we have that u ∈ C2,γγ′
0 (Ω).

We also recall that for every (λ, u) ∈ S with u ∈ C1(Ω) and u 6≡ 0, using the Hopf
maximum principle, we have that u > 0 in Ω and the normal exterior derivative ∂u

∂ne
is

negative in ∂Ω.
The following lemma provides us necessary conditions in λ ∈ R for which (Pλ) admits

solution in some special cases.

Lemma 2.1. Assume (A1,3) and that (Pλ) admits a positive solution. Then

1. λ0 ≤ λ (respect. <,≥, >) if for every s ∈ R+, A(x, 0) ≤ A(x, s) (respect. <,≥, >).

2. λ∞ ≥ λ (respect. >,≤, <) if for every s ∈ R+, A∞(x) ≥ A(x, s) (respect. >,≤, <).

Proof. The result follows from the fact that for given symmetric matrices B1(x),
B2(x) for which there exist λ1(B1) and λ1(B2), with 0 < B1 ≤ B2 then

λ1(B1) = inf
{∫

Ω

B1(x)∇u · ∇u, u ∈ H1
0 (Ω), ‖u‖2 = 1

}
≤ λ1(B2).

Thus, if u ∈ H1
0 (Ω) is a solution of (Pλ), we conclude by taking into account that

λ = λ1(A(x, u)). ut

The main result of this section is the following:

Theorem 2.2. Assume (A1−4). We have that λ0 and λ∞ are the only bifurcation

points from the trivial solution and from infinity, respectively, and there exists a con-

tinuum Σ ⊂ S of positive solutions meeting (λ0, 0) and (λ∞,∞), in particular, (Pλ)
possesses a positive solution for every λ ∈ (λ0, λ∞) or λ ∈ (λ∞, λ0). Moreover,

• the bifurcation from λ0 is subcritical (resp. supercritical) if there exists s0 > 0 such

that

A(x, s) < A(x, 0), (respect. A(x, s) > A(x, 0)), ∀s ∈ (0, s0),

• the bifurcation from λ∞ is subcritical (resp. supercritical) if

A(x, s) < A∞(x), (resp. A(x, s) > A∞(x)), ∀s ∈ R+.

Furthermore,

• if A(x, 0) < A(x, s) < A∞(x) for every s ∈ R+, then there exists nontrivial solution

for (Pλ) if, and only if, λ ∈ (λ0, λ∞), in particular ProjRΣ = [λ0, λ∞). If, in

addition, A(x, s) is increasing in s and it verifies (2.1), the solution is unique.

• If A(x, 0) > A(x, s) > A∞(x) for every s ∈ R+, then there exists nontrivial solution

for (Pλ) if, and only if, λ ∈ (λ∞, λ0), in particular ProjRΣ = (λ∞, λ0].



Non-bounded quasi-linear operator 5

Proof. The existence of the continuum Σ of positive solutions follows by Theorem 5.1
in [1], and so the existence of positive solutions for every λ in (λ0, λ∞) or in (λ∞, λ0).

The description ProjRΣ, in the cases A(x, 0) < A(x, s) < A∞(x) or A(x, 0) < A(x, s) <

A∞(x) for every s ∈ R+, follows directly from Lemma 2.1. Moreover, arguing as in that
lemma we get the laterality of the bifurcations.

Now, assume that A(x, s) is increasing in s and (2.1) is satisfied. In order to prove
the uniqueness of solution for (Pλ), let us suppose that there exist λ ∈ (λ0, λ∞) and
u1, u2 ∈ E, solutions of (Pλ) with u1 6≡ u2. We claim that u1, u2 can be chosen such
that u1 ≤ u2. Indeed, this is a consequence of the existence of a sequence (λn, un) with
λn → λ0 and un → 0 in E. In fact, by regularity results, un → 0 in C1(Ω). Thus, for
λn < λ, un is a subsolution for (Pλ) and for large n, un ≤ min{u1, u2}. Then, by the sub
and supersolution method, there exits w ∈ E solution of (Pλ) with

un ≤ w ≤ u1, un ≤ w ≤ u2.

This implies that w 6≡ u1 or w 6≡ u2, and the claim is proved by taking u1 = w and
u2 = ui for some i = 1, 2.

Now we take v = u2
2

u1
as test function in the equation satisfied by u1 and v = u2 in that

satisfied by u2. Thus, subtracting both equalities we have that:

0 =
∫

Ω

A(x, u1)∇u1 · ∇
(

u2
2

u1

)
−

∫

Ω

A(x, u2)∇u2 · ∇u2

= −
∫

Ω

A(x, u1)
(

u2

u1
∇u1 −∇u2

)
·
(

u2

u1
∇u1 −∇u2

)

−
∫

Ω

(A(x, u2)−A(x, u1))∇u2 · ∇u2 < 0.

This contradiction gives the uniqueness. ut

3. The case of unbounded matrices A

In this section, we study (Pλ) when A is not necessarily bounded and does not satisfy
(A3). We prove firstly that every solution of (Pλ) is bounded. More precisely we have

Lemma 3.1. Let A(x, s) satisfy (A1) and u ∈ H1
0 (Ω) be a solution of (Pλ), then

u ∈ E. Moreover, there exist positive constants c1, c2, γ1, γ2 such that

‖u‖γ1
0 ≤ c1 + c2‖u‖γ2 . (3.1)

Proof. Once we know that u ∈ L∞(Ω), and ‖u‖γ1∞ ≤ c1 + c2‖u‖γ2 for some positive
constants c1, c2, γ1, γ2, then the result follows directly from the De Giorgi-Stampacchia
Theorem. Let us prove the L∞(Ω)-estimate. We consider for every k ∈ R+ the function
Gk : R+

0 → R+
0 given by

Gk(s) =

{
0 0 ≤ s ≤ k,

s− k s > k.
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Thus, we can take v = Gk(u) as test function in the weak equation satisfied by u and
using (A1) we have

α‖∇Gk(u)‖22 ≤
∫

Ω

A(x, u)∇u∇Gk(u) ≤ λ

∫

Ωk

uGk(u), (3.2)

where Ωk ≡ {x ∈ Ω : u(x) > k}.
Using the Sobolev and Hölder inequalities, in the case N > 2, by (3.2) we yield, for

u ∈ Lr(Ω) with r > 2∗
2∗−1 , and some positive constant c,

‖Gk(u)‖22∗ ≤ c‖u‖r‖Gk(u)‖2∗(meas Ωk)(1−1/r−1/2∗). (3.3)

Taking into account that, for every h > k, Gk(u) ≥ h− k in Ωh, (3.3) implies that

(h− k)(meas Ωh)1/2∗ ≤ c‖u‖r(meas Ωk)(1−1/r−1/2∗),

or equivalently

meas Ωh ≤ c‖u‖2∗r (meas Ωk)2
∗−1−2∗/r

(h− k)2∗
. (3.4)

We can now apply the Stampacchia Lemma ([8, Lemma 4.1]) to deduce that:

i) if u ∈ Lr(Ω) with r > N
2 , then u ∈ L∞(Ω) and ‖u‖∞ ≤ c‖u‖r,

ii) if u ∈ Lr(Ω) with r = N
2 , then u ∈ Lt(Ω) for t ∈ [1,∞) and ‖u‖t

t ≤ c + c′‖u‖t
r,

iii) if u ∈ Lr(Ω) with r < N
2 , then u ∈ Lt(Ω) for t = 2∗r

(2−2∗)r+2∗ − δ and δ > 0
arbitrarily small. Moreover, ‖u‖t

t ≤ c + c′‖u‖t+δ
r .

Since u ∈ L2∗(Ω) and 2∗ > 2∗
2∗−1 , we can argue as before for r0 = 2∗. Thus, if 2∗ > N

2

we conclude by item i). In the case 2∗ = N
2 we use item ii) in order to take r1 > N

2 and
conclude again by item i). Finally, in the case 2∗ < N

2 we can take

r1 =
2∗r0

(2− 2∗)r0 + 2∗
− δ1 > r0.

As before, if r1 ≥ N
2 we easily conclude. In other case we take

r2 =
2∗r1

(2− 2∗)r1 + 2∗
− δ2.

By an iterative argument we conclude after a finite number of steps. Indeed, in other
case, we have that rn is bounded, where rn is defined recurrently by





r0 = 2∗

rn+1 =
2∗rn

(2− 2∗)rn + 2∗
− δn+1.
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where limn→∞ δn = 0. Moreover, rn is non decreasing and so it converges to r ∈ (2∗, N
2 ]

that satisfies
r =

2∗r
(2− 2∗)r + 2∗

,

that is, 2∗ = (2− 2∗)r + 2∗, which implies that r = 0 and this is a contradiction.
Observe that the estimate (3.1) follows, after this finite number of steps, from estimates

in items i)-iii), and the Sobolev embedding.
Finally, in the case N = 2 we can choose r > q

q−2 for any q > 2 and argue as before
with 2∗ replaced by q. In this case we finish by item i). ut

Along this section, we assume, instead of (A2), that for each s0 ∈ R+ there exists β(s0)
such that

|A(x, s)| ≤ β(s0), (Ã2)

for (x, s) ∈ Ω× [0, s0].
We consider the truncated problems

{
− div(A(x, Tn(u))∇u) = λu, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(Pλ,n)

being Tn(s) the map defined, for each n ∈ N, by

Tn(s) =

{
s 0 ≤ s ≤ n,

n s > n.

By Theorem 2.2, there exist Σn unbounded maximal continua of positive solutions such
that (λ0, 0) ∈ Σn for each n ∈ N. Now, we can prove

Theorem 3.2. Suppose that A satisfies (A1,4) and (Ã2). Then, there exists an unbounded

continuum Σ ⊂ S such that (λ0, 0) ∈ Σ.

Proof. Firstly, we denote by Σn
k the connected component of Σk ∩ (R×Bn(0)) con-

taining (λ0, 0). We claim that

Σn
k = Σn

n for k ≥ n. (3.5)

Indeed, if k ≥ n and (λ, u) ∈ Σn
k then u is solution of (Pλ,n). Thus, Σn

k is a closed and
connected subset of

cl{(λ, u) ∈ R× E : u is solution non-trivial of (Pλ,n)}
containing (λ0, 0). So, Σn

k ⊂ Σn, whence we deduce that Σn
k ⊂ Σn

n. We can reason
similarly and obtain that Σn

n ⊂ Σk ∩ (R×Bn(0)), and so it follows (3.5). So, we get

Σn
n = lim

k
Σn

k .

Therefore, for each n ∈ N we have a continuum

Σn
n ⊂ cl{(λ, u) ∈ R× E : u is a non-trivial solution of (Pλ)}
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containing (λ0, 0) and if (λ, u) ∈ Σn
n then ‖u‖0 ≤ n.

Now, we are going to prove that

Σn
n ⊂ Σn+1

n+1 for each n ∈ N. (3.6)

Indeed, observe that

Σn
n = Σn

n+1 ⊂ Σn+1 ∩ (R×Bn(0)) ⊂ Σn+1 ∩ (R×Bn+1(0)),

so, since Σn+1
n+1 is the connected component of Σn+1 ∩ (R × Bn+1(0)) containing (λ0, 0)

and Σn
n is a connected of such subset containing it, (3.6) follows.

Finally, we show that the set

Σ =
∞⋃

n=1

Σn
n

satisfies the theorem. Firstly, observe that since Σn is unbounded, Σ is also unbounded.
Indeed, since ProjRΣn is bounded, so there exists a connected subset of Σn∩ (R×Bn(0))
containing (λ0, 0) and intersecting with R× ∂Bn(0) for each n ∈ N; i.e., for each n ∈ N
there exists (λn, un) ∈ Σn

n, with ‖un‖0 = n.
On the other hand, since Σn

n is connected and (λ0, 0) ∈ Σn
n for each n ∈ N, it follows

that Σ is connected.
Finally, we will prove that Σ is closed. Let (λ, u) ∈ Σ. Since Σ is connected, there

exists a connected and bounded set Σ′ ⊂ Σ containing (λ0, 0) and (λ, u). Thus, there
exists n ∈ N such that

Σ′ ⊂ cl{(λ, u) ∈ R× E : ‖u‖0 ≤ n, u is non-trivial solution of (Pλ,n)}.

In particular, Σ′ ⊂ Σn ∩ (R×Bn(0)) whence Σ′ ⊂ Σn
n and so, (λ, u) ∈ Σn

n ⊂ Σ. ut

Remark 3.3. 1. We would like to point out that the above result is true even in
the case that the limit of A(x, s) does not exist as s →∞.

2. In the case A bounded in some subset of Ω, then we can conclude that ProjRΣ is
bounded. Indeed, assume that |A(x, s)| ≤ γ if x ∈ B, where B is a ball such that
B ⊂ Ω, then using the monotony of the principal eigenvalue with respect to the
domain, we obtain

λ = λ1(A(x, u)) ≤ λB
1 (A(x, u)) ≤ λB

1 (γI) = γλB
1 (I).

3. In this case we can obtain a similar result to the main one in [2]. Indeed, for each
r > 0 there exists λr > 0 and ur ∈ H1

0 (Ω) solution of (Pλ) with ‖u‖0 = r.

In the next result we show that when A(x, s) tends to infinity as s →∞ in the sense of
(A∞), then the bifurcation at infinity disappears, in some sense λ∞ → +∞ when A(x, s)
tends to infinity.
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Theorem 3.4. Assume that A satisfies (A4), (Ã2) and (A∞). Then, there exists a

continuum Σ ⊂ S such that (λ0, 0) ∈ Σ. Moreover, the interval (λ0, +∞) ⊂ ProjRΣ and

lim
λ → +∞

(λ, uλ) ∈ Σ

‖uλ‖0 = +∞.

Proof. The existence of the continuum unbounded Σ bifurcating from (λ0, 0) follows
by Theorem 3.2. Since λ = λ1(A(x, u)) ≥ λ1(αI) = αλ1(I), there do not exist positive
solutions for λ small. So, it suffices to prove that it is not possible bifurcation from
infinity. In order to do that we observe that problem (Pλ) can be written as

{
− div(B(x, u)g(u)∇u) = λu, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(Pλ)

where g is given by hypothesis (A∞) and

B(x, u) :=
A(x, u)
g(u)

.

Moreover, if we perform the change of variable

w = g̃(u) =
∫ u

0

g(t)dt,

problem (Pλ) is equivalent to
{
− div(C(x, w)∇w) = λf(w), x ∈ Ω,

w = 0, x ∈ ∂Ω,
(Qλ)

where
C(x,w) := B(x, g̃−1(w)) and f(w) := g̃−1(w).

Now we argue by contradiction, and assume that there exists a sequence of solutions
(λn, un) of (Pλn) such that λn → λ > 0 and ‖un‖0 → ∞. Then, by (3.1) we have that
‖un‖ → ∞ and taking wn = g̃(un), it is clear that ‖wn‖0 → ∞. In addition, since
(A∞) implies that α2‖un‖2 ≤ ‖wn‖2, we also have that ‖wn‖ → ∞. For the normalized
sequence zn := wn

‖wn‖ we know the existence of z ∈ H1
0 (Ω), such that

zn → z strongly in L2(Ω), and a.e. in Ω.

and so, taking wn/‖wn‖2 as a test function in (Qλn), we obtain that

α ≤
∫

Ω

C(x,wn)∇zn · ∇zn = λn

∫

Ω

f(wn)
‖wn‖ zn. (3.7)

Now, taking into account that

f(s)
s

→ 0 as s →∞,
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and that f(s) ≤ 1
αs for each s ∈ R+, we can argue as Theorem 5.5 in [1] and conclude

that ∫

Ω

f(wn)
‖wn‖ zn → 0, as n →∞.

Indeed, we can write for every n ∈ N
∫

Ω

f(wn)
‖wn‖ zn =

∫

Ω

f(wn)
‖wn‖ (zn − z) +

∫

Ω

f(wn)
‖wn‖ z

≤ 1
α
‖zn‖2‖zn − z‖2 +

∫

Ω0

f(wn)
‖wn‖ z,

where Ω0 = {x ∈ Ω : z(x) 6= 0}. Thus, we only have to prove that

lim
n→∞

∫

Ω0

f(wn)
‖wn‖ z = 0,

which is a direct consequence of the Lebesgue Theorem, since for a.e. x ∈ Ω0, wn(x) =
zn(x)‖wn‖ → +∞ and then

f(wn(x))
‖wn‖ z(x) → 0, a.e. x ∈ Ω0.

Thus, taking limits in (3.7), we have that α ≤ 0, which is a contradiction. ut
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