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Abstract

Let (A, D(A)) a diagonalizable generator of a C0−semigroup of contractions on a com-

plex Hilbert space X, B 2 L(C, Y ), Y being some suitable extrapolation space of X, and

u 2 L2(0, T ;C). Under some assumptions on the sequence of eigenvalues Λ = {λk}k≥1 ⇢ C of

(A, D(A)), we prove the existence of a minimal time T0 2 [0,1] depending on Bernstein’s con-

densation index of Λ and on B such that y0 = Ay+Bu is null-controllable at any time T > T0 and

not null-controllable for T < T0. As a consequence, we solve controllability problems of various

systems of coupled parabolic equations. In particular, new results on the boundary controllability

of one-dimensional parabolic systems are derived. These seem to be difficult to achieve using

other classical tools.
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1 Introduction

The starting point of this paper is to deal with the controllability properties of non-scalar parabolic

systems. Before describing the problem under consideration, let us recall some known results about

the controllability properties of scalar parabolic systems. The null controllability problem for scalar

parabolic systems has been first considered in the one-dimensional case. Let us consider the following

null controllability problem: Given y0 2 H−1(0, ⇡), can we find a control v 2 L2(0, T ) such that the

corresponding solution y 2 C([0, T ];H−1(0, ⇡)) to

8
><
>:

@ty − @xxy = 0 in Q := (0, ⇡)⇥ (0, T ),

y(0, ·) = v, y(⇡, ·) = 0 on (0, T ),

y(·, 0) = y0 in (0, ⇡),

(1.1)

satisfies

y(·, T ) = 0 in (0, ⇡)? (1.2)

Using the moment method, H. O. Fattorini and D. L. Russell gave a positive answer to the previous

controllability question (see [10] and [11]). Let us briefly recall the main ideas of this moment method.

It is well-known that the operator −@xx on (0, ⇡) with homogenous Dirichlet boundary conditions

admits a sequence of eigenvalues and normalized eigenfunctions given by

µk = k2, Φk(x) =

r
2

⇡
sin kx, k ≥ 1, x 2 (0, ⇡), (1.3)

and the sequence {Φk}k≥1 is a Hilbert basis of L2(0, ⇡). Given y0 2 H−1(0, ⇡), there exists a control

v 2 L2(0, T ) such that the solution y to (1.1) satisfies (1.2) if and only if there exists v 2 L2(0, T )
satisfying

−hy0, e−µkTΦkiH−1(0,⇡),H1
0 (0,⇡)

=

Z T

0
v(t)e−µk(T−t)@xΦk(0) dt, 8k ≥ 1.

Using the Fourier decomposition of y0, y0 =
P

k≥1 y0kΦk, this is equivalent to the existence of

v 2 L2(0, T ) such that

k

r
2

⇡

Z T

0
e−µk(T−t)v(t) dt = −e−µkT y0k, 8k ≥ 1.
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This problem is called a moment problem. In [10] and [11], the authors solved the previous moment

problem by proving the existence of a biorthogonal family {qk}k≥1 to {e−µkt}k≥1 in L2(0, T ) which,

in particular, satisfies the additional property: for every ✏ > 0 there exists a constant C(✏, T ) > 0
such that

kqkkL2(0,T )  C(✏, T )e✏µk , 8k ≥ 1. (1.4)

The control is obtained as a linear combination of {qk}k≥1, that is,

v(T − s) =

r
⇡

2

X

k≥1

1

k
e−µkT y0kqk(s)

and the previous bounds (1.4) are used to prove that this series converges in L2(0, T ) for any positive

time T . In fact, in [10] and [11] the authors proved a general result on existence of a biorthogonal

family to {e−Λkt}k≥1 in L2(0, T ) which fulfils appropriate bounds if the sequence Λ = {Λk}k≥1 ⇢
R+ satisfies X

k≥1

1

Λk
<1 and |Λk − Λl| ≥ ⇢|k − l|, 8k, l ≥ 1, (1.5)

for a constant ⇢ > 0.

It is interesting to point out how the assumptions in (1.5) are used in order to get the null control-

lability result for System (1.1):

1. The convergence of the previous series implies that the sequence {e−Λkt}k≥1 is not total in

L2(0, T ;C) and forms a strongly independent set in L2(0, T ). In fact, this assumption assures

the existence of a biorthogonal family to {e−Λkt}k≥1 in L2(0, T ).

2. The previous gap property in (1.5) for the sequence Λ is crucial for obtaining property (1.4) and

the null controllability result for System (1.1) for arbitrary small times T .

In 1973, S. Dolecki addressed the pointwise controllability at time T of the one-dimensional

heat equation (see [9]). That is to say: Given T > 0 and y0 2 H−1(0, ⇡), can we find a control

v 2 L2(0, T ) such that the solution y 2 C([0, T ];H−1(0, ⇡)) of

8
><
>:

@ty − @xxy = δx0v(t) in Q,

y(0, ·) = 0, y(⇡, ·) = 0 on (0, T ),

y(·, 0) = y0 in (0, ⇡),

(1.6)

satisfies (1.2)? Here x0 2 (0, ⇡) is a given point and δx0 is the Dirac distribution at this point x0.

Using again the existence of a biorthogonal family in L2(0, T ) to the exponentials {e−µkt}k≥1 and

the bounds (1.4), S. Dolecki exhibited a minimal time T0 such that System (1.6) is not null controllable

at time T if T < T0 and is null controllable at time T when T > T0. This minimal time T0 in some

way “measures” the asymptotic behavior of

hδx0 ,ΦkiH−1(0,⇡),H1
0 (0,⇡)

= Φk(x0), 8k ≥ 1,

with respect to the eigenvalues µk. Of course, this minimal time depends on the point x0. To our

knowledge, this was the first result on null controllability of parabolic problems where a minimal time

of control appears. Let us emphasize that the results of [10], [11] and [9] strongly use the gap property

satisfied by the eigenvalues of the Laplace operator (second property of (1.5)).
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The extension of these results to systems of parabolic equations is then a natural question. In the

case of boundary control, the simplest form of these systems is given by

8
><
>:

@ty − (D@xx +A)y = 0 in Q,

y(0, ·) = Bv, y(⇡, ·) = 0 on (0, T ),

y(·, 0) = y0 in (0, ⇡),

(1.7)

Here, D = diag (d1, . . . , dn), with di > 0 for i : 1  i  n, A = (aij)1i,jn 2 L(Rn) and

B 2 L(Rm,Rn). In System (1.7), v 2 L2(0, T ;Rm) is the control and we want to control the

complete system (n equations) by means of m controls exerted on the boundary condition at point

x = 0. Observe that the most interesting (and difficult) case is the case m < n.

The first results of null controllability for System (1.7) was obtained in [12] in the case n = 2,

m = 1 and D = Id. This result was generalized by [3] to the case n ≥ 2, m ≥ 1 and D = Id.

In these two papers, the authors used the method of moments of Fattorini-Russell to give a necessary

and sufficient condition of null controllability at any time T > 0 for System (1.7). This condition

is a generalization to non-scalar parabolic systems of the well-known Kalman rank condition for

controllability of linear ordinary differential systems (see [21, Chapter 2, p. 35]). In this case the

difficulty comes, firstly, from the fact that the matrix operator A := Id@xx + A has eigenvalues

with (geometric or algebraic) multiplicity greater than 1 and, secondly, from having less controls than

equations (m < n). To overcome both difficulties, the authors extend the results in [10, 11], construct

a biorthogonal family to {tje−λt, j 2 J, λ 2 Λ} in L2(0, T ;C) (J is a finite subset of N and Λ ⇢ C

is the set of complex eigenvalues of −A) and estimate the L2(0, T ;C)-norm of its elements. In both

cases, the eigenvalues of the matrix operator A with Dirichlet boundary conditions continue to satisfy

the gap condition in (1.5). As in the scalar case (see System (1.1)), this gap property (together with

appropriate properties for the coupling and control matricesA andB) provides the null controllability

result for System (1.7) at any positive time.

The main motivation of this work is the extension of the previous null controllability results for

System (1.7) to the case whereD 6= Id, n > 1 andm < n. The main difference with the caseD = Id
lies in the behavior of the sequence of eigenvalues of the matrix operator A := D@xx + A. Even in

simple cases, the operator −A admits a complex sequence of eigenvalues Λ = {Λk}k≥1 which does

not satisfy the gap condition appearing in (1.5). Even so, following the work [3], we will see that,

under appropriate assumptions (see (2.2)) and for any positive time T , it is possible to prove the

existence of a biorthogonal family {qk}k≥1 to {e−Λkt}k≥1 in L2(0, T ;C) but, in general, this family

does not satisfy (1.4) (with <(Λk) instead of µk). As a consequence, we will see that a minimal time

of control T0 2 [0,+1] appears in such a way that System (1.7) is not null controllable at any time

T < T0. Let us mention the work [25] where one can find the first example of matrices D, A and B
for which the minimal time is T0 = +1 and, therefore, System (1.7) is not null controllable at any

positive time T . It is interesting to notice that the system treated in [25] is approximately controllable

at any positive time T .

In some situations, the boundary controllability problem (1.7) is a particular case of more abstract

control problems of the following form:

(
y0 = Ay + Bu on (0, T )

y(0) = y0,
(1.8)

where:
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• A is such that −A is the generator of a C0−semigroup of contractions on a complex Hilbert

space X whose eigenfunctions form a Riesz basis in X and whose sequence of eigenvalues

Λ = {λk}k≥1 ⇢ C satisfies (2.2).

• B 2 L(C, Y ), Y being some suitable extrapolation space of X, and u 2 L2(0, T ;C) is the

control.

In this paper, we study the controllability properties of System (1.8). Let us remark that the

eigenvalues of the diagonalizable operator −A, in general, do not satisfy the gap condition in (1.5)

and so, the results in [10] and [11] cannot be applied.

In our work, we obtain two kinds of controllability results for System (1.8). Firstly, we exhibit a

Kalman type condition that ensures the approximate controllability of System (1.8) at time T . This

condition is independent of T and only depends on B and the eigenfunctions of A. Secondly, assuming

the previous Kalman condition, we establish the existence of a minimal time T0 2 [0,1] (see (2.13))

such that System (1.8) is null controllable in X at time T if T > T0 and is not null controllable in X

at time T when T < T0. Again, as in [9], we obtain a minimal time of controllability for the abstract

parabolic problem (1.8). This is, in fact, the main result in this paper (Section 2).

The previous minimal time T0 is related to the operator B and to the so-called condensation index

of the sequence Λ of eigenvalues of the operator −A, c(Λ). To our knowledge, this condensation index

has been introduced for the first time by Vl. Bernstein (see [5]) for increasing real sequences and later

extended by J. R. Shackell (see [27]) to complex sequences. The goal of these two authors was to

study the domain of overconvergence of Dirichlet series with real or complex exponents. Roughly

speaking, if we consider the complex sequence Λ = {λk}k≥1 ⇢ C, the condensation index of Λ,

c(Λ), is a measure of the way how λn approaches λm for n 6= m and it is interesting to observe that

if, in addition, the sequence Λ satisfies the second condition of (1.5), then c(Λ) = 0.

In some recent works, Jacob et al. (see [18] and [19]) also give a minimal time which provides the

null controllability properties of abstract systems of the kind of (1.8). This authors provide a different

characterization of this minimal controllability time T0 associated with the system. The construction

of this time T0 seems to be less explicit than ours. The method of proof of the corresponding positive

and negative controllability results is also different: their arguments turn around Carleson measures

while ours make use of the condensation index associated with the sequence of eigenvalues of the

operator associated with the abstract parabolic problem.

The proof of our main result is divided into two parts. Firstly, we prove the positive null con-

trollability result for System (1.8) (see Section 5.1) using the moment method and following some

ideas from [10], [11] and [3] (see Section 4). The second part is devoted to proving the negative null

controllability result (Section 5.2). To this end, we carry out a refined study of the condensation index

associated to a class of complex sequences (see Section 3).

In this paper we also give some applications of our main result to scalar and non-scalar parabolic

problems with distributed and boundary controls (Section 6). First, we generalize the controllability

result for the scalar heat equation stated in [9]. Secondly, we provide a complete null controllability

result for System (1.7) in the simplest (but non-trivial) case n = 2, m = 1,

D = diag (1, d), d > 0, and A =

✓
0 1
0 0

◆
.

In this case, the minimal time, T0, only depends on c(Λ), the condensation index of the sequence Λ
of eigenvalues of the matrix operator −D∆ − A associated with homogeneous Dirichlet boundary

conditions, i.e., Λ = {k2, dk2}k≥1. In fact, we will prove that T0 strongly depends on the diophantine
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approximation properties of the irrational number d (see Section 6.2). As third application, we will

consider the null controllability problem for system

8
><
>:

@ty − (D@xx +A) y = f(x)Bv(t) in Q,

y(0, ·) = y(⇡, ·) = 0 on (0, T ),

y(·, 0) = y0 in (0, ⇡),

where D, A and B are as before, f 2 H−1(0, ⇡) is a given function and y0 2 L2(0, ⇡;R2) is the

initial datum. Observe that v 2 L2(0, T ) is a scalar control and we want to control the 2 ⇥ 2 system

with one control force. In this case we will see that the minimal time of control T0 depends on the

same previous condensation index and on the function f .

Up to now we have described some controllability problems (with distributed or boundary con-

trols) for scalar or non-scalar parabolic systems in the one-dimensional case. Let us briefly provide a

non-extensive literature on the corresponding results in the N -dimensional case (N ≥ 2).

The N -dimensional null controllability problem for scalar parabolic equations (with boundary

or distributed controls) was independently solved by G. Lebeau and L. Robbiano, [24] (for the heat

equation), and A. Fursikov and O. Imanuvilov, [13] (for a general parabolic equation). The result in

[24] was obtained through a spectral inequality and this inequality was proved by the authors proving

local Carleman estimates. The result in [13] was obtained by proving Carleman estimates that imply

an observability inequality equivalent to the null controllability or controllability to trajectories of

the parabolic equation. Carleman inequalities have been introduced by [7] for proving uniqueness

results for some PDE’s and have been widely extended by Hörmander (see [16, 17]). See also [23]

where different Carleman inequalities are presented and compared and where some applications to

the controllability of the heat equation is also done.

There are very few results in the literature concerning the boundary null controllability of coupled

parabolic systems in the N -dimensional case (N ≥ 2). In [1] and [2], the authors deal with this

problem in the case of some 2 ⇥ 2 parabolic systems and give some sufficient conditions imposing

appropriate geometric conditions. These conditions are inherited from the method, that consists in

proving a result for coupled hyperbolic equations and then, using the Kannai transform, they obtain

the result for parabolic equations. For a survey of recent results on null controllability (with boundary

or distributed controls) in the framework of non-scalar parabolic systems, see [4] and the references

therein.

In this paper we have treated the null controllability problem for System (1.8) when the opera-

tor A is, among other thinks, diagonalizable, i.e., its eigenfunctions form a Riesz basis in X. In a

forthcoming paper we will address the controllability problem for this system when A admits a Riesz

basis in X of eigenfunctions and generalized eigenfunctions. This will be crucial in order to study the

controllability properties of System (1.7) in the general case.

The plan of the paper is the following one: In Section 2, we address some preliminary results and

we give the main result of this work. In Section 3 we study the so-called condensation index of com-

plex sequences Λ = {λk}k≥1 which satisfy (2.2). This section is crucial in order to prove the negative

controllability result stated in the main result. Section 4 is devoted to the construction and estimates

of a biorthogonal family to complex exponentials. We will use the results of this section for proving

the positive null controllability part of the main result. In Section 5 we give the proof of the main

result. In Section 6 we exhibit some applications of the main result to the null controllability problem

for scalar and non-scalar parabolic systems. Finally, in the Appendix we prove some technical results

from the diophantine approximation theory of irrational numbers.
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2 Preliminaries and main result

Let X be a Hilbert space on C with norm and inner product respectively denoted by k · k and (·, ·). Let

us also consider {φk}k≥1 a Riesz basis of X and let us denote { k}k≥1 the corresponding biorthogonal

sequence to {φk}k≥1. Let us recall that if y 2 X, then

y =
X

k≥1

(y,  k)φk and kyk20 :=
X

k≥1

|(y,  k)|2 <1, (2.1)

and

y =
X

k≥1

(y, φk) k and (kyk⇤0)2 :=
X

k≥1

|(y, φk)|2 <1.

In fact, k · k0 and k · k⇤0 define in X equivalent norms to the usual norm k · k.

Let us also consider a sequence Λ = {λk}k≥1 ⇢ C satisfying

8
><
>:

λi 6= λk, 8i, k 2 N with i 6= k,

< (λk) ≥ δ |λk| > 0, 8k ≥ 1, and
X

k≥1

1

|λk|
<1, (2.2)

for a positive constant δ.

We denote by X−1 (resp., X⇤
−1) the completion of X with respect to the norm:

kyk−1 :=

0
@X

k≥1

|(y,  k)|2

|λk|2

1
A

1/2

, 8y 2 X,

(resp.,

kyk⇤−1 :=

0
@X

k≥1

|(y, φk)|2

|λk|2

1
A

1/2

, 8y 2 X).

On the other hand, the Hilbert space (X1, k·k1) (resp. (X⇤
1, k·k1)) is defined by

X1 := {y 2 X : kyk1 <1} with kyk1 =

0
@X

k≥1

|λk|2 |(y,  k)|2
1
A

1/2

,

(resp.,

X⇤
1 := {y 2 X : kyk⇤1 <1} with kyk⇤1 =

0
@X

k≥1

|λk|2 |(y, φk)|2
1
A

1/2

).

It is well-known (see for instance [29]) that X−1 = (X⇤
1)

0
, the dual space of X⇤

1 with respect to the

pivot space X.

Let us fix T > 0 a real number. We consider a system of the form:

(
y0 = Ay + Bu on (0, T )

y(0) = y0 2 X.
(2.3)
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In the previous system we will assume that A : D(A) ⇢ X ! X is the operator given by:

A = −
X

k≥1

λk (·,  k)φk, (2.4)

with D(A) = X1. Under assumptions (2.2), we can readily prove that A is densely defined and is

invertible with A−1 2 L(X). It is also easy to check that:

A⇤ = −
X

k≥1

λk (·, φk) k, (2.5)

with D(A⇤) = X⇤
1.

The operator A admits an extension A−1 2 L (X,X−1) and we will denote it by the same symbol

A. The C0−semigroup
{
etA
 
t>0

generated by A on X also extends to a C0−semigroup on X−1

generated by (the extension of) A. We will still denote this semigroup by
{
etA
 
t>0

.

In System (2.3), u 2 L2 (0, T ;C) is the control which acts on the system by means of the operator

B 2 L (C,X−1) (thus B⇤ 2 L (X⇤
1,C) ⌘ X−1). In the sequel, we will suppose that B is an admissible

control operator for the semigroup generated by A, i.e., for a positive time T ⇤ one has

R(LT ⇤) ⇢ X,

where

LTu =

Z T

0
e(T−s)ABu(s) ds, 8u 2 L2 (0, T ;C) . (2.6)

Observe that as a consequence of the closed graph theorem, the previous assumption implies that

LT 2 L(L2(0, T ;C),X). Moreover, it can be checked that L⇤
T 2 L(X, L2(0, T ;C)) is given by

L⇤
T'0 = B⇤e(T−t)A⇤

'0, 8'0 2 X.

The mild solution to (2.3) is given by

y(t) = etAy0 +
Z t

0
e(t−s)ABu(s) ds, t 2 (0, T ) (2.7)

and under the admissibility assumption on the operator B, one has y 2 C0([0, T ];X).
We recall that:

Definition 2.1. It will be said that System (2.3) is approximately controllable in X at time T > 0
if for any y0, yd 2 X and any " > 0 there exists a control u 2 L2(0, T ;C) such that the solution

y 2 C0([0, T ];X) to (2.3) satisfies

ky(T )− ydk  ".

On the other hand, it will be said that System (2.3) is null controllable in X at time T > 0 if for all

y0 2 X, there exists u 2 L2(0, T ;C) such that the solution y 2 C0([0, T ];X) to (2.3) satisfies

y(T ) = eTAy0 + LTu = 0.

Remark 2.2. It is possible to define another controllability property of System (2.3): the exact con-

trollability to trajectories in X at time T > 0. It will be said that System (2.3) is exactly controllable

to trajectories in X at time T > 0 if for any y0 2 X and any trajectory by 2 C0([0, T ];X), i.e., a mild
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solution to (2.3) associated with by0 2 X and bu 2 L2(0, T ;C), there exists a control u 2 L2(0, T ;C)
such that the solution y 2 C0([0, T ];X) to (2.3) satisfies

y(T ) = by(T ) in X).

At first sight, this concept could seem stronger than the null controllability property but, thanks to the

linear character of System (2.3), it is easy to check that the null controllability in X at time T > 0 of

this system is equivalent to the exact controllability to trajectories in X at time T . ⇤

It is well-known that the controllability properties of System (2.3) amount to appropriate proper-

ties of the so-called adjoint system to System (2.3). This adjoint system has the form:
(

−'0 = A⇤', on (0, T )

'(T ) = '0 2 X.
(2.8)

Observe that, under the previous assumptions on the operator A, for any '0 2 X System (2.8) admits

a unique weak solution ' 2 C0([0, T ];X). One has (see for instance [29, Theorem 11.2.1] and [30,

Theorems 2.5 and 2.6, p. 213]):

Theorem 2.3. Assume that B 2 L(C,X−1) is an admissible control operator for the semigroup{
etA
 
t>0

generated by A, with A given by (2.4), and Λ = {λk}k≥1 is a complex sequence satisfy-

ing (2.2). Then,

1. System (2.3) is approximately controllable in X at time T if and only if the solutions ' 2
C0([0, T ];X) to the adjoint system (2.8) satisfy the unique continuation property

“If B⇤'(t) = 0 for almost any t 2 [0, T ], then ' ⌘ 0.”

2. System (2.3) is null controllable in X at time T if and only if there exists a constant CT > 0
such that any solution ' 2 C0([0, T ];X) to the adjoint system (2.8) satisfies the observability

inequality

k'(0)k2  CT

Z T

0
|B⇤'(t)|2 dt. ⇤

Let us now take '0 2 X. Then, it is not difficult to check that the corresponding solution to the

adjoint problem (2.8) is given by

'(t) =
X

k≥1

e−λk(T−t) ('0, φk) k, 8t 2 [0, T ]. (2.9)

Thus, as an easy consequence of the previous result we have:

Corollary 2.4. Under the assumptions of Theorem 2.3, one has:

1. System (2.3) is approximately controllable in X at time T if and only if

bk := B⇤ k 6= 0, 8k ≥ 1. (2.10)

2. System (2.3) is null controllable in X at time T if and only if there exists a constant CT > 0
such that

X

k≥1

e−2T<(λk) |ak|2  CT

Z T

0

∣∣∣∣∣∣

X

k≥1

bke
−λk(T−t)ak

∣∣∣∣∣∣

2

, 8{ak}k≥1 2 `2(C). (2.11)
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Proof. 1. Taking '0 =  k in System (2.8), we deduce that condition (2.10) is a necessary condition

for the unique continuation property for System (2.8). On the other hand, let us introduce the notation

ek(t) = e−λkt, 8t 2 [0, T ].

Then, condition (2.2) in particular implies that the sequence {ek}k≥1 is not total in L2(0, T ;C) and

forms a strongly independent set, i.e.,

en 62 span {ek : k 6= n}L
2(0,T ;C)

, 8n ≥ 1, (2.12)

(see Remark 4.4). Let us take '0 2 X such that the solution ' to (2.8) satisfies B⇤'(·) = 0 on (0, T ),
i.e.,

B⇤'(t) =
X

k≥1

e−λk(T−t) ('0, φk)B⇤ k = 0, a.e. on (0, T ).

Property (2.12) implies ' ⌘ 0 and thus the sufficient condition.

2. This point can be easily deduced from Theorem 2.3 using that { k}k≥1 is also a Riesz basis of

X and the expression (2.9).

Remark 2.5. Corollary 2.4 provides two conditions which give the controllability properties of Sys-

tem (2.3). It is clear that the observability inequality (2.11) implies condition (2.10). Therefore, we

deduce that (2.10) is a necessary condition for the null controllability property of System (2.3) at

time T or, equivalently, if System (2.3) is null controllable in X at time T > 0, then this system is

approximately controllable in X at any positive time. ⇤

Corollary 2.4 provides two necessary and sufficient conditions for the approximate and null con-

trollability properties of System (2.3). Observe that condition (2.10) only depends on B and the basis

{ k}k≥1. This condition is independent of the final observation time T . However, we will see that

the observability inequality (2.11) strongly depends on the coefficients {bk}k≥1 and the qualitative

behavior of the sequence Λ of eigenvalues of −A. In fact, we will prove that the null controllability

result for System (2.3) also depends on the final time of observation T > 0 by means of some minimal

controllability time T0 that, in some sense, measures the qualitative behavior of the sequences Λ and

{bk}k≥1.

This is our main result. It reads as follows:

Theorem 2.6. Assume that B 2 L(C,X−1) is an admissible control operator for the semigroup{
etA
 
t>0

generated by A, with A given by (2.4), and Λ = {λk}k≥1 is a complex sequence satisfy-

ing (2.2). Let us suppose furthermore that condition (2.10) holds. Let us introduce

T0 = lim sup

 
log 1

|bk|
<(λk)

+
log 1

|E0(λk)|
<(λk)

!
, (2.13)

where

E(z) =

1Y

k=1

✓
1− z2

λ2k

◆
, z 2 C. (2.14)

Then:

1. System (2.3) is null controllable for T > T0;



Condensation index and null controllability 11

2. System (2.3) is not null controllable for T < T0. ⇤

Remark 2.7. Let us give some remarks about the statement of Theorem 2.6:

1. The proof of Corollary 2.4 also shows that condition (2.10) is a necessary condition for the null

controllability of System (2.3) at any time T > 0.

2. Thanks to assumption (2.2), we deduce that the infinite product (2.14) is uniformly and abso-

lutely convergent on the compact sets of C. In particular, this implies that the value of this

infinite product is independent of the order of the factors. Thus, we deduce that the function E
is holomorphic in C and independent of rearrangements of the sequence Λ.

3. Using again condition (2.2) we also deduce the property E0(λk) 6= 0 for all k ≥ 1. This

guarantees that T0 given by (2.13) is well-defined.

4. We will prove that T0 2 [0,1] (see Theorem 4.8) and, in fact, we will see that T0 could take

any value on the interval [0,1]. Thus, when T0 2 (0,1], from Corollary 2.4 and Theorem 2.6

we deduce that System (2.3) could have the approximate controllability property at a positive

time T wihout being null controllable at this time T . ⇤

Theorem 2.6 establishes the existence of a minimal time T0 which provides the null controllability

properties for System (2.3). In the definition of this optimal time T0 two elements intervene. The first

one

T1 = lim sup
log 1

|bk|
<(λk)

only depends on the sequence Λ and on the control operator B. The second one is the condensation

index of the sequence Λ, c(Λ), (see Definition 3.1) and, of course, only depends on Λ. We will also

see that if T1 = 0 (resp., c(Λ) = 0) then T0 = c(Λ) (resp., T0 = T1) (see Theorem 4.8). In this

sense, we will also see that Theorem 2.6 generalizes the results on null controllability proved in [10],

[11] (where T0 = 0, see Remark 6.27), [9] (where T0 = T1, see Subsection 6.1) and [25] (where

T0 = c(Λ) = 1, see Subsection 6.2).

Theorem 2.6 will be proved in Subsections 5.1 and 5.2.

As we will see in the next sections, when the control operator B is “good” (in some sense), the

minimal time T0 coincides with c(Λ), the condensation index of the sequence Λ. This condensation

index is a measure of the separation of the elements of the complex sequence Λ. We will see that

c(Λ) 2 [0,1] (Remark 3.10) and, if the sequence Λ satisfies the second condition in (1.5), then

c(Λ) = 0 (Proposition 3.11).

Let us now present an interesting application of Theorem 2.6 to the controllability problem for

System (1.7) in the simplest case n = 2,

D =

✓
1 0
0 d

◆
(with d > 0), A =

✓
0 1
0 0

◆
and B =

✓
0
1

◆
,

i.e.,
8
><
>:

@ty1 − @xxy1 = y2 in Q,

y1(0, ·) = y1(⇡, ·) = 0 on (0, T ),

y1(·, 0) = y0,1 in (0, ⇡),

8
><
>:

@ty2 − d@xxy2 = 0 in Q,

y2(0, ·) = v, y2(⇡, ·) = 0 on (0, T ),

y2(·, 0) = y0,2 in (0, ⇡),

(2.15)

where Q is the cylinder Q = (0, ⇡)⇥ (0, T ).
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For any v 2 L2(0, T ) and y0 = (y0,1, y0,2) 2 H−1(0, ⇡;R2) System (1.7) has a unique solution

y = (y1, y2) 2 C0([0, T ];H−1(0, ⇡;R2)

which depends continuously on the data.

As said before, the controllability properties of System (1.7) with n = 2, m = 1 and D = Id are

well-known (see [12]). The case D 6= Id is widely open and only few results are known (see [25]) .

We will see that, for System (2.15) with d 6= 1, it is possible to apply Corollary 2.4.1 and Theorem 2.6,

with X = H−1(0, ⇡;R2), obtaining the following result:

Theorem 2.8. Assume that d 6= 1. Then, one has

1. System (2.15) is approximately controllable in X = H−1(0, ⇡;R2) at time T > 0 if and only ifp
d /2 Q.

2. Assume that
p
d /2 Q. Then, there exists a time Td 2 [0,1], which only depends on d, such that

(a) System (2.15) is null controllable in X = H−1(0, ⇡;R2) at any time T > Td;

(b) System (2.15) is not null controllable in X for T < Td. ⇤

From this result we deduce that the controllability properties of System (2.15) depend on the

diffusion coefficient d via the condition
p
d /2 Q and the minimal time Td. We will also see that

this minimal null controllability time is in fact the condensation index associated to the sequence of

eigenvalues of the operator −(D@xx +A), does not depend on B and can be explicitly computed.

In Subsection 6.2 we will also analyze the dependence of the optimal time Td with respect to d
and we will see that this dependence is, in fact, very intricate and connected with the diophantine

approximation of the irrational
p
d:

Theorem 2.9. Assume that d 6= 1. Then, one has

1. For any τ0 2 [0,1], there exists d 2 (0,1), satisfying
p
d 62 Q, such that Td = τ0.

2. There exists M ⇢ (0,1), with |M| = 0, such that Td = 0 for all d 2 (0,1) \M.

3. Given τ0 2 [0,1], the set {d 2 (0,1) : Td = τ0} is dense in (0,1).

In the previous points Td is the minimal null controllability time associated with System (2.15) pro-

vided by Theorem 2.8. ⇤

Theorems 2.8 and 2.9 will be proved as a consequence of the results in Subsection 6.2.

3 The condensation index of complex sequences

In this section we are going to study the so-called condensation index of a complex sequence. To this

end and throughout this section, we will consider a complex sequence Λ = {λk}k≥1 ⇢ C satisfying

condition (2.2). In addition, we are going to assume that the sequence Λ is normally ordered, i.e.,

( |λk|  |λk+1| , 8k ≥ 1,

−π

2
< arg (λk) < arg (λk+1) <

π

2
when |λk| = |λk+1| .

(3.1)

Under the previous assumptions, let us introduce the following definition:
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Definition 3.1. The index of condensation of a sequence Λ = {λk}k≥1 ⇢ C satisfying (2.2) is the

real number

c (Λ) = lim sup
log 1

|E0(λk)|
< (λk)

. (3.2)

where the interpolating function E is given by (2.14). ⇤

Remark 3.2. Taking into account Remark 2.7 we deduce that the condensation index c(Λ) is well-

defined and its value is independent of rearrangements of the sequence Λ. In particular, we can always

assume that the sequence Λ is normally ordered and satisfies (3.1). ⇤

The previous definition was introduced by Vl. Bernstein in [5] for real sequences Λ. The index of

condensation c (Λ) provides a measure of the separation of the elements λn of the sequence Λ. This

concept is strongly related to the overconvergence and location of singular points of Dirichlet series

of real or complex exponents (see [5] and [27]).

Remark 3.3. Under the previous assumptions on the sequence Λ, we will see that the corresponding

condensation index c(Λ) is a non-negative number, i.e., c(Λ) 2 [0,1]. In fact, we will provide some

examples of sequences Λ for which c(Λ) is 0, or is a finite positive number or c(Λ) = 1. Moreover,

we will give some general conditions on the sequence Λ which ensure that c(Λ) = 0, a very interesting

case for the controllability properties of the parabolic system (2.3). ⇤

Our next goal will be to get a different formula for the condensation index c(Λ) that will be used

in the proof of our main result, Theorem 2.6. To this end, we will adapt to our setting the definition

of condensation index of complex sequences given by Shackell in [27]. It starts with the notion of

condensation grouping associated with the sequence Λ. This concept generalizes the one introduced

by Vl. Bernstein [5] for real sequences.

Definition 3.4. A sequence of sets ∆ = {Gk}k≥1 is a condensation grouping of the sequence Λ =
{λk}k≥1 if it satisfies the following conditions:

(i) For each k ≥ 1, the cardinal of Gk \ Λ is finite and equal to pk + 1, for some integer pk ≥ 0;

(ii) If λ 2 Λ, then there exists k ≥ 1 such that λ 2 Gk, i.e.,

[

k≥1

Gk \ Λ = Λ;

(iii) Let λlk be the first element of Gk \ Λ. Then the sequence {λlk}k≥1 is normally ordered and

pk/λlk ! 0 as k ! 1;

(iv) If {λnk
}k≥1 and {λmk

}k≥1 are two subsequences of Λ such that λnk
, λmk

2 Gk for all k ≥ 1,

then λnk
/λmk

! 1 as k ! 1. ⇤

If A ⇢ C is a finite set, we will use the notation PA for the polynomial function given by:

PA(z) =
Y

λ2A
(z − λ) . (3.3)

With this notation, we introduce

Definition 3.5. Let ∆ = {Gk}k≥1 be a condensation grouping of the sequence Λ = {λk}k≥1. Thus,
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1. The index of condensation of Gk is the number defined by:

h (Gk) = max
λn2Gk

8
<
:

1

< (λn)
log

pk!∣∣∣P 0
Gk

(λn)
∣∣∣

9
=
; ,

where pk + 1 is the cardinal of the set Gk \ Λ and

∣∣P 0
Gk

(λn)
∣∣ =

Y

λm2Gk
λm 6=λn

|λn − λm| .

2. The index of the condensation grouping ∆ = {Gk}k≥1 is defined by:

h (∆) = lim suph (Gk) .

3. Finally, let us introduce the number h(Λ) defined as follows:

h (Λ) = sup {h (∆) : ∆ is a condensation grouping of the sequence Λ} .

Remark 3.6. Observe that if Gk \ Λ reduces to a single element (pk = 0) for some k ≥ 1, then

the function PGk
is given by PGk

(z) = z − λnk
and P 0

Gk
(z) = 1. In particular, h (Gk) = 0. As a

consequence, h (Λ) 2 [0,+1]. ⇤

An essential tool that will be used in the proof of our main result is the following

Theorem 3.7 ([27, Theorem 1, p. 137]). Let Λ = {λk}k≥1 ⇢ C be a normally ordered sequence

satisfying (2.2). Then, for any q 2 (0,1), there exists a condensation grouping ∆ = {Gk}k≥1 of Λ
such that if λl 2 Gk \ Λ and µ1, . . . , µn 2 Λ are points which do not belong to Gk, one has

nY

j=1

|λl − µj | ≥ qnn! (3.4)

Moreover, h (∆) = h (Λ).

Proof. Thanks to assumption (2.2) and using that {|λk|}k≥1 is an increasing sequence, we deduce

that the sequence Λ = {λk}k≥1 has density D = 0, i.e.,

D := lim
k

|λk|
= 0.

Therefore, the proof of this result is exactly the same as in the cited article [27]. So we drop it.

Theorem 3.7 was first proved by Bernstein [5] in the case of real sequences.

Our next result establishes an identity which will be crucial in the proof of the second part of

Theorem 2.6. One has:

Theorem 3.8. Let Λ = {λk}k≥1 ⇢ C be a normally ordered sequence satisfying condition (2.2). Let

us fix q 2 (0,1) and ∆ = {Gk}k≥1 a condensation grouping of Λ satisfying (3.4). Then, for any

subsequence {λnk
}k≥1 ✓ Λ, one has:

lim

0
@
log 1

|E0(λnk
)|

<(λnk
)

− 1

<(λnk
)
log

∣∣∣∣∣
qk!

P 0
Dk

(λnk
)

∣∣∣∣∣

1
A = 0, (3.5)
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where {Dk}k≥1 ✓ ∆ is a subsequence of sets satisfying λnk
2 Dk and qk + 1 is the cardinal of the

set Dk \ Λ. Furthermore,

c (Λ) = h (Λ) ,

where h (Λ) and c (Λ) are respectively given in Definition 3.5 and in formula (3.2).

Proof. Firstly, the identity h (Λ) = c (Λ) can be easily deduced from (3.5) and Theorem 3.7. There-

fore, let us concentrate on the proof of (3.5).

The arguments of the proof of (3.5) are inspired from those of [27, Theorem 3 and Theorem 5,

p. 141]. In order to prove the result, let us fix {λnk
}k≥1 ⇢ Λ, a subsequence of Λ, q 2 (0,1),

∆ = {Gk}k≥1, a condensation grouping satisfying (3.4), and {Dk}k≥1 ⇢ ∆, a subsequence of ∆
such that λnk

2 Dk for all k ≥ 1.

We introduce the notation

8
>>>><
>>>>:

Pn =
log 1

|E0(λn)|
<(λn)

, 8n ≥ 1,

Qk =
log 1

|E0(λnk)|
<(λnk

)
− 1

<(λnk
)
log

∣∣∣∣∣
qk!

P 0
Dk

(λnk
)

∣∣∣∣∣ , 8k ≥ 1,

where the interpolating function E(λ) has been defined in (2.14). Then, our objective is to prove that

limQk = 0.

Let us define the following sets:

Ak =

⇢
λn /2 Dk :

1

2

∣∣∣∣
λn
λnk

∣∣∣∣ 
3

2

}
,

Bk =

⇢
λn 2 Λ :

∣∣∣∣
λn
λnk

∣∣∣∣ <
1

2

}
[
⇢
λn 2 Λ :

3

2
<

∣∣∣∣
λn
λnk

∣∣∣∣
}
.

Observe that from the definition of condensation grouping we can deduce the existence of a positive

integer k0 such that Dk \Bk = ; for any k ≥ k0. So, taking into account the expression

∣∣E0(λk)
∣∣ = 2

|λk|
Y

j≥1
j 6=k

∣∣∣∣∣1−
λ2k
λ2j

∣∣∣∣∣ , 8k ≥ 1, (3.6)

we have

Pnk
=

1

< (λnk
)

2
664log

|λnk
|

2
−

8
>><
>>:

X

λn2Dk
λn 6=λnk

+
X

λn2Ak

+
X

λn2Bk

9
>>=
>>;

log

∣∣∣∣∣1−
λ2nk

λ2n

∣∣∣∣∣

3
775 ,

for any k ≥ k0.

A quick computation shows that

−
X

λn2Dk
λn 6=λnk

log

∣∣∣∣∣1−
λ2nk

λ2n

∣∣∣∣∣ = log

∣∣∣∣∣
qk!

P 0
Dk

(λnk
)

∣∣∣∣∣− log

∣∣∣∣∣∣∣∣
qk!

Y

λn2Dk
λn 6=λnk

λn + λnk

λ2n

∣∣∣∣∣∣∣∣
.
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Thus, for k ≥ k0,
8
>>>>>>>>><
>>>>>>>>>:

Qk =
1

< (λnk
)


log

|λnk
|

2
− log

∣∣∣∣∣∣∣∣
qk!

Y

λn2Dk
λn 6=λnk

λn + λnk

λ2n

∣∣∣∣∣∣∣∣

−

8
<
:
X

λn2Ak

+
X

λn2Bk

9
=
; log

∣∣∣∣∣1−
λ2nk

λ2n

∣∣∣∣∣

3
5 = S

(1)
k + S

(2)
k + S

(3)
k .

(3.7)

Therefore, the task will be to prove that limS
(i)
k = 0, for i = 1, 2, 3. We will divide the proof into

three steps.

First step: Let us start proving that limS
(1)
k = 0, where

S
(1)
k =

1

< (λnk
)

2
664log

|λnk
|

2
− log

∣∣∣∣∣∣∣∣
qk!

Y

λn2Dk
λn 6=λnk

λn + λnk

λ2n

∣∣∣∣∣∣∣∣

3
775 .

Thanks to assumption (2.2) we have that lim |λn| = 1 and so,

lim
1

< (λnk
)
log

|λnk
|

2
= 0.

On the other hand, there exist mk,1 and mk,2 such that λmk,1
, λmk,2

2 Dk and we can write

∣∣∣∣∣
λmk,1

+ λnk

λ2mk,1

∣∣∣∣∣ 
∣∣∣∣
λn + λnk

λ2n

∣∣∣∣ 
∣∣∣∣∣
λmk,2

+ λnk

λ2mk,2

∣∣∣∣∣ ,

for any λn 2 Dk with λn 6= λnk
.

From Definition 3.4-(iv), for any λn 2 Dk, there exists "nk 2 C such that "nk ! 0 as k ! 1 and

λn = λnk
(1 + "nk). In particular, λmk,i

= λnk
(1 + "k,i) with lim "k,i = 0 (i = 1, 2). Then, there

exists k1 ≥ k0 such that

8
>>>><
>>>>:

∣∣∣∣
λn + λnk

λ2n

∣∣∣∣ 
∣∣∣∣∣
λmk,2

+ λnk

λ2mk,2

∣∣∣∣∣ =
1

|λnk
|
|2 + "k,2|
|1 + "k,2|2

 5

2

1

|λnk
| ,

∣∣∣∣
λn + λnk

λ2n

∣∣∣∣ ≥
∣∣∣∣∣
λmk,1

+ λnk

λ2mk,1

∣∣∣∣∣ =
1

|λnk
|
|2 + "k,1|
|1 + "k,1|2

≥ 3

2

1

|λnk
| ,

for all λn 2 Dk and k ≥ k1. Using these inequalities and Stirling’s formula, we deduce that there

exists a positive sequence {βk}k≥1 such that βk ! 1 and, for k ≥ k1,

1

< (λnk
)
log

0
BB@qk!

Y

λn2Dk
λn 6=λnk

∣∣∣∣
λn + λnk

λ2n

∣∣∣∣

1
CCA ≥

log

✓
βk

p
2⇡qk

✓
3qk

2e|λnk |

◆qk
◆

< (λnk
)

=
log βk
< (λnk

)
+

1

2

log (2⇡qk)

< (λnk
)

+
qk

< (λnk
)
log

✓
3qk

2e |λnk
|

◆
⌘ Ck,1
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and

1

< (λnk
)
log

0
BB@qk!

Y

λn2Dk
λn 6=λnk

∣∣∣∣
λn + λnk

λ2n

∣∣∣∣

1
CCA 

log

✓
βk

p
2⇡qk

✓
5qk

2e|λnk |

◆qk
◆

< (λnk
)

=
log βk
< (λnk

)
+

1

2

log (2⇡qk)

< (λnk
)

+
qk

< (λnk
)
log

✓
5qk

2e |λnk
|

◆
⌘ Ck,2 .

Since
qk

|λnk
| 

qk
< (λnk

)
 qk
δ |λnk

|
and qk + 1 is the cardinal of Dk \ Λ we get lim qk/ |λnk

| = 0 (see Definition 3.4-(iii)) , limCk,1 =
limCk,2 = 0 and

lim
1

< (λnk
)
log

∣∣∣∣∣∣∣∣
qk!

Y

λn2Dk
λn 6=λnk

λn + λnk

λ2n

∣∣∣∣∣∣∣∣
= 0.

Therefore, we have obtained limS
(1)
k = 0.

Second step: In this step, we will deal with the element S
(2)
k in (3.7):

S
(2)
k = − 1

< (λnk
)

X

λn2Ak

log

∣∣∣∣∣1−
λ2nk

λ2n

∣∣∣∣∣ .

Let αk be the cardinal number of Ak. Since for λn 2 Ak we have |λn|  3
2 |λnk

|, we deduce

αk  N
✓
3

2
|λnk

|
◆
,

where, for every real number x, N (x) is the cardinal of the set {n 2 N : |λn| < x}.

Observe that
P

n≥1 1/ |λn| < 1 and {1/ |λn|}n≥1 is a non-increasing sequence. We easily

deduce that n/ |λn| ! 0 as n! 1 and thus

lim
x!1

N (x)

x
= 0. (3.8)

So, it follows that for any ε > 0, there exists R(ε) > 0 such that 0  N (x)  εx for any x ≥ R. In

particular, there is k2(ε) 2 N such that

0  αk  3

2
ε |λnk

|  3

2δ
ε< (λnk

) , 8k ≥ k2 .

This last inequality proves

lim
αk

< (λnk
)
= 0. (3.9)

Observe that the sequence Λ satisfies 0 < δ |λn|  < (λn) for all n ≥ 1 (see (2.2)). In particular,

there exists φδ 2 [0,π/2) such that |arg (λn)|  φδ < π/2 for any n ≥ 1. Let us introduce the

function g : z 2 C 7! g(z) = z(z + 1) and the compact set

Oδ :=

⇢
z 2 C :

2

3
 |z|  2, | arg z|  2φδ < π

}
. (3.10)
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Now, using the definition of Ak, we deduce

λnk

λn
2 Oδ, 8k ≥ 1, 8λn 2 Ak.

Therefore, we can bound

∣∣∣∣
λn + λnk

λ2n

∣∣∣∣ =
1

|λnk
| |g(λnk

/λn)| ≥
a

|λnk
| , 8k ≥ 1, 8λn 2 Ak, (3.11)

with a = minz2Oδ
|g(z)| 2 (0,1).

Recall that the condensation grouping ∆ = {Gk}k≥1 satisfies (3.4) for q 2 (0,1). In particular,

Y

λn2Ak

|λn − λnk
| ≥ q↵kαk!, 8k ≥ 1,

where αk is the cardinal of the set Ak.

From this last inequality, inequality (3.11) and again Stirling’s formula, it follows that there exists

a sequence {βk}k≥1 satisfying limβk = 1 for which

X

λn2Ak

log

∣∣∣∣∣1−
λ2
nk

λ2
n

∣∣∣∣∣ = log
Y

λn2Ak

|λn − λnk
|+ log

Y

λn2Ak

∣∣∣∣
λn + λnk

λ2
n

∣∣∣∣

≥ log (q↵kαk!) + log

✓
a

|λnk
|

◆↵k

≥ log

✓
βk

p
2παk

✓
aδqαk

e< (λnk
)

◆↵k
◆
,

for any k ≥ 1. Therefore,

8
>><
>>:

S
(2)
k  − 1

< (λnk
)
log

✓
βk

p
2παk

✓
aδqαk

e< (λnk
)

◆↵k
◆

= − log (βk)

< (λnk
)
− log

p
2παk

< (λnk
)

− αk

< (λnk
)
log

✓
Cαk

< (λnk
)

◆
:= Γk,1 ,

for all k ≥ 1.

Finally, using the definition of Ak, we get

S
(2)
k ≥ − 1

< (λnk
)

X

λn2Ak

log

 
1 +

∣∣∣∣∣
λ2
nk

λ2
n

∣∣∣∣∣

!
≥ − αk

< (λnk
)
log 5 := Γk,2,

for any k ≥ 1.

Observe that (3.9) implies limΓk,1 = limΓk,2 = 0. Thus, the two previous inequalities directly

provide limS
(2)
k = 0.

Third step: In this last step we will prove limS
(3)
k = 0. Let us recall (see (3.7)) that

S
(3)
k = − 1

< (λnk
)

X

λn2Bk

log

∣∣∣∣∣1−
λ2
nk

λ2
n

∣∣∣∣∣ .
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It is easy to see the inequalities

X

λn2Bk

log

∣∣∣∣∣1−
|λnk

|2

|λn|2

∣∣∣∣∣ 
X

λn2Bk

log

∣∣∣∣∣1−
λ2nk

λ2n

∣∣∣∣∣ 
X

λn2Bk

log

 
1 +

|λnk
|2

|λn|2

!
.

Therefore,

− 1

< (λnk
)

X

λn2Bk

f+(|λn|)  S
(3)
k  − 1

< (λnk
)

X

λn2Bk

f−(|λn|), 8k ≥ 1,

where,

f±(x) = log

∣∣∣∣∣1±
|λnk

|2
x2

∣∣∣∣∣ , with x > 0.

Thus, in order to obtain limS
(3)
k = 0, it is enough to see that

lim

0
@ 1

< (λnk
)

X

λn2Bk

f±(|λn|)

1
A = 0. (3.12)

Indeed, we have

X

λn2Bk

f±(|λn|) =

0
@
Z |λnk

|

2

|λ1|
+

Z 1

3
2
|λnk

|

1
A f±(x) dN (x)

= [N (x) f±(x)]
1
2
|λnk

|
|λ1| + [N (x) f±(x)]

1
3
2
|λnk

|

−
 Z 1

2
|λnk

|

|λ1|
+

Z 1

3
2
|λnk

|

!
f 0±(x)N (x) dx =

4X

i=1

Ik,i ,

(3.13)

where we recall that N (x) gives, for each x > 0, the cardinal of the set {n 2 N : |λn| < x} and

satisfies (3.8).

First, observe that N (|λ1|) = 0. Secondly, from (3.8), we can also check

lim
x!1

(N (x) f±(x)) = 0.

Thus, the first two terms in (3.13) can be evaluated as follows:

Ik,1 = log |1± 4| N
✓
1

2
|λnk

|
◆
, Ik,2 = − log

∣∣∣∣1±
4

9

∣∣∣∣N
✓
3

2
|λnk

|
◆
.

Using again (3.8) we get

lim
1

< (λnk
)
(Ik,1 + Ik,2) = 0. (3.14)

Now, we will deal with the term Ik,3 in (3.13). Using once more (3.8) and also (2.2) we obtain

that, for any " > 0, there exists k3 ≥ 1 such that, if k ≥ k3, one has
8
>>>><
>>>>:

0 <
N (x)

x
 ", 8x >

q
|λnk

|, and

Z 1/
q
|λnk |

|λ1|/|λnk |
1

|x2 ± 1| dx  ".
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So, for k ≥ k3, we can write:

|Ik,3| =

∣∣∣∣∣∣

0
@
Z q

|λnk |
|λ1|

+

Z 1
2 |λnk |
q
|λnk |

1
A f 0±(x)N (x) dx

∣∣∣∣∣∣

= 2 |λnk
|2
∣∣∣∣∣∣

0
@
Z q

|λnk |
|λ1|

+

Z 1
2 |λnk |
q
|λnk |

1
A N (x)

x

1

x2 ± |λnk
|2
dx

∣∣∣∣∣∣

 2 |λnk
|2
0
@
Z q

|λnk |
|λ1|

M∣∣∣x2 ± |λnk
|2
∣∣∣
dx+

Z |λnk |/2
q
|λnk |

"∣∣∣x2 ± |λnk
|2
∣∣∣
dx

1
A

 2 |λnk
|

0
@M

Z 1/
q
|λnk |

|λ1|/|λnk |
1

|x2 ± 1| dx+ "

Z 1/2

1/
q
|λnk |

1

|x2 ± 1| dx

1
A

 C |λnk
| ".

Thus since " > 0 is arbitrary, the previous inequality gives

lim
Ik,3

< (λnk
)
= 0. (3.15)

Finally, let us work with the last term Ik,4 in (3.13). Using again (3.8) and reasoning as before,

we can see that for arbitrary " > 0, there exists a large k4 such that the following inequality

|Ik,4| = 2 |λnk
|2
∣∣∣∣∣

Z 1

3|λnk |/2
N (x)

x

1

x2 ± |λnk
|2
dx

∣∣∣∣∣

 2 |λnk
| "
∣∣∣∣∣

Z 1

3/2

1

x2 ± 1
dx

∣∣∣∣∣

holds for any k ≥ k4. Thus again

lim
Ik,4

< (λnk
)
= 0. (3.16)

From (3.13) and using (3.14)–(3.16), we have (3.12) and limS
(3)
k = 0.

Going back to the expression (3.7), the previous steps prove (3.5). This finalizes the proof.

Theorem 3.8 provides a very important identity (see (3.5)). In particular, this identity allows us

to deduce a first formula for calculating the condensation index c(Λ) of a complex sequence Λ =
{λk}k≥1 ⇢ C satisfying (2.2). In the next result we are going to obtain a new formula for the

condensation index which relates c(Λ) to the Blaschke product associated with the sequence Λ.

Let Λ = {λk}k≥1 ⇢ C+ be a complex sequence satisfying λk 6= λi, for any i 6= j, and

X

k≥1

<(λk)
[1 + <(λk)]2 + [=(λk)]2

<1. (3.17)

Then, we recall that the Blaschke product associated with this sequence is the function W : C+ ! C

defined by: 8
>>><
>>>:

W (λ) =W (λ,Λ) =
Y

k≥1

δk
1− λ/λk

1 + λ/λk
, λ 2 C+ ,

δk =
λk

λk

|λk − 1|
|λk + 1|

λk + 1

λk − 1
(δk = 1 if λk = 1).

(3.18)
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We also recall (see for instance [3]) that, under assumption (3.17), the Blaschke product satisfies

W 2 H1(C+), the space of bounded and holomorphic functions defined on C+, is defined almost

everywhere on iR and satisfies |W (λ)| < 1, for <λ > 0, and |W (iτ)| = 1, for almost every τ 2 R.

One has:

Theorem 3.9. Let Λ = {λk}k≥1 ⇢ C be a normally ordered sequence satisfying condition (2.2).

Then, for any subsequence {λnk
}k≥1 ✓ Λ, the following identity holds:

lim

0
@
log 1

|E0(λnk
)|

<(λnk
)

−
log 1

|W 0(λnk
)|

<(λnk
)

1
A = 0.

In particular,

c (Λ) = lim sup
log 1

|W 0(λk)|
< (λk)

,

where c (Λ) and the function W (λ) are respectively given in formulas (3.2) and (3.18).

Proof. Let us consider a sequence Λ = {λk}k≥1 satisfying (2.2). In particular, the sequence Λ also

satisfies (3.17) and then, the Blaschke function W (λ) is well-defined on C+. In fact, we can readily

check the formula

W 0(λk) = −δk
−λk

2λk<(λk)

Y

j≥1
j 6=k

δj
1− λk/λj

1 + λk/λj

. (3.19)

The objective of the proof is to show that limQnk
= 0, where

Qnk
=

log 1

|E0(λnk
)|

<(λnk
)

−
log 1

|W 0(λnk
)|

<(λnk
)

.

Evidently, this property provides the new expression for c (Λ), the condensation index of the sequence

Λ = {λk}k≥1.

Thanks to the expression of |E0(λnk
)| (see (3.6)), we can readily calculate Qnk

and obtain

8
>>>>>>>>><
>>>>>>>>>:

Qnk
=

1

<(λnk
)
log

2
664

|λnk
|

4<(λnk
)

Y

j≥1
j 6=nk

1∣∣∣1 + λnk
λj

∣∣∣
∣∣∣1 + λnk

λj

∣∣∣

3
775

=
1

<(λnk
)
log

2
41
2

Y

j≥1

1∣∣∣1 + λnk
λj

∣∣∣
∣∣∣1 + λnk

λj

∣∣∣

3
5 .

(3.20)

Let us first prove that

lim infQnk
≥ 0. (3.21)

To this end, let us fix ε > 0. Using assumption (2.2), we deduce the existence of N0(ε) 2 N such that

X

j>N0(")

1

|λj |
 ε

2
.
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Therefore, we can bound

Y

j≥1

∣∣∣∣1 +
λnk

λj

∣∣∣∣
∣∣∣∣1 +

λnk

λj

∣∣∣∣ 
Y

j≥1

✓
1 +

|λnk
|

|λj |

◆2

=

N0(")Y

j=1

✓
1 +

|λnk
|

|λj |

◆2 Y

j>N0(")

✓
1 +

|λnk
|

|λj |

◆2


✓
1 +

|λnk
|

|λ1|

◆2N0(") Y

j>N0(")

e2|λnk
|/|λj | 

✓
1 +

|λnk
|

|λ1|

◆2N0(")

e"|λnk
|.

In the previous estimate we have used the inequality 1 + x  ex valid for any x ≥ 0. We have also

used that the sequence Λ is normally ordered and, therefore, |λj | ≥ |λ1| for any j ≥ 1. From the

previous inequality and using again (2.2), we also obtain

Qnk
≥ 1

<(λnk
)
log

"
1

2

✓
1 +

|λnk
|

|λ1|

◆−2N0(")

e−"|λnk
|
#
≥

− log 2− 2N0(") log
⇣
1 +

|λnk
|

|λ1|

⌘

<(λnk
)

− "

δ
.

From this inequality we get lim infQnk
≥ −"/δ, for any positive ". Thus, we have proved (3.21).

Let us now see the inequality

lim supQnk
 0. (3.22)

To this end we will use the sets:

eA(1)
k =

⇢
j ≥ 1 :

1

2
 |λj |

|λnk
| 

3

2

}
,

eA(2)
k =

⇢
j :

|λj |
|λnk

| <
1

2

}
, eA(3)

k =

⇢
j :

3

2
<

|λj |
|λnk

|

}
.

We can decompose the infinite product in (3.20) into three product Π
(1)
k , Π

(2)
k and Π

(3)
k , where:

Π
(i)
k =

Y

j2 eA(i)
k

1∣∣∣1 + λnk
λj

∣∣∣
∣∣∣1 + λnk

λj

∣∣∣
, 8k ≥ 1, with i = 1, 2, 3. (3.23)

First product: Following the ideas of the proof of Theorem 3.8, let eαk be the cardinal of the set eA(1)
k .

Then,

eαk  N
✓
3

2
|λnk

|
◆
,

where, for every real number x, N (x) is the cardinal of the set {n 2 N : |λn| < x}. Using once

more (3.8), we can also deduce

lim
eαk

< (λnk
)
= 0. (3.24)

Let us also consider the compact set Oδ given by (3.10), where φδ 2 [0,π/2) is such that

arg (λi)  φδ for any i ≥ 1. It is clear that

λnk

λj
,
λnk

λj

2 Oδ, 8k ≥ 1, 8j 2 eA(1)
k .

and thus

Π
(1)
k =

Y

j2 eA(1)
k

∣∣h(λnk
/λj )

∣∣ ∣∣h(λnk
/λj)

∣∣  b2e↵k ,
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where h(z) = (1 + z)−1 and b = supz2Oδ
|h(z)| 2 (0,1). Using (3.24) and the previous inequality

we infer

lim sup
1

< (λnk
)
logΠ

(1)
k  lim

✓
2eαk

< (λnk
)
log b

◆
= 0. (3.25)

Second product: Let us now consider Π
(2)
k (see (3.23)). From the definition of the set eA(2)

k , we can

directly bound

Π
(2)
k 

Y

j2 eA(2)
k

1✓
|λnk |
|λj | − 1

◆✓
|λnk |
|λj| − 1

◆  1,

whence

lim sup
1

< (λnk
)
logΠ

(2)
k  0. (3.26)

Third product: Finally, let us take the third product Π
(3)
k . Using the definition of the set eA(3)

k , we get

Π
(3)
k 

Y

j2 eA(3)
k

1✓
1− |λnk |

|λj |

◆✓
1− |λnk |

|λj|

◆ 
Y

j2 eA(3)
k

e2|λnk |/|λj |e2|λnk |/|λj| .

In this inequality we have used the inequality 1− x ≥ e−2x which is valid for any x 2 [0, 2/3]. So,

lim sup
1

< (λnk
)
logΠ

(3)
k  lim sup

0
B@

4|λnk
|

< (λnk
)

X

j2 eA(3)
k

1

|λj |

1
CA = 0. (3.27)

Coming back to the formula of Qnk
(see (3.20)), from inequalities (3.25)–(3.27) we obtain (3.22).

If we now add property (3.21), we get limQnk
= 0 and the proof of the result.

Remark 3.10. Theorems 3.8 and 3.9 provides two different formulas for calculating the condensation

index of a complex sequence. The second one will be used for proving the first part of the main result

Theorem 2.6 and the first one for the proof of the second part of this result. Observe that from

Remark 3.6 and the identity c (Λ) = h (Λ) we deduce that c (Λ) 2 [0,1] for any complex sequence

Λ = {λk}k≥1 satisfying (2.2). In Section 6, we will provide examples of sequences Λ for which c(Λ)
could have any value in the interval [0,1]. ⇤

We will finish this section recalling some conditions on the sequence Λ which ensure that the

corresponding index of condensation is zero. One has:

Proposition 3.11. Let Λ = {λk}k≥1 ⇢ C be a sequence satisfying condition (2.2). Let us also assume

that the sequence Λ satisfies one of the following conditions

1. There exist a positive constant ρ > 0 and a positive integer n0 such that

|λk − λl| ≥ ρ|k − l|, 8k, l ≥ n0.

2. There exist a positive constant eρ > 0 and a positive integer n1 such that

|λk − λl| ≥ eρ|λk|1/2, 8k ≥ n1 and l 6= k.
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Then, c(Λ) = 0. ⇤

For a proof of this proposition in the real or complex cases, see for instance [5, 10, 11, 27, 15, 12,

3].

Remark 3.12. Observe that in the case of the boundary null controllability of a single one-dimensio-

nal heat equation (see [10] and [11]) we are precisely in the first case of Proposition 3.11. Indeed,

in this case Λ = {µk}k≥1 (see (1.3)) which, evidently, satisfies the first point of Proposition 3.11.

So, applying Theorem 2.6, we will see that the null controllability result for the heat equation with

boundary controls is valid for every T > 0 (see Remark 6.27). ⇤

4 Existence of biorthogonal families to complex exponentials. Some

properties of the minimal controllability time

In this section we will give a result on existence of biorthogonal families to complex exponentials.

In addition, we will study some properties of these families. As a consequence we will give some

properties of the minimal controllability time T0 given by formula (2.13).

Let us start studying a result on existence of a biorthogonal family in L2(0, T ;C) to the com-

plex exponential sequence {e−λkt}k≥1, where {λk}k≥1 is a complex sequence satisfying appropriate

properties.

Given T 2 (0,1] and Λ = {λk}k≥1 ⇢ C+ a complex sequence, let us consider the closed space

A(Λ, T ) ⇢ L2(0, T ;C) given by

A(Λ, T ) = span {e−λkt : k ≥ 1}L
2(0,T ;C)

.

In the sequel, H2(C+) will denote the Hardy space of holomorphic functions Φ on C+ such that

Z +1

−1
|Φ(σ + iτ)|2 dτ <1, 8σ > 0,

with norm

kΦkH2(C+) =

✓Z +1

−1
|Φ (iτ)|2 dτ

◆1/2

.

(For the space H2(C+) and the properties of the Laplace transform, see for instance [28, pp. 19–20]).

Let us also consider the function

J(λ) =
W (λ)

(1 + λ)2
, for λ 2 C+ , (4.1)

where W is the infinite Blaschke product given by (3.18).

With the previous notation, one has the following result:

Theorem 4.1. Let Λ = {λk}k≥1 ⇢ C be a sequence satisfying (2.2) and fix T 2 (0,1]. Then, there

exists a biorthogonal family {qk}k≥1 ⇢ A(Λ, T ) to
{
e−λkt

 
k≥1

such that

C1

kJkH2(C+)

|λk||W 0(λk)|
|1 + λk|2  kqkkL2(0,T ;C)  C2

kJkH2(C+)

|λk||W 0(λk)|
|1 + λk|2, 8k ≥ 1, (4.2)
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where C1 and C2 are positive constants only depending on Λ and T and W is the function given

by (3.18). Furthermore, for any " > 0 one has

C1,"
e−"<(λk)

|E0 (λk)|
 kqkkL2(0,T ;C)  C2,"

e"<(λk)

|E0 (λk)|
, 8k ≥ 1, (4.3)

where E is the function given in (2.14) and C1,", C2," > 0 are constants only depending on ", Λ
and T .

Proof. Let us take a sequence Λ = {λk}k≥1 ⇢ C satisfying (2.2) and let us first work in the case

T = 1. Observe that, in particular, the sequence Λ satisfies (3.17) and this condition guarantees

that A(Λ,1) is a proper closed subspace of L2(0,1;C) (see [3]). In fact this condition also en-

sures the existence of a biorthogonal family {eqk}k≥1 ⇢ A(Λ,1) to the exponentials
{
e−λkt

 
k≥1

in

L2(0,1;C) (see for instance [3, Proposition 4.1]). In order to prove inequalities (4.2) and (4.3), let

us recall how the biorthogonal family {eqk}k≥1 can be obtained (for the details, see [3]).

Let us consider the function

Jk(λ) :=
J(λ)

J 0(λk)(λ− λk)
, for λ 2 C+ ,

where J is given in (4.1). Simple computations immediately show that J, Jk 2 H2(C+), for any

k ≥ 1, and

Jk(λl) = δkl, 8k, l ≥ 1.

So, using that the Laplace transform is a homeomorphism from L2(0,1;C) into H2(C+), we infer

the existence of a nontrivial function eqk 2 L2(0,1;C) such that

Jk(λ) :=
J(λ)

J 0(λk)(λ− λk)
=

Z 1

0
e−λteqk(t) dt, 8λ 2 C+ . (4.4)

Using the equalities Jk(λl) = δkl, we get
Z 1

0
e−λlteqk(t) dt = δkl, 8k, l ≥ 1,

i.e., {eqk}k≥1 is a biorthogonal family to
{
e−λkt

 
k≥1

in L2(0,1;C).
The Parseval equality gives

1

2⇡
keqkk2L2(0,1;C) =

Z +1

−1
|Jk(iτ)|2 dτ =

1

|J 0(λk)|2
Z +1

−1

|J(iτ)|2
|iτ − λk|2

dτ, 8k ≥ 1,

whence

lim

✓
1

2π
|λkJ

0(λk)|2keqkk2L2(0,1;C)

◆
= lim

Z +1

−1

|λk|2|J(iτ)|2
|iτ − λk|2

dτ

=

Z +1

−1
|J(iτ)|2 dτ = kJk2H2(C+).

The previous equality can be deduced as a direct consequence of the Lebesgue’s dominated conver-

gence theorem. This proves inequality (4.2) in the case T = 1.

Let us now prove inequality (4.3) in the case T = 1. Given ε > 0, from Theorem 3.9 is not

difficult to prove the existence of k0(ε) 2 N such that

e−
ε
2
<(λk)

1

|E0(λk)|
 1

|W 0(λk)|
 e

ε
2
<(λk)

1

|E0(λk)|
, 8k ≥ k0(ε).
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On the other hand, using assumption (2.2) we also deduce that there exists k1(") 2 N such that

1  |1 + λk|2
|λk|

 e
ε
2
<(λk), 8k ≥ k1(").

These two inequalities together with (4.2) provide inequality (4.3) in the case T = 1. This com-

pletely proves the result in the case T = 1.

The general case T 2 (0,1) will be deduced from the following

Lemma 4.2. Let Λ = {λk}k≥1 ⇢ C be a sequence satisfying (2.2). Then, for any T 2 (0,1), the

restriction operator

RT : ' 2 A(Λ,1) 7−! RT' = '|(0,T ) 2 A(Λ, T )

is an isomorphism. In particular, there exists a positive constant CT , depending on the sequence Λ
and T , such that

k'kL2(0,1;C)  CT k'kL2(0,T ;C), 8' 2 A(Λ,1). ⇤

Before proving Lemma 4.2, let us complete the proof of Theorem 4.1 in the case T 2 (0,1).
Applying Theorem 4.1 in the case T = 1, we deduce the existence of a family {eqk}k≥1 ⇢ A(Λ,1)

biorthogonal to
{
e−λkt

 
k≥1

in L2(0,1;C) which satisfies (4.2) and (4.3).

Let us set

qk =
(
R−1

T

)⇤ eqk 2 A(Λ, T ), 8k ≥ 1.

From Lemma 4.2 and the properties of the family {eqk}k≥1, it is clear that the function qk satisfies for

any k ≥ 1 inequalities (4.2) and (4.3) (this last inequality for any " > 0).

On the other hand, with the notation 'k(t) = e−λkt, we can write

(
δkl = ('k , eql)L2(0,1;C) = (R−1

T RT'k , eql)L2(0,1;C)

= (RT'k ,
(
R−1

T

)⇤ eql)L2(0,T ;C) = ('k , ql)L2(0,T ;C), 8k, l ≥ 1,

i.e., {qk}k≥1 ⇢ A(Λ, T ) is a biorthogonal family to {'k}k≥1 in L2(0, T ;C). This ends the proof of

Theorem 4.1.

Remark 4.3. It is interesting to point out that when c (Λ) < 1, inequality (4.3) can be equivalently

written under the form: For any " > 0 there exist positive constants C1,", C2," such that

C2,"e
(c(Λ)−")<(λk)  kqkkL2(0,T ;C)  C1,"e

(c(Λ)+")<(λk), 8k ≥ 1.

In this sense, the condensation index of the sequence Λ measures the growth of the L2-norm of

the biorthogonal family qk with respect to < (λk). This inequality and inequality (4.3) will play an

important role in the proof of the positive null controllability part of Theorem 2.6.

On the other hand, let us consider {qk}k≥1 a biorthogonal family to the exponentials
{
e−λkt

 
k≥1

in L2(0, T ;C). Then,

1 =

Z T

0
e−λktqk(t) dt  kqkkL2(0,T ;C)ke−λktkL2(0,T ;C)

 kqkkL2(0,T ;C)ke−λktkL2(0,1;C) ⌘
1p

2<(λk)
kqkkL2(0,T ;C) .
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If we put this inequality together with inequality (4.3), we deduce that, for any " > 0, there exists a

positive constant C" such that

1

|E0 (λk)|
≥ C"

p
2< (λk)e

−"<(λk), 8k ≥ 1. (4.5)

We will use this inequality below. ⇤

Remark 4.4. In Theorem 4.1 we have proved that, under assumption (2.2), A(Λ,1) is a closed

proper subspace of L2(0,1;C). In fact, the existence of a biorthogonal family {qk}k≥1 to the expo-

nentials {e−λkt}k≥1 in L2(0,1;C) implies that the set {e−λkt}k≥1 forms a strongly independent set

in L2(0,1;C), i.e., each element e−λkt of this set is outside the closure of the space spanned by the

other functions of the set. Thanks to Lemma 4.2, these last results can be easily generalized to the

case T 2 (0,1). ⇤

Our next task will be to prove Lemma 4.2. The proof is technical and needs some preliminary

results.

Let us consider Λ = {λk}k≥1 ⇢ C a sequence satisfying (2.2). From assumption (2.2) we deduce

the existence of ✓δ 2 [0, ⇡/2) such that

Λ = {λk}k≥1 ⇢ Sδ := {z = rei✓ 2 C : r > 0, |✓|  ✓δ}. (4.6)

We begin by recalling a result on the asymptotic behavior of the Blaschke productW defined in (3.18).

This result reads as follows:

Proposition 4.5. Let Λ = {λk}k≥1 ⇢ C be a sequence satisfying (2.2). Then, for a fixed ✓0, 0 
✓0 < ⇡/2, one has:

1. There exists an increasing sequence of positive numbers {rn}n≥1 such that lim rn = 1 and

lim r−1
n log

∣∣∣W
⇣
rne

i✓
⌘∣∣∣ = 0, (4.7)

uniformly in |✓|  ✓0.

2. Let us consider ✓ 2 (−⇡/2, ⇡/2) such that {z = rei✓ 2 C : r > 0} \ Λ = ;. Then:

lim
r!1

r−1 log
∣∣∣W

⇣
rei✓

⌘∣∣∣ = 0. ⇤

For a proof of this result, see [6, Theorem 7.2.3., p. 115].

We will also need a result on the asymptotic behavior of Dirichlet polynomials associated with the

sequence Λ = {λk}k≥1 ⇢ C. Let us set

P :=

8
<
:P : P (z) =

NX

j=1

aje
−λjz, 8z : <(z) > 0, with N ≥ 1, and aj 2 C

9
=
; .

The result is the following one:
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Lemma 4.6. Let Λ = {λk}k≥1 ⇢ C be a sequence satisfying (2.2). Let us consider ✓δ 2 [0, ⇡/2)
such that (4.6) holds. Let us also fix ✓0 2 (✓δ, ⇡/2) and " > 0, and define the sector

S",✓0,⌧ =

⇢
z = x+ iy : x ≥ ",

|y|
x

 cos ✓0 − τ

sin θ0

}

with τ 2 (0, cos θ0). Then, there exists a constant C" > 0 such that, for any P 2 P, one has

|P (z)|  C"kPkL2(0,1;C)e
− 1

4
|λ1|⌧<(z), 8z 2 S",✓0,⌧ ,

where |λ1| = mink≥1 |λk|. ⇤

We will first give the proof of Lemma 4.2 assuming that Lemma 4.6 has been proved. Then, we

will present the proof of this last result.

Proof of Lemma 4.2. Let us consider a sequence Λ = {λk}k≥1 ⇢ C satisfying (2.2). Taking into

account that A(Λ, T ) = span {e−λkt : k ≥ 1}L
2(0,T ;C)

, it suffices to prove the existence of a positive

constant CT for which

kPkL2(0,1;C)  CT kPkL2(0,T ;C), 8P 2 P.

We proceed by contradiction. Assume that there exists a sequence {Pm}m≥1 ⇢ P such that

lim kPmkL2(0,T ;C) = 0 and kPmkL2(0,1;C) = 1 8m ≥ 1. (4.8)

Let θ0 2 (θδ,π/2) where θδ 2 (0,π/2) is such that (4.6) holds. Let us also fix ε > 0 and

θ0 2 (θδ,π/2) and τ 2 (0, cos θ0). Using Lemma 4.6 and (4.8), we can conclude that the sequence

{Pm}m≥1 is uniformly bounded on the domain S",✓0,⌧ . Therefore, it is a normal family of holomor-

phic functions on S",✓0,⌧ and there exists a subsequence, still denoted by {Pm}m≥1, and a holomorphic

function P on S",✓0,⌧ such that Pm ! P uniformly on the compact sets of S",✓0,⌧ . Furthermore, from

Lebesgue’s theorem, Pm ! P in L2(η,1;C) for any η > ε. Assumption (4.8) implies that P ⌘ 0
on the interval (η, T ) for any η : 0 < ε < η < T . Since P is holomorphic on S",✓0,⌧ , we get P ⌘ 0
on (ε,1). Whence lim kPmkL2(T,1;C) = 0 and since, by our assumption, lim kPmkL2(0,T ;C) = 0 it

follows that

lim kPmkL2(0,1;C) = 0.

This contradicts (4.8) and provides the proof of Lemma 4.2.

Proof of Lemma 4.6. Given the sequence Λ = {λk}k≥1 ⇢ C satisfying (2.2), let us fix θδ 2 [0,π/2)
such that (4.6) holds, θ0 2 (θδ,π/2) and ε > 0. We can apply Proposition 4.5 and deduce the

existence of a sequence {rn}n≥1 ⇢ R+ satisfying lim rn = 1 and (4.7).

Observe that W (λk) = 0, for any k ≥ 1, and thus, {|λn|}n≥1 \{rn}n≥1 = ;. So, we can assume

that the sequence {rn}n≥1, or a subsequence, is increasing and such that for each n ≥ 1, the set

Gn := {z = rei✓ : rn < |z| < rn+1, |θ| < θ0}

contains at least an element of the sequence Λ. We can also assume that r1 = 1
2 |λ1|, where |λ1| =

mink≥1 |λk|, and

Λ ⇢
[

k≥1

Gk .
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Let P be any Dirichlet polynomial:

P (z) =

NX

j=1

cje
−λjz, 8z 2 C+ ,

where cj 2 C, for j ≥ 1. Then there exists m = m(N,∆) ≥ 1 such that {λj}1jN ⇢ [m
k=1Gk and

P 2 A (Λ,1) can be written in the form:

P (z) =
mX

k=1

X

λn2Gk

cne
−λnz =

mX

k=1

gk(z), 8z 2 C+ . (4.9)

Recall that the biorthogonal family {eqk}k≥1 to
{
e−λkt

 
k≥1

in L2(0,1;C) was constructed in Theo-

rem 4.1 from the formula (4.4). So that the coefficients cn of P are given by

cn =

Z 1

0
P (t)eqn(t) dt.

Coming back to the expression (4.9) of P , we deduce

gk(z) =

Z 1

0
P (t)

X

λn2Gk

eqn(t)e−λnz dt, 8z 2 C+ ,

and by Schwartz inequality:

|gk(z)|2  kPk2L2(0,1;C)

Z 1

0

∣∣∣∣∣∣

X

λn2Gk

eqn(t)e−λnz

∣∣∣∣∣∣

2

dt := kPk2L2(0,1;C)

Z 1

0
|Gk(t, z)|2 dt. (4.10)

Using again (4.4), we can calculate the Laplace transform of Gk which is given by:

Z 1

0
e−λtGk(t, z) dt =

X

λn2Gk

Jn(λ)e
−λnz,

Applying now the Parseval equality, we also get

1

2⇡

Z 1

0
|Gk(t, z)|2 dt =

Z +1

−1

∣∣∣∣∣∣

X

λn2Gk

Jn(iτ)e
−λnz

∣∣∣∣∣∣

2

dτ.

Whence, inequality (4.10) writes:

|gk(z)|2  2πkPk2L2(0,1;C)

Z +1

−1

∣∣∣∣∣∣

X

λn2Gk

Jn(iτ)e
−λnz

∣∣∣∣∣∣

2

dτ. (4.11)

Let Γk be the boundary of Gk. Since each λn is a simple zero of J , from the residue theorem, we

obtain: X

λn2Gk

Jn(iτ)e
−λnz =

J(iτ)

2iπ

Z

Γk

e−⇠z

J(ξ)(iτ − ξ)
dξ.
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Then:

Z +1

−1

∣∣∣∣∣∣

X

λn2Gk

Jn(iτ)e
−λnz

∣∣∣∣∣∣

2

dτ  1

4π2

Z +1

−1
|J(iτ)|2

✓Z

Γk

∣∣∣∣
e−⇠z

J(ξ)(iτ − ξ)

∣∣∣∣ |dξ|
◆2

dτ

 1

4ρ2π2

✓Z

Γk

∣∣∣∣
e−⇠z

J(ξ)

∣∣∣∣ |dξ|
◆2 Z +1

−1
|J(iτ)|2 dτ

=
kJk2H2

4ρ2π2

✓Z

Γk

∣∣∣∣
e−⇠z

J(ξ)

∣∣∣∣ |dξ|
◆2

,

where |iτ − ξ| ≥ ρ = mink≥1 dist (Γk, iR) > 0 for any ξ 2 Γk and any k ≥ 1. Inserting this last

inequality in (4.11), we deduce the estimate:

|gk(z)| 
kJkH2

ρ
p
2π

kPkL2(0,1;C)

Z

Γk

∣∣∣∣
e−⇠z

J(ξ)

∣∣∣∣ |dξ|, 8z 2 C+ .

Going back to the expression (4.9) of P (z), we finally obtain the estimate

|P (z)|  kJkH2

ρ
p
2π

kPkL2(0,1;C)

mX

k=1

Z

Γk

∣∣∣∣
e−⇠z

J(ξ)

∣∣∣∣ |dξ|, 8z 2 C+ . (4.12)

Let us now work with the previous integral on Γk. At this level we will use the properties of the

set Gk and, in particular, the properties of the sequence {rn}n≥1.

The boundary Γk can be divided into four subsets, namely, Γk = Γ±✓0
k [ Γrk

k [ Γ
rk+1

k , where

Γ±✓0
k = {z = rei✓ : rk < |z| < rk+1, |θ| = ±θ0}, Γrk

k = {z = |z|ei✓ : |z| = rk, |θ|  θ0}.

The assumption (2.2) and the choice of θ0 2 (θδ,π/2) (where θδ is such that (4.6) holds) implies

that the lines {z = re±i✓0 : r > 0} do not intersect the sequence Λ. So, the second point of

Proposition 4.5 can be applied for θ = ±θ0. On the other hand, the sequence {rn}n≥1 satisfies (4.7).

From this two properties, we obtain that for any η > 0 there exists k0 = k0(η) such that

e−⌘|⇠|  |W (ξ)|  e⌘|⇠|, 8ξ 2 Γk, 8k > k0 . (4.13)

If z = x+ iy 2 S",✓0,⌧ and ξ = rei✓ 2 Γk, we can write

x cos θ − y sin θ ≥ x cos θ − |y|| sin θ| ≥ x cos θ − |y| sin θ0 ≥ τx,

and
∣∣∣e−⇠z

∣∣∣ = e−r(x cos ✓−y sin ✓)  e−r⌧x = e−|⇠|⌧<(z), 8z 2 S",✓0,⌧ , 8ξ 2 Γk, 8k ≥ 1. (4.14)

In the sequel, C will denote a generic positive constant; sometimes, we will lay emphasis on the

dependence of C on η (resp., ε), by writing C⌘ (resp., C").

As said before, the properties of θ0 and the sequence {rn}n≥1 ensures that Γk \ Λ = ; for all

k ≥ 1. Thus, W (ξ) 6= 0 for any ξ 2 Γk and we deduce that there exists a positive constant C⌘ such

that

|W (ξ)| ≥ C⌘, 8ξ 2 Γk, 8k : 1  k  k0 .
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Taking into account this bound, the expression of the function J , see (4.1), and (4.14), we get

Z

Γk

∣∣∣∣
e−⇠z

J(⇠)

∣∣∣∣ |d⇠|  2C⌘

Z

Γk

∣∣∣e−⇠z
∣∣∣
(
1 + |⇠|2

)
|d⇠|  C⌘

Z

Γk

e−|⇠|⌧<(z) |d⇠|  C⌘e
−r1⌧<(z),

for any z 2 S",✓0,⌧ and any k, with 1  k  k0. Recall that we took r1 = 1
2 |λ1| ≥ 1

4 |λ1|. In

conclusion,

Z

Γk

∣∣∣∣
e−⇠z

J(⇠)

∣∣∣∣ |d⇠|  C⌘e
− 1

4
|λ1|⌧<(z), 8z 2 S",✓0,⌧ , 8k : 1  k  k0. (4.15)

Let us now consider k > k0. Taking into account (4.13) and (4.14), for z 2 S",✓0,⌧ we can also

bound

Z

Γk

∣∣∣∣
e−⇠z

J(⇠)

∣∣∣∣ |d⇠|  2

Z

Γk

e−|⇠|( 1
2
⌧<(z)−⌘)e−

1
2
|⇠|⌧<(z)

(
1 + |⇠|2

)
|d⇠|

 2e−
1
4
|λ1|⌧<(z)

Z

Γk

e−|⇠|( 1
2
⌧"−⌘) (1 + |⇠|2

)
|d⇠|, 8k > k0

We can now determine the parameter ⌘. To be precise, let us take ⌘ = 1
4τε. With this value, the

previous inequality can be written as

Z

Γk

∣∣∣∣
e−⇠z

J(ξ)

∣∣∣∣ |dξ|  2e−
1
4
|λ1|⌧<(z)

Z

Γk

e−
1
4
|⇠|⌧" (1 + |ξ|2

)
|dξ|, 8z 2 S",✓0,⌧ , 8k > k0 .

Observe that Γk = Γ±✓0
k [ Γrk

k [ Γ
rk+1

k . Thus,

Z

Γ
±θ0
k

e−
1
4
|⇠|⌧" (1 + |ξ|2

)
|dξ| =

Z rk+1

rk

e−
1
4
⌧"r
(
1 + r2

)
dr.

and

Z

Γ
rk
k

e−
1
4
|⇠|⌧" (1 + |ξ|2

)
|dξ| = e−

1
4
rk⌧"

(
1 + r2k

) Z rke
iθ0

rke
−iθ0

|dξ|  Crk
(
1 + r2k

)
e−

1
4
rk⌧".

Summarizing, we have obtain

Z

Γk

∣∣∣∣
e−⇠z

J(ξ)

∣∣∣∣ |dξ|  Ce−
1
4
|λ1|⌧<(z)

✓
rk
(
1 + r2k

)
e−

1
4
rk⌧" + rk+1

(
1 + r2k+1

)
e−

1
4
rk+1⌧"

+

Z rk+1

rk

e−
1
4
⌧"r
(
1 + r2

)
dr

◆
, 8z 2 S",✓0,⌧ , 8k > k0 .

Putting (4.15) and this last inequality in (4.12), we can write:

|P (z)|  C"e
− 1

4
|λ1|⌧<(z)kJkH2kPkL2(0,1;C)

✓
1 +

m+1X

k=1

rk
(
1 + r2k

)
e−

1
4
rk⌧"

+

Z rm+1

r1

e−
1
4
⌧"r
(
1 + r2

)
dr

◆
, 8z 2 S",✓0,⌧ .
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Finally, recall that the sequence {rn}n≥1 ⇢ (0,1) is increasing and satisfies lim rn = 1. Then, the

function β(r) = e−
1
4
⌧"r
(
1 + r2

)
, with r 2 R+, satisfies β 2 L1(0,1) and the series

X

k≥1

rk
(
1 + r2k

)
e−

1
4
rk⌧"

is convergent. We can thus conclude that for a new constant C" > 0 one has

|P (z)|  C"e
− 1

4
|λ1|⌧<(z)kPkL2(0,1;C), 8z 2 S",✓0,⌧ .

This ends the proof.

Remark 4.7. Lemmata 4.2 and 4.6 have been first proved by L. Schwartz (see [28]) in the case of a

real increasing sequence {λn}n≥1 of positive numbers such that

X

n≥1

1

λn
<1.

For complex sequences, similar results have been proved by S. Hansen in [15] and by E. Fernández-

Cara and al. in [12]. In these two last articles, the complex sequences had zero condensation index

and this fact is strongly used in the respective proofs of these authors. ⇤

Let us end this section by giving some properties of the minimal time T0 (see (2.13)) which, in

particular, relate this number to the condensation index of the corresponding complex sequence Λ.

We will use Theorem 4.1 in a fundamental way. One has:

Theorem 4.8. Let us assume the hypotheses of Theorem 2.6 and let T0 be the number given by (2.13).

Then, T0 2 [max {T1, c (Λ)} , T1 + c (Λ)] ✓ [0,1] where c (Λ) is given in (3.2) and

T1 := lim sup
log 1

|bk|
< (λk)

.

In particular, if T1 = 0 (resp., c (Λ) = 0) then, T0 = c (Λ) (resp., T0 = T1).

Proof. Since bk = B⇤ k, with B⇤ 2 X−1, and satisfies (2.10), we deduce that there exists a constant

σ > 0 such that

0 < |bk|  σ |λk| 
σ

δ
< (λk) , 8k ≥ 1.

Thus,

log 1
|bk|

< (λk)
≥

log
⇣

δ
σ

1
<(λk)

⌘

< (λk)
, 8k ≥ 1.

Using the assumption (2.2) on the sequence Λ, it follows that T1 ≥ 0 and the property: for any ε > 0,

there exists k0 (ε) ≥ 1 such that

log 1
|bk|

< (λk)
≥ −ε, 8k ≥ k0 (ε) .

On the other hand, let us fix ε, a positive (and arbitrary) constant. From inequality (4.5) we get,

log 1
|E0(λk)|

< (λk)
≥

log
⇣
C"

p
2< (λk)e

−"<(λk)
⌘

< (λk)
, 8k ≥ 1.
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As above, we deduce again that c(Λ) ≥ 0 and the existence of k1 (") ≥ 1 such that

log 1
|E0(λk)|

< (λk)
≥ −", 8k ≥ k1 (") .

Now fix a subsequence {kn}n≥1 of integers such that

lim
n!1

log 1
|bkn |

< (λkn)
= T1.

Then, for n sufficiently large:

log 1
|bkn |

< (λkn)
+

log 1
|E0(λkn )|

< (λkn)
≥ T1 − 2",

and this implies that T0 ≥ T1 − 2". Since " > 0 can be chosen arbitrarily small, we conclude that

T0 ≥ T1.

The inequality T0 ≥ c (Λ) can be obtained in the same way. This ends the proof of the result.

Remark 4.9. As a consequence of the proof of Theorem 4.8 we deduce that, under the assumption of

Theorem 2.6, T1, c(Λ) 2 [0,1]. In fact, in Subsections 6.1 and 6.2 we will see that T1 and c(Λ) can

take any value in the interval [0,1]. ⇤

5 Proof of the main result

We will devote this section to proving the main result of this paper, Theorem 2.6. Let us then consider

System (2.3) where A is given by (2.4) (Λ = {λk}k≥1 is a sequence satisfying (2.2)) and B 2
L(C,X−1) is an admissible control operator for the semigroup

{
etA
 
t>0

generated by A. In addition,

let us assume that the coefficients bk = B⇤ k fulfills condition (2.10). We will divide the proof into

two parts, the first one will contain the positive null controllability result for System (2.3) whereas in

the second part we will show the negative null controllability result for this system.

5.1 Proof of the null controllability part of Theorem 2.6

In order to prove this first part of Theorem 2.6 we will assume that T > T0, with T0 given by (2.13).

Observe that in this case T0 2 [0,1). We want to prove that for any y0 2 X there exists u 2
L2 (0, T ;C) such that the corresponding solution y 2 C0([0, T ];X) to (2.3) satisfies y(T ) = 0 in X.

From the expression (2.7), this amounts to

Z T

0
e(T−s)ABu(s) ds = −eTAy0 in X.

Since the sequence of eigenvalues of −A, {λk}k≥1, are pairwise distinct and the set { k}k≥1 is a

Riesz basis of X, this last problem is equivalent to:

Z T

0

⇣
u,B⇤e(T−t)A⇤

 k

⌘
dt = −

⇣
y0, e

TA⇤
 k

⌘
, 8k ≥ 1.
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Now, using the expression of A⇤ (see (2.5)), we readily deduce that the null controllability problem

for System (2.3) reduces to the following moment problem: Find u 2 L2(0, T ;C) such that

bk

Z T

0
e−λktu(T − t) dt = −e−λkT (y0,  k) , 8k ≥ 1, (5.1)

with bk given by (2.10). Clearly, the assumption (2.10) on the coefficient bk is a necessary condition

for having a solution of the previous moment problem for arbitrary initial data y0 2 X.

As said before, we will solve the moment problem (5.1) using a biorthogonal family inL2(0, T ;C)
to the complex exponentials

{
e−λkt

 
k≥1

.

Taking into account Theorem 4.1 in the case T 2 (0,1), we seek a solution v(t) = u(T − t)
to (5.1) under the form:

v(t) =
X

k≥1

vkqk(t),

for some unknown coefficients vk 2 C (k ≥ 1). This leads to the formal solution:

vk = −e
−λkT

bk
(y0,  k) , 8k ≥ 1,

this is to say,

u(t) = v(T − t) = −
X

k≥1

e−λkT

bk
(y0,  k) qk(T − t).

Observe that the null controllability problem for System (2.3) is solved if we could prove that

u 2 L2 (0, T ;C), i.e., if we prove that the previous series converges in L2 (0, T ;C). At this point we

will use Theorem 4.1. Given " > 0, we can apply Theorem 4.1 and obtain, for any k ≥ 1,

∥∥∥∥
e−λkT

bk
(y0,  k) qk

∥∥∥∥
2

L2(0,T ;C)

=
e−2<(λk)T

|bk|2
|(y0,  k)|2 kqkk2L2(0,T ;C)

 C"e
−2<(λk)


T− log(1/|bk|)+log(1/|E0(λk)|)

<(λk)
−"

]

|(y0,  k)|2 ,

where C" is a positive constant. It follows that if T > T0, with T0 given by (2.13), and if we choose

" 2 (0, (T − T0)/2), then the previous inequality leads to:

∥∥∥∥
e−λkT

bk
(y0,  k) qk

∥∥∥∥
2

L2(0,T ;C)

 C"e
−2<(λk)(T−T0−2") |(y0,  k)|2 , 8k ≥ k",

with k" ≥ 1. As a consequence, we deduce that u is an absolutely convergent series in L2(0, T ;C)
and thus u 2 L2(0, T ;C) with

kukL2(0,T ;C) 

0
@X

k≥1

∥∥∥∥
e−λkT

bk
(y0,  k) qk

∥∥∥∥
2

L2(0,T ;C)

1
A

1/2

ky0k0 ,

(the norm k·k0 is defined in (2.1)). In conclusion, we have proved that System (2.3) is null controllable

in X at any time T > T0. This concludes the first part of the proof of Theorem 2.6. ⇤
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5.2 Proof of the second part of Theorem 2.6

In this section we are going to prove the second part of Theorem 2.6. In order to achieve this aim,

let us assume that T 2 (0, T0) with T0 given by (2.13) (and implicitly, T0 > 0). The objective is to

prove that System (2.3) is not null controllable in X at time T . Before, let us see a general property

for condensation groupings associated with complex sequences. It reads as follows:

Proposition 5.1. Let Λ = {λk}k≥1 ⇢ C and ∆ = {Gk}k≥1 be, resp., a normally ordered sequence

satisfying (2.2) and a condensation grouping of this sequence Λ. Then,

lim

Z 1

0

∣∣∣∣∣∣

X

λn2Gk

pk!

P 0
Gk

(λn)
e−λnt

∣∣∣∣∣∣

2

dt = 0, (5.2)

where pk + 1 is the cardinal of the set Gk \ Λ and PGk
is given by (3.3).

Proof. The proof of this result requires the following formula due to Jensen [20]:

Lemma 5.2. Let A = {aj}0jq ⇢ C be a set of distinct points and let us fix f an analytic function

in a convex domain Ω ⇢ C such that A ⇢ Ω. Then, there exist ✓ 2 [−1, 1] and ⇠ 2 Conv (A), the

convex hull of A, such that
qX

j=0

f(aj)

P 0
A(aj)

=
✓

q!

dqf

dzq
(⇠), (5.3)

where PA is given by (3.3). ⇤

Going back to the proof of the lemma, we fix t 2 (0,1) and we apply formula (5.3) with f (z) =
e−tz , q = pk and A = Gk \ Λ. Hence,

Sk(t) := pk!
X

λn2Gk

e−λnt

P 0
Gk

(λn)
= ✓k t

pke−t⇠k

with |✓k|  1 and

⇠k =
X

λn2Gk

αnλn, with αn ≥ 0 and
X

λn2Gk

αn = 1.

Now, if λlk is the first element of Gk \ Λ, we have

|Sk(t)|  tpke−<(⇠k)t  etpke−δ|λlk
|t = e−t|λlk

|[δ−pk/|λlk
|] := gk(t).

In this inequality we have used assumption (2.2) and the inequality log t  t, valid for any t > 0. Let

us recall that pk ≥ 0 and it satisfies (see Definition 3.4 (iii))

lim
pk
|λlk |

= 0.

Therefore, there exists a positive constant Cδ such that gk(t)  Cδe
−t|λlk

|δ/2 for any t 2 (0,1) and

any k ≥ 1. In particular, it follows that

(
lim gk(t) = 0, 8t 2 (0,+1),

gk(t)  Cδe
−t|λ1|δ/2, 8k ≥ 1, 8t 2 (0,1).

Thus, Lebesgue’s dominated convergence theorem proves (5.2). This ends the proof.
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Let us turn to the proof of the second part of Theorem 2.6. Using Corollary 2.4, the null control-

lability property for System (2.3) in X at time T amounts to prove that inequality (2.11) is false for

any positive constant CT > 0.

Let us argue by contradiction and assume that there exists a positive constant CT for which the

observability inequality (2.11) holds for any complex sequence {ak}k≥1 ⇢ `2(C). As said before,

condition (2.10) on the coeficcients bk is necessary for the null controllability of System (2.3) at time

T > 0. Therefore, we will assume it.

Let us fix q 2 (0,1) and a condensation grouping ∆ = {Gk}k≥1 of Λ which satisfies Theo-

rem 3.7. Observe that this condensation grouping also satisfies Theorem 3.8 and the identity (3.5).

Let us fix k ≥ 1 and set

a(k)n =

8
><
>:

pk!

bnP 0
Gk

(λn)
, if λn 2 Gk.

0 otherwise,

(5.4)

where pk+1 is the cardinal ofGk and the function PGk
is given by (3.3). Clearly, the (finite) sequence

{a(k)n }n≥1 lies in `2(C) and satisfies the observability inequality (2.11). This observability inequality

for a
(k)
n can be written:

σ
(1)
k :=

X

λn2Gk

∣∣∣∣∣
pk!

bnP 0
Gk

(λn)
e−λnT

∣∣∣∣∣

2

 CT

Z T

0

∣∣∣∣∣∣

X

λn2Gk

pk!

P 0
Gk

(λn)
e−λnt

∣∣∣∣∣∣

2

dt := σ
(2)
k , (5.5)

and this inequality is valid for any k ≥ 1.

On the one hand, we can apply Proposition 5.1 and from (5.2) we get limσ
(2)
k = 0. Our next task

will be to prove that lim supσ
(1)
k = 1. This clearly provides a contradiction to inequality (5.5) and

the proof of the result.

Recall that T 2 (0, T0) and T0 is given by (2.13). Thus, there exists a subsequence {nk}k≥1 of

positive integers such that

T0 = lim

✓
log 1/ |bnk

|
< (λnk

)
+

log 1/ |E0 (λnk
)|

< (λnk
)

◆
.

At this level we can apply Theorem 3.8 for the subsequence {λnk
}k≥1 ✓ Λ. So, if {Dk}k≥1 ✓ ∆

is a subsequence of sets satisfying λnk
2 Dk, for any k, and qk + 1 is the cardinal of the set Dk \ Λ,

then the identity (3.5) implies

T0 = lim
1

<(λnk
)

 
log

∣∣∣∣
1

bnk

∣∣∣∣+ log

∣∣∣∣∣
qk!

P 0
Dk

(λnk
)

∣∣∣∣∣

!
. (5.6)

To end the proof, let us show that if T < T0, then limσ
(1)
nk = 1. Indeed,

8
>>>><
>>>>:

σ(1)
nk

=
X

λn2Dk

∣∣∣∣∣
qk!

bnP 0
Dk

(λn)
e−λnT

∣∣∣∣∣

2

≥
∣∣∣∣∣

qk!

bnk
P 0
Dk

(λnk
)
e−λnk

T

∣∣∣∣∣

2

= e
2<(λnk

)

"
1

<(λnk
)

 
log

∣∣∣∣
1

bnk

∣∣∣∣+log

∣∣∣∣∣
qk!

P 0
Dk

(λnk
)

∣∣∣∣∣

!
−T

#

.

This last inequality together with the expression (5.6) of T0 show limσ
(1)
nk = 1. This contradicts (5.5)

and Theorem 2.6 is proved. ⇤



Condensation index and null controllability 37

6 Application to some parabolic problem

We will devote this section to presenting some application of Theorem 2.6 to some scalar and non-

scalar parabolic problems in the one-dimensional case. First, we will obtain some results for the

one-dimensional heat equation with distributed controls. In some particular situations we will obtain

controllability results proved in [9]. On the other hand, we will apply Theorem 2.6 to a non-scalar

parabolic problem (with boundary and distributed controls) obtaining in this case results which are

completely new.

6.1 A distributed controllability problem for the heat equation

Let us consider the one-dimensional heat equation
8
><
>:

@ty − @xxy = f(x)v(t) in Q = (0, ⇡)⇥ (0, T ),

y(0, ·) = 0, y(⇡, ·) = 0 on (0, T ),

y(·, 0) = y0 in (0, ⇡),

(6.1)

where T > 0, f 2 H−1(0, ⇡) and y0 2 L2(0, ⇡) are given and v 2 L2(0, T ) is a control to be

determined. We are interested in studying the null controllability properties of System (6.1).

The controllability properties of System (6.1) have been intensely studied in the last years by

several authors. Among other authors, let us underline H. O. Fattorini and D. L. Russell, who in

1971 and 1974 gave the first results on null controllability for the one-dimensional heat equation

(see [10, 11]), and G. Lebeau and L. Robbiano, [24], and A. Fursikov and O. Imanuvilov, [13],

who in 1995-1996 solved independently the N -dimensional null controllability problem for parabolic

equations (with boundary or distributed controls).

The results we present in this section were obtained by S. Dolecki in [9] in the particular case

f(·) = δx0 , with x0 2 (0, ⇡). In this reference, the author proved the existence of an optimal time

T0 2 [0,1], depending on x0, which provides the null controllability result for System (6.1). The

details will be given below.

It is well-known that System (6.1) is well-posed. To be precise, one has:

Proposition 6.1. There is a positive constantC such that for every y0 2 L2(0, ⇡), f 2 H−1(0, ⇡) and

v 2 L2(0, T ), System (6.1) admits a unique solution y 2 L2(0, T ;H1
0 (0, ⇡)) \ C0([0, T ];L2(0, ⇡))

which depends continuously on the data:

kykL2(0,T ;H1
0 (0,⇡))

+ kykC0([0,T ];L2(0,⇡))  C
(
ky0kL2(0,⇡) + kfkH−1(0,⇡)kvkL2(0,T )

)
.

In order to obtain the null controllability resut for System (6.1), let us write the problem under the

abstract form (2.3). The objective will be to apply Theorem 2.6.

Let us take X = L2(0, ⇡) and consider the self-adjoint operator

A0 := − d2

dx2
: X −! X

with domain D(A0) = H2(0, ⇡) \ H1
0 (0, ⇡) ⇢ X. Let us also consider the eigenvalues µk and the

eigenvectors Φk, k ≥ 1, of the Dirichlet laplacian in (0, ⇡), i.e., of A0 (see (1.3)). Observe that the

sequence Λ = {µk}k≥1 satisfies condition (2.2). On the other hand, the set {Φk}k≥1 is a orthonormal

basis of X. Thus, System (6.1) can be written as (2.3) where

A := −A0 = −
X

k≥1

µk(·,Φk)L2(0,⇡)Φk ,
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and B 2 L(R, H−1(0, ⇡)) is given by

B : v 2 R 7−! Bv = f(·)v 2 H−1(0, ⇡).

Evidently, B⇤ 2 L(H1
0 (0, ⇡),R) = H−1(0, ⇡) is given by

hB⇤, φiH−1,H1
0
= hf, φiH−1,H1

0
, 8φ 2 H1

0 (0, ⇡).

With the previous notation and taking into account Proposition 6.1, it is easy to check that the

operator A is the generator of a C0–semigroup on X and B 2 L(R, H−1(0, ⇡)) is an admissible

control operator for this semigroup. As a consequence, Corollary 2.4 can be applied obtaining the

following approximate controllability result of System (6.1) in L2(0, ⇡) at time T :

Proposition 6.2. Under the previous assumptions, System (6.1) is approximately controllable in

L2(0, ⇡) at time T > 0 if and only if

bk = hf,ΦkiH−1,H1
0
6= 0, 8k ≥ 1. (6.2)

Proof. The proof is a direct consequence of the first point of Corollary 2.4. The details are left to the

reader.

Let us now analyze the null controllability property of System (6.1) at time T > 0. The objec-

tive will be to apply Theorem 2.6 to this problem and, in particular, to determine the optimal time

T0 (see (2.13)) associated with the sequence Λ and the coefficients {bk}k≥1 (assuming that these

coefficients satisfy (6.2)).

Firstly, the sequence Λ = {µk}k≥1 = {k2}k≥1 satisfies the condition (2.2). In fact, this sequence

also fulfills the property

|k2 − l2| ≥ 3|k − l|, 8k, l ≥ 1.

So that, Proposition 3.11 can be applied, getting c(Λ) = 0.

On the other hand, the direct application of Theorem 4.8 provides us the formula

T0 = T1 := lim sup
log 1

|bk|
µk

= lim sup
− log |bk|

k2
, (6.3)

where the coefficients {bk}k≥1 satisfy (6.2).

Summarizing, we can apply Theorem 2.6 and infer the following

Theorem 6.3. Let us assume that f 2 H−1(0, ⇡) satisfies condition (6.2) and let us consider T1 2
[0,1] given by (6.3). Then,

1. System (6.1) is null controllable in X = L2(0, ⇡) at any time T > T1.

2. System (6.1) is not null controllable in X for T < T1. ⇤

As a consequence of Theorems 6.2 and 6.3, let us study the case f ⌘ δx0 2 H−1(0, ⇡) with

x0 2 (0, ⇡), i.e, the case in which we exert a pointwise control on the right hand side of the heat

equation. In this case the coefficients bk (see (6.2)) and the optimal time T1 (see (6.3)) are given by

bk = Φk(x0) =

r
2

⇡
sin kx0, k ≥ 1, and T1 = lim sup

− log |sin kx0|
k2

.

Thus:
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Corollary 6.4. Assume that f = δx0 2 H−1(0, ⇡) with x0 2 (0, ⇡). Under the previous notations,

one has:

1. System (6.1) is approximately controllable in L2(0, ⇡) at time T > 0 if and only if x0 6= q⇡
with q 2 Q \ (0, 1).

2. Assume that x0 = #⇡, with # 2 (0, 1) an irrational number, and consider

T# = lim sup
− log |sin(k#⇡)|

k2
.

Then:

(a) System (6.1) is null controllable in L2(0, ⇡) at any time T > T#.

(b) System (6.1) is not null controllable in L2(0, ⇡) for T < T#. ⇤

Corollary 6.4 was proved by S. Dolecki in [9]. In fact, in that paper, the author proves some

interesting result on the dependence of the optimal time T# with respect to #:

Theorem 6.5 ([9]). Under assumptions of Corollary 6.4, one has:

1. T# = 0 for almost all # 2 [0, 1].

2. Given τ 2 [0,1], the set {ϑ 2 [0, 1] : T# = τ} is dense in [0, 1]. ⇤

Remark 6.6. The previous result shows the unstable dependence of T# with respect to x0 = ϑπ.

Some similar results will be obtained in Subsection 6.2 for a non-scalar parabolic problem. ⇤

6.2 A boundary controllability problem for a non-scalar system

Let us now consider the one-dimensional controlled parabolic system
8
><
>:

∂ty − (D∂xx +A) y = 0 in Q = (0,π)⇥ (0, T ),

y(0, ·) = Bv, y(π, ·) = 0 on (0, T ),

y(·, 0) = y0 in (0,π),

(6.4)

where T > 0 is a given time,

D =

✓
1 0
0 d

◆
(with d > 0), A =

✓
0 1
0 0

◆
, B =

✓
b1
b2

◆
(6.5)

are given real constant matrices and y0 2 H−1(0,π;R2) is the initial datum. Observe that v 2
L2(0, T ) is a scalar boundary control which acts on the Dirichlet boundary condition of the state at

point x = 0 by means of the vector B. The objective is to control the whole system (two states) with

one control force v.

Firstly, the previous problem is well-posed and a solution of (6.4) can be defined using for example

the transposition method. Thus, one has:

Proposition 6.7. Let us consider D given in (6.5) and A 2 L(R2) and B 2 R2. Then, for any

y0 2 H−1(0,π;R2) and v 2 L2(0, T ), System (6.4) admits a unique weak solution y satisfying

y 2 L2(Q;R2) \ C0([0, T ];H−1(0,π;R2)) and

kykL2(Q;R2) + kykC0([0,T ];H−1(0,⇡;R2))  C
(
ky0kH−1(0,⇡;R2) + kvkL2(0,T )

)
,

where C is a positive constant only depending on D, A and B. ⇤
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For a proof of the previous result see for instance [12] or [29].

The null and approximate controllability problems for System (6.4) has been studied mainly in the

case d = 1 (see for instance [12] and [3]). In this case, the null and approximate controllability prop-

erties for System (6.4) are well-known and equivalent to an appropiate Kalman condition associated

with (6.4). The general case d > 0 and d 6= 1 is more intricate and only a few results are known.

One has the following result:

Theorem 6.8 ([12], [3], [25]). Let us consider System (6.4) with D given in (6.5). Then,

1. When d = 1,A 2 L(R2) andB 2 R2, System (6.4) is approximately controllable inH−1(0, ⇡;R2)
at time T if and only if it is exactly controllable to trajectories in H−1(0, ⇡;R2) at time T if

and only if

rank [B |AB] = 2 and Λ1 − Λ2 6= j2 − k2 8k, j 2 N with k 6= j,

where Λ1 and Λ2 are the eigenvalues of A.

2. When d 6= 1 and A and B are given in (6.5) with b1 = 0 and b2 = 1, System (6.4) is approxi-

mately controllable in H−1(0, ⇡;R2) at time T if and only if
p
d 62 Q.

3. There exists d 2 (0,1) with
p
d 62 Q such that System (6.4) is not null controllable at any time

T > 0. ⇤

To our knowledge and apart from the previous result, the controllability properties of System (6.4)

are completely open in the case d 6= 1. Let us then study the controllability of (6.4) in this case, i.e.,

when

d 6= 1.

Remark 6.9. It is interesting to point out that the second and third points of Theorem 6.8 shows

that the controllability properties of System (6.4) seem to be very different from the corresponding

controllability properties for scalar parabolic problems: In the non-scalar parabolic case (6.4) there

are values d > 0 for which System (6.4) is approximate controllable at all positive time T and not

null controllable at any time T > 0. ⇤

Our objective is to apply Theorem 2.6 to System (6.4) and, to this end, let us first write this system

under the abstract form (2.3).

Another way to define the solution to System (6.4), that will be adopted here, is making use of the

notion of boundary control system as it is developed in [29, Chap. 10]. The self-adjoint operator

A0 = − d2

dx2
: L2(0, ⇡) −! L2(0, ⇡)

with domain D(A0) = H2(0, ⇡) \H1
0 (0, ⇡), admits various extensions. It is also a self-adjoint oper-

ator on H−1(0, ⇡) with domain H1
0 (0, ⇡) and also on

(
H2(0, ⇡) \H1

0 (0, ⇡)
)0

with domain L2(0, ⇡).
Let us denote by A0 all these extensions and let us work in

Z = H1
0 (0, ⇡) +DR ⇢ H1(0, ⇡),

where D is the Dirichlet map: for each v 2 R, z = Dv is the solution to the problem

(
−z00 = 0 on (0, ⇡),

z(0) = v, z(⇡) = 0,
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i.e., z(x) = ✓(x)v with ✓(x) = (⇡ − x)/⇡. Let us also consider the differential operator L 2
L(Z,H−1(0, ⇡)) given by

Lz = −d
2z

dx2
, 8z 2 Z,

and the trace operator γ0 2 L(H1(0, ⇡),R) defined by γ0 : z 2 H1(0, ⇡) 7! γ0z = z(0) 2 R.

Observe that L|H1
0 (0,⇡)

= A0. Thus, since z −Dγ0z = z − ✓γ0z 2 H1
0 (0, ⇡) for any z 2 Z, one has

A0 (z −Dγ0z) = L (z −Dγ0z) = Lz,

i.e.,

L = A0 −A0Dγ0.

With the previous decomposition of the operator L in the space Z, System (6.4) can be written

under the form (
y0 = Ay + Bv on (0, T ),

y(0) = y0 2 X,
(6.6)

where X = H−1(0, ⇡;R2),

A := −DA0 +A : X −! X, (6.7)

with D(A) = D(A0)⇥D(A0) = H1
0 (0, ⇡;R

2), and B 2 L
⇣
R,
(
H2(0, ⇡;R2) \H1

0 (0, ⇡;R
2)
)0⌘

is

given by

Bv := DA0DBv = (A0✓)DBv. (6.8)

Let us observe that X is a Hilbert space for the scalar product

(y1, y2)X =
X

k≥1

1

µk
(y1,k, y2,k)R2 , 8y1, y2 2 X,

where, as before, µk and Φk, k ≥ 1, are, respectively, the eigenvalues and the eigenvectors of the

Dirichlet laplacian in (0, ⇡) (i.e., of A0, see (1.3)) and where yi,k 2 R2 is given by

yi,k = hyi,ΦkiH−1,H1
0
, 8k ≥ 1, i = 1, 2.

Remark 6.10. We have reformulated System (6.4) under the abstract form (6.6). But in fact, the

solution y 2 L2(Q) to System (6.4) (and then, the solution to (6.6)) can be explicitly computed using

the basis {Φk}k≥1 of H−1(0, ⇡). Indeed, if y0,k = hy0,ΦkiH−1,H1
0
2 R2, then,

y(t) =
X

k≥1

yk(t)Φk, a.e. t 2 (0, T ),

where yk is the solution to the ordinary differential system

8
<
:

y0k = (−k2D +A)yk + k

r
2

⇡
DBv on (0, T ),

yk(0) = y0,k 2 R2.

(6.9)

One has:
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Proposition 6.11. Assume that d 6= 1. Let us consider the operators A and B given by (6.7)

and (6.8) with D, A and B given by (6.5). Then, A is the generator of a C0–semigroup on X and

B 2 L
⇣
R,
(
H2(0, ⇡;R2) \H1

0 (0, ⇡;R
2)
)0⌘

is an admissible control operator for this semigroup.

Moreover,

σ(A) =
{
−k2,−dk2

 
k≥1

:= {−λ1,k,−λ2,k}k≥1 (6.10)

and the corresponding family of eigenfunctions is given by

{φ1,k,φ2,k}k≥1 := {kV1,kΦk, kV2,kΦk}k≥1

where Vi,k 2 R2 are such that (−k2D +A)Vi,k = −λi,kVi,k, for any k ≥ 1 and i = 1, 2, i.e.,

V1,k =

✓
1
0

◆
, V2,k =

 
− 1

(d−1)k2

1

!
, 8k ≥ 1.

Finally, the eigenvalues of A are simple, i.e., −λ1,k 6= −λ2,j for any k, j ≥ 1, if and only if
p
d 62 Q.

Proof. That A is the generator of a C0–semigroup on X can be checked by showing that A+αId is a

maximal monotone operator on X for α > 0 large enough. On the other hand, applying Proposition 6.7

we deduce that System (6.6) possesses a unique solution y 2 C0([0, T ];X) for y0 = 0 and for any

v 2 L2(0, T ). In particular, y(T ) 2 X and this proves that R(LT ) ⇢ X (LT is given by (2.6)). Then,

we have that B 2 L
⇣
R,
(
H2(0,π;R2) \H1

0 (0,π;R
2)
)0⌘

is an admissible control operator for the

semigroup associated with A.

Clearly, A has compact resolvent and it is easy to check that its (point) spectrum is given by (6.10).

The remainder of the statement can be also easily checked and the details will be omitted.

In the sequel, A⇤ (resp., B⇤) will denote the transpose of the matrix A (resp., of the vector B).

We continue checking the assumptions of Theorem 2.6 applied to System (6.4). One has:

Proposition 6.12. Under the hypotheses of Proposition 6.11, the following properties hold:

1. The family {φ1,k,φ2,k}k≥1 is a Riesz basis of eigenfunctions of A in X. Its biorthogonal basis

is given by

{ψ1,k,ψ2,k}k≥1 := {kW1,kΦk, kW2,kΦk}k≥1

where Wi,k 2 R2 are such that (−k2D + A⇤)Wi,k = −λi,kWi,k, for any k ≥ 1 and i = 1, 2,

i.e.,

W1,k =

 
1
1

(d−1)k2

!
, W2,k =

✓
0
1

◆
, 8k ≥ 1.

2. The operator A can be written as

A = −
X

k≥1

[λ1,k(·,ψ1,k)Xφ1,k + λ2,k(·,ψ2,k)Xφ2,k] .

3. The operator B⇤ 2 L
(
H2(0,π;R2) \H1

0 (0,π;R
2),R

)
⌘
(
H2(0,π;R2) \H1

0 (0,π;R
2)
)0

satisfies

hB⇤,ψi,ki =
r

2

π
B⇤DWi,k, 8k ≥ 1, i = 1, 2, (6.11)

where h·, ·i denotes the duality pairing between the spaces
(
H2(0,π;R2) \H1

0 (0,π;R
2)
)0

and

H2(0,π;R2) \H1
0 (0,π;R

2).



Condensation index and null controllability 43

Proof. It is straightforward to prove that the family {φ1,k, φ2,k}k≥1 is complete in X. On the other

hand, it is also easy to see that { 1,k,  2,k}k≥1 is its biorthogonal family, i.e.,

(φi,k,  j,`)X = δijδk`, 8k, ` ≥ 1, i, j 2 {1, 2}.
This last property in particular implies that both families form strongly independent sets, i.e.,

φj,` 62 span {φi,k : (i, k) 6= (j, `)} and  j,` 62 span { i,k : (i, k) 6= (j, `)}, 8` ≥ 1, j = 1, 2.

In order to see that {φ1,k, φ2,k}k≥1 is a Riesz basis in X, we will use the following result (see for

instance [14, p. 320]):

Lemma 6.13. Let {xk}k≥1 be a sequence in a Hilbert space X . Then the following statements are

equivalent.

(a) {xk}k≥1 is a Riesz basis in X .

(b) {xk}k≥1 is a complete Bessel sequence in X and possesses a biorthogonal system {yk}k≥1 that

is also a complete Bessel sequence in X . ⇤

We recall that the sequence {xk}k≥1 in the Hilbert space X is a Bessel sequence if it satisfies
X

k≥1

|(x, xk)X |2 <1, 8x 2 X.

Using the previous result, we only have to prove that {φ1,k, φ2,k}k≥1 and { 1,k,  2,k}k≥1 are

Bessel sequences in X.

Let us fix f 2 X, i.e., f = (f1, f2) with f1, f2 2 H−1(0, ⇡). Thus, for any k ≥ 1,
8
>><
>>:

|(f, φ1,k)X| =
1

k

∣∣∣hf1,ΦkiH−1,H1
0

∣∣∣ = 1

k
|f1,k| ,

|(f, φ2,k)X| =
1

k

∣∣∣hf, V2,kΦkiH−1,H1
0

∣∣∣ = 1

k

∣∣∣∣
−f1,k

(d− 1)k2
+ f2,k

∣∣∣∣ ,

and therefore,

X

k≥1

(
|(f, φ1,k)X|2 + |(f, φ2,k)X|2

)
 C

X

k≥1

1

k2
(
|f1,k|2 + |f2,k|2

)
<1,

with C a positive constant. This shows that {φ1,k, φ2,k}k≥1 is a Bessel sequence in X. A similar

argument proves that { 1,k,  2,k}k≥1 is also a Bessel sequence in X. We have completed the first

point of the result.

The second point is a consequence of the first point and can be easily checked.

For proving the third point, let us recall that ✓(x) =
⇡ − x

⇡
(x 2 (0, ⇡)) and note that

(✓,Φk)L2(0,⇡) =

r
2

⇡

Z ⇡

0

⇡ − x

⇡
sin kx dx =

r
2

⇡

1

k
, 8k ≥ 1.

Thus, using (6.8) and the previous equality, we get

hvB⇤,  i,ki = hBv,  i,ki = h(A0✓)DBv,  i,ki =
1

k
(DBv,Wi,k)R2 hA0✓,Φki

=

r
2

⇡
(B⇤DWi,k) v, 8v 2 R, 8k ≥ 1.

This proves the third point and finalizes the proof.
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We are now ready to state the approximate controllability result for System (6.4). This result also

provides the proof of the first point of Theorem 2.8. It reads as follows:

Theorem 6.14. Let us suppose the assumptions of Proposition 6.11. Then, System (6.4) is approxi-

mately controllable in X = H−1(0, ⇡;R2) at time T > 0 if and only if

p
d /2 Q, (6.12)

b2
⇥
(d− 1) k2b1 + db2

⇤
6= 0, 8k ≥ 1. (6.13)

Proof. Let us first proof that (6.12) and (6.13) are necessary conditions for the approximate controlla-

bility of System (6.4) in X at time T . Indeed, if
p
d 2 Q then, from Proposition 6.11, the operator −A

has eigenvalues with geometric multiplicity equal to two: there exist k, j 2 N such that λ1,k = λ2,j .
In this case, it is easy to see that, taking

'0 = a1 1,k + a2 2,j , with a1, a2 2 R,

the solution ' to the corresponding adjoint problem (2.8) is given by (see (2.9)):

'(t) = e−
eλ(T−t) (a1 1,k + a2 2,j) , 8t 2 (0, T ),

with eλ = λ1,k = λ2,j . Now, using the identity (6.11) we get

B⇤'(t) =

r
2

⇡
e−
eλ(T−t) (a1B

⇤DW1,k + a2B
⇤DW2,j) , 8t 2 (0, T ).

This last formula proves that there exist a1, a2 2 R, with a1a2 6= 0, such that B⇤'(t) = 0 for any

t 2 (0, T ). We can conclude that the adjoint problem to (6.4) does not satisfy the unique continuation

property (see Theorem 2.3) and therefore, System (6.4) is not approximate controllable in X at time

T .

Let us now assume that d 6= 1 fulfills condition (6.12). From Propositions 6.11 and 6.12 we

deduce that the sequence Λ = {λ1,k, λ2,k}k≥1 and the operators A and B satisfy the assumptions of

Corollary 2.4. Thus, we can directly apply the first point of this result and obtain that System (6.4) is

approximately controllable in X at time T if and only if

bi,k := B⇤ i,k 6= 0, 8k ≥ 1, i = 1, 2.

From (6.11) we get (6.13). This ends the proof.

Remark 6.15. Conditions (6.12) and (6.13) are independent of the final observation time T > 0 and

can be seen as a Kalman condition for the approximate controllability of System (6.4) at time T . In

fact, Condition (6.12) is equivalent to a condition on the simplicity of the eigenvalues of the operator

A (given by (6.7)). On the other hand, condition (6.13) is equivalent to the controllability of the

ordinary differential system (6.9) for any k ≥ 1. Indeed, given k ≥ 1, System (6.9) is controllable at

time T if and only if (Kalman rank condition)

rank
⇥
DB |

(
−k2D +A

)
DB

⇤
= 2,

and this amounts to condition (6.13). ⇤
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Remark 6.16. Observe that when

B =

✓
0
1

◆
,

condition (6.13) holds and the approximate controllability result for System (6.4) at time T is equiv-

alent to condition (6.12). Thus, the previous result generalizes the approximate controllability result

for System (6.4) given in [12], to the case in which B is a general vector in R2. ⇤

We are now in position to set, as a consequence of Theorem 2.6, the null controllability result for

System (6.4). This result in particular proves the second point of Theorem 2.8:

Theorem 6.17. Let us consider the matrices D, A and B given by (6.5) with d 6= 1. Let c(Λd) be the

index of condensation of the sequence Λd := {λ1,k, λ2,k}k≥1 =
{
k2, dk2

 
k≥1

. Let us also assume

that conditions (6.12) and (6.13) hold. Then,

1. System (6.4) is null controllable in X = H−1(0, ⇡;R2) at any time T > c(Λd).

2. System (6.4) is not null controllable in X for T < c(Λd).

Proof. First, let us take the real sequence Λd = {Λk}k≥1 normally ordered. The assumption (6.12)

ensures that this sequence Λd of eigenvalues of the operator −A satisfies condition (2.2). On the other

hand, from Propositions 6.11 and 6.12 we also deduce that the operators A and B fulfill the conditions

of Theorem 2.6. Finally, condition (2.10) corresponds to (6.13). Indeed, using (6.11) we get

(
b1,k := B⇤ 1,k = B⇤DW1,k = b1 +

db2
(d−1)k2

,

b2,k := B⇤ 2,k = B⇤DW2,k = db2,

for any k ≥ 1. Thus we can apply Theorem 2.6 and obtain the result for T0 given by (2.13). Let us

now compute this optimal time T0. We clearly have

lim
log 1/ |bi,k|

λi,k
= 0, i = 1, 2.

Thus, from Theorem 4.8, we infer T0 = c(Λd). This ends the proof.

Remark 6.18. Let us observe that the assumption
p
d 62 Q guarantees that the eigenvalues of the

operator −A (given by (6.7)) are simple and satisfies (2.2). In particular, we can compute the cor-

responding condensation index of the sequence Λd of eigenvalues of −A (see Remark 2.7) and this

condensation index provides the optimal time T0 for the null controllability of System (6.4). Evi-

dently, this optimal time is independent of the control vector B and only depends on the diffusion

coefficient d. ⇤

Remark 6.19. In the following result we will see that for some diffusion coefficients d satisfy-

ing (6.12) one has c (Λd) = 0, where Λd is the sequence Λd =
{
k2, dk2

 
k≥1

. In that case, Sys-

tem (6.4) is approximate controllable in H−1(0, ⇡;R2) at time T > 0 if and only if the system is null

controllable in this space at time T and these two properties are equivalent to condition (6.13).

We will also see that there exists d > 0 satisfying (6.12) for which c(Λd) > 0 or c(Λd) = 1.

In these cases the approximate controllability property at time T for System (6.4) is not equivalent to

the null controllability one at time T . The extreme situation is reached in then case c(Λd) = 1 and

B 2 R2 satisfying (6.13): The system is approximate controllable at every time T > 0 and never null

controllable at any positive time. ⇤



46 Ammar Khodja et al.

From Theorem 6.17 we deduce that System (6.4) has a null controllability optimal time T0 =
c(Λd) which strongly depends on the diffusion matrix D. At this level, a natural question arises:

given τ0 2 [0,1], does there exist d > 0 satisfying (6.12) and such that c(Λd) = τ0? The answer is

positive and is given by the following proposition (which is, in fact, the first point of Theorem 2.9):

Proposition 6.20. For any τ0 2 [0,1], there exists d 2 (0,1) satisfying (6.12) such that the con-

densation index of the sequence Λd = {k2, dk2}k≥1 is given by c(Λd) = τ0.

Proof. Let us fix τ0 2 [0,1]. The objective is to determine d > 0 such that the condensation index

associated with Λd (see (3.2)) is equal to τ0. To this end, let us consider the infinite product associated

with the sequence Λd:

E (z) =
Y

k≥1

✓
1− z2

k4

◆✓
1− z2

d2k4

◆
,

and let us first calculate |E0(k2)| and |E0(dk2)| for any k ≥ 1.

From Euler’s formula

sin(πz) = πz
Y

k≥1

✓
1− z2

k2

◆
, 8z 2 C,

we deduce the following expression:

E
(
ζ2
)
= d

sin (πζ) sin
⇣

⇡⇣p
d

⌘
sinh (πζ) sinh

⇣
⇡⇣p
d

⌘

π4ζ4
, 8ζ 2 C.

Differentiating with respect to ζ, we can readily deduce:

∣∣E0(k2)
∣∣ =

∣∣∣∣sin
✓
πkp
d

◆∣∣∣∣Ak,
∣∣E0(dk2)

∣∣ =
∣∣∣sin

⇣
πk

p
d
⌘∣∣∣Bk, 8k ≥ 1, (6.14)

where

Ak :=
d

2π3k5
sinh (πk) sinh

✓
πkp
d

◆
, Bk :=

1

2π3d2k5
sinh (πk) sinh

⇣
πk

p
d
⌘
,

for any k ≥ 1. Finally, it is easy to see the estimates
8
>><
>>:

d

2π3k5
sinh (π) sinh

✓
πp
d

◆
 Ak  d

8π3k5
e⇡ke⇡k/

p
d,

1

2π3d2k5
sinh (π) sinh

⇣
π
p
d
⌘
 Bk  1

8π3d2k5
e⇡ke⇡k

p
d, 8k ≥ 1.

(6.15)

Let us observe that c(Λd) is given by (3.2) with Λd = {λk}k≥1 := {k2, dk2}k≥1. Therefore,

c(Λd) = max {l1, l2} with

l1 = lim sup
log 1

|E0(k2)|
k2

and l2 = lim sup
log 1

|E0(dk2)|
dk2

.

Now, using the expression (6.14) and the estimates (6.15), we also have c(Λd) = max {l1, l2} with

l1 = lim sup
− log

∣∣∣sin
⇣

⇡kp
d

⌘∣∣∣
k2

and l2 = lim sup
− log

∣∣∣sin
⇣
πk

p
d
⌘∣∣∣

dk2
. (6.16)

Case τ0 = 0. In order to prove the result in the case τ0 = 0, let us recall a well-known lemma about

approximation of algebraic numbers:
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Lemma 6.21. Let ⌫ be an irrational algebraic number of degree n ≥ 2, i.e., ⌫ is an irrational number

which is the root of a polynomial of degree n with integer coefficients. Then, there exists a positive

number C, depending on ⌫, such that

∣∣∣∣⌫ −
p

q

∣∣∣∣ >
C

qn
, 8p, q 2 N, q > 0. ⇤

The previous result is known as Liouville’s theorem on diophantine approximation. For a proof,

see for instance [22].

Let us take d > 0 such that
p
d is an irrational algebraic number of degree n ≥ 2 and let us see

that c(Λd) = 0.

We reasoning as follows. For any k ≥ 1 there exists hk 2 N such that

∣∣∣k
p
d− hk

∣∣∣  1

2
. (6.17)

Indeed, we can take hk =
j
k
p
d
k

if k
p
d−

j
k
p
d
k
 1/2 or hk =

j
k
p
d
k
+ 1 otherwise (b·c is the

floor function, i.e., for x 2 R, bxc gives the largest integer less than or equal to x).

If we now apply Lemma 6.21 with q = k and p = hk we get

C

kn−1

∣∣∣k
p
d− hk

∣∣∣  1

2
, 8k ≥ 1,

and

∣∣∣sin
h
⇡
⇣
k
p
d− hk

⌘i∣∣∣ = sin
∣∣∣⇡
⇣
k
p
d− hk

⌘∣∣∣ ≥ sin
∣∣C⇡k1−n

∣∣ =
∣∣sin

(
C⇡k1−n

)∣∣ , 8k ≥ 1.

Recall that c(Λd) = max{l1, l2} with l1 and l2 given in (6.16). So,

l2 = lim sup
− log

∣∣∣sin
⇣
⇡k

p
d
⌘∣∣∣

dk2
= lim sup

− log
∣∣∣sin

⇣
⇡k

p
d− ⇡hk

⌘∣∣∣
dk2

 lim sup
− log

∣∣sin
(
C⇡k1−n

)∣∣
dk2

= 0.

The same argument applied to 1/
p
d permits to prove that l1  0. Taking into account Remark 3.10,

we deduce that c(Λd) = 0 .

Case τ0 2 (0,1). Let us now show the result when τ0 2 (0,1). We will use the following

Lemma 6.22. 1. For any τ0 2 (0,1), there exist an irrational number d > 0 and a sequence of

rational numbers {pk/qk}k≥0 such that pk and qk are co-prime positive integers, the sequences

{pk}k≥0 and {qk}k≥0 are strictly increasing and

lim e⌧0p
2
k

∣∣∣∣
p
d− pk

qk

∣∣∣∣ = 1. (6.18)

Moreover, for any k ≥ 0 one has

∣∣∣qk
p
d− pk

∣∣∣ 
∣∣∣q
p
d− p

∣∣∣ , 8p, q 2 N, with q  qk. (6.19)
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2. For any σ 2 (0,1), there exists an irrational number d > 0 and a sequence of rational

numbers {pk/qk}k≥0 such that pk and qk are co-prime positive integers, the sequences {pk}k≥0

and {qk}k≥0 are strictly increasing and

lim ep
2+σ
k

∣∣∣∣
p
d− pk

qk

∣∣∣∣ = 0. (6.20)

The proof of this lemma is based on some properties of continued fractions. The second point

follows some ideas from [25]. We will give its proof in Appendix A.

Let us fix τ0 2 (0,1) and take d > 0 provided by the first point of Lemma 6.22. Again, recall

that c(Λd) = max {l1, l2} with l1 and l2 given by (6.16). The aim is now to prove that c(Λd) = τ0
and, to this end, we will show that l1 = l2 = τ0. We will divide the proof into two steps.

A. Observe that

− log
∣∣∣sin

⇣
⇡kp
d

⌘∣∣∣
k2

=
− log

∣∣∣sin
⇣

⇡p
d

⇣
k − h

p
d
⌘⌘∣∣∣

k2
, 8h 2 N.

Let us now take the subsequences of positive integers {pk}k≥1 and {qk}k≥1 provided by Lemma 6.22.

From (6.18) we deduce lim
⇣
pk − qk

p
d
⌘
= 0, lim pk/qk =

p
d and

l1 ≥ lim sup
− log

∣∣∣sin
⇣

⇡p
d

⇣
pk − qk

p
d
⌘⌘∣∣∣

p2k
= lim sup

− log
∣∣∣ ⇡p

d

⇣
pk − qk

p
d
⌘∣∣∣

p2k

= lim
− log

∣∣∣ ⇡p
d
qke

−⌧0p2k

∣∣∣
p2k

= τ0.

Let us now reason with l2. As before, from (6.18) we get

l2 ≥ lim sup
− log

∣∣∣sin
⇣
πqk

p
d
⌘∣∣∣

dq2k
= lim sup

− log
∣∣∣sin

⇣
πqk

p
d− πpk

⌘∣∣∣
dq2k

= lim sup
− log

∣∣∣πqk
p
d− πpk

∣∣∣
dq2k

= lim sup
− log

∣∣∣πqke−⌧0p2k

∣∣∣
dq2k

= lim
τ0p

2
k

dq2k
= τ0.

In conclusion, we have obtained that l1 ≥ τ0 and l2 ≥ τ0. Using once more that c(Λd) =
max {l1, l2}, we can also conclude c(Λd) ≥ τ0.

B. Let us now see the inequalities l1  τ0 and l2  τ0. As before, for each k ≥ 1 there exists

hk 2 N such that (6.17) holds. On the other hand, there exists nk 2 N such that k  qnk
. Since every

convergent pk/qk satisfies (6.19), it follows that:

∣∣∣k
p
d− hk

∣∣∣ ≥
∣∣∣qnk

p
d− pnk

∣∣∣ .

From this last inequality and (6.17), we deduce:

8
<
:

∣∣∣sin
⇣
πk

p
d
⌘∣∣∣ =

∣∣∣sin
h
π
⇣
k
p
d− hk

⌘i∣∣∣ = sin
∣∣∣π
⇣
k
p
d− hk

⌘∣∣∣ ≥ sin
∣∣∣π
⇣
qnk

p
d− pnk

⌘∣∣∣

=
∣∣∣sin

h
π
⇣
qnk

p
d− pnk

⌘i∣∣∣ ,
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for any k ≥ 1. Thus, since k  qnk
,

log
∣∣∣sin

⇣
⇡k

p
d
⌘∣∣∣

dk2
≥

log
∣∣∣sin

h
⇡
⇣
qnk

p
d− pnk

⌘i∣∣∣
dq2nk

.

Coming back to the expression of l2 (see (6.16)), we obtain

l2 = lim sup
− log

∣∣∣sin
⇣
⇡k

p
d
⌘∣∣∣

dk2
 lim sup

− log
∣∣∣sin

h
⇡
⇣
qnk

p
d− pnk

⌘i∣∣∣
dq2nk

= τ0.

In the previous inequality we have used (6.18), lim
⇣
pnk

− qnk

p
d
⌘
= 0 and lim pnk

/qnk
=

p
d.

A similar argument permits to prove the inequality l1  τ0. In conclusion, we have proved that

l1 = l2 = τ0 and, therefore, the existence of an irrational number d > 0 such that c(Λd) = τ0 2
(0,1).

Case τ0 = 1. In order to get the result in this case, let us fix σ > 0 and apply the second point

of Lemma 6.22. We deduce the existence of an irrational number d > 0 and a sequence of rational

numbers {pk/qk)k≥0 satisfying (6.20). In particular, we deduce the existence of a positive constant C
such that

|qk
p
d− pk|  Cqke

−p2+σ
k , 8k ≥ 1.

Following previous arguments, it is not difficult to see

l1 ≥ lim sup
− log

∣∣∣sin
⇣

⇡p
d

⇣
pk − qk

p
d
⌘⌘∣∣∣

p2k
= lim sup

− log
∣∣∣ ⇡p

d

⇣
pk − qk

p
d
⌘∣∣∣

p2k

≥ lim
− log

∣∣∣C⇡p
d
qke

−p2+σ
k

∣∣∣
p2k

= 1.

This proves the third case and finalizes the proof of the result.

Remark 6.23. As a consequence of Proposition 6.20 we deduce that if
p
d is an irrational algebraic

number then c(Λd) = 0, where Λd is the sequence Λd = {k2, dk2}k≥1. This condition on d can be

easily generalized to the case in which d satisfies the property

∣∣∣∣
p
d− p

q

∣∣∣∣ ≥
eΦ1(q)

q
, 8p, q 2 N, p, q ≥ k0,

where k0 2 N and eΦ1 is a positive function that fulfills the conditions

lim eΦ1(k) = 0 and lim sup
log
⇣
eΦ1(k)

⌘

k2
= 0.

This condition can be equivalently written as follows: “Let eΦ1 be a positive function satisfying the

previous conditions. If d 2 (0,1) is an irrational number such that the inequality

∣∣∣∣
p
d− p

q

∣∣∣∣ <
eΦ1(q)

q
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has a finite number of integer solutions p, q > 0, then c(Λd) = 0”.

On the other hand, it is possible to generalize condition (6.20) in this way: “Let eΦ2 be a positive

function satisfying

lim
− log

⇣
eΦ2(k)

⌘

k2
= 1.

If d > 0 is an irrational number such that the inequality

∣∣∣∣
p
d− p

q

∣∣∣∣  eΦ2(p)

has an infinite number of integer solutions p, q > 0, then c(Λd) = 1”. ⇤

We will finalize this subsection giving two results on the measure of irrationals numbers
p
d for

which the optimal time of null controllability of System (6.4), T0 = c(Λd), is zero or positive. In

particular these results provide the proof of the two last points of Theorem 2.9.

Proposition 6.24. Let c(Λd) be the index of condensation of the sequence Λd :=
{
k2, dk2

 
k≥1

, withp
d 62 Q. Then, c(Λd) = 0 for almost d 2 (0,1).

Proof. The proof is a consequence of Remark 6.23 and Theorem 32 in [22] (p. 69). Indeed, let us

consider the inequality ∣∣∣∣
p
d− p

q

∣∣∣∣ <
eΦ1(q)

q
(6.21)

with eΦ1(x) = 1/x2. Observe that Z 1

1

eΦ1(x) dx <1.

Thus, the inequality (6.21) has a finite number of integer solutions p, q 2 N for any d 2 (0,1) \M,

with |M| = 0. In particular, c(Λd) = 0 for any d 2 (0,1) \M. This proves the result.

Corollary 6.25. Let c(Λd) be the index of condensation of the sequence Λd :=
{
k2, dk2

 
k≥1

, withp
d 62 Q. Then, given τ0 2 [0,1], the set

{d 2 (0,1) : c(Λd) = τ0}

is dense in (0,1). ⇤

Let us observe that the previous result is clear for τ0 = 0. The case τ0 2 (0,1] is a consequence

of Lemma 6.22 and will be proved in Appendix A.

Remark 6.26. As said before, the optimal time for the null controllability of System (6.4) in the

space H−1(0,π;R2) is given by T0 = c(Λd) with Λd = {k2, dk2}k≥1. Evidently, this optimal time

depends strongly on the diffusion coefficient d and depends on the diophantine approximation of the

irrational number
p
d by rational numbers. Observe also that for some d 2 (0,1) the optimal time is

T0 = c(Λd) = 1. In this sense, Theorem 6.17 generalizes the results in [25]. ⇤

Summarizing, we have proved (see Theorems 6.14 and 6.17):

1. If
p
d 2 Q, then System (6.4) is neither approximate nor null controllable in H−1(0,π;R2) at

any positive time T .
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2. If
p
d 62 Q, then System (6.4) is approximate controllable in H−1(0, ⇡;R2) at any positive

time T . With respect to the null controllability inH−1(0, ⇡;R2) of this system, we have proved

the existence of an optimal time T0 2 [0,1] (which depends on d) such that if T < T0
System (6.4) is not null controllable at this time and if T > T0 the system is null controllable

at this time.

Remark 6.27. Let us now consider the boundary null controllability for the scalar heat equation,

8
><
>:

@ty − @xxy = 0 in Q = (0, ⇡)⇥ (0, T ),

y(0, ·) = v, y(⇡, ·) = 0 on (0, T ),

y(·, 0) = y0 in (0, ⇡),

(6.22)

where T > 0 and y0 2 H−1(0, ⇡) are given and v 2 L2(0, T ) is a boundary control. This problem

was considered in [10] and [11]. Following the ideas of Subsections 6.1 and (6.2), it is not difficult

to see that Theorem 2.6 can be applied. In this case, from Theorem 4.8, we have T0 = c(Λ) = 0,

where Λ = {k2}k≥1 and the minimal time T0 and the condensation index c(Λ) are respectively given

by (2.13) and (3.2). Therefore, we deduce that the null controllability result for System (6.22) is valid

for every positive time T . ⇤

6.3 Pointwise null controllability of a parabolic system

In the last application of Theorem 2.6 we are going to combine the difficulties appearing in the exam-

ples of Subsections 6.1 and 6.2. Consider the following parabolic system

8
><
>:

@ty − (D@xx +A) y = f(x)Bv(t) in Q = (0, ⇡)⇥ (0, T ),

y(0, ·) = y(⇡, ·) = 0 on (0, T ),

y(·, 0) = y0 in (0, ⇡),

(6.23)

where D, A and B are given in (6.5), f 2 H−1(0, ⇡) is a given function and y0 2 L2(0, ⇡;R2) is the

initial datum. Again, v 2 L2(0, T ) is a scalar control which is exerted via the right-hand side of the

system.

System (6.23) is well-posed. In fact, one has:

Proposition 6.28. Let us consider the matrix D given in (6.5) and A 2 L(R2) and B 2 R2. Let

f 2 H−1(0, ⇡) be a given function. Then, for any y0 2 L2(0, ⇡;R2) and v 2 L2(0, T ), System (6.23)

possesses a unique weak solution y satisfying y 2 L2(0, T ;H1
0 (0, ⇡;R

2)) \ C0([0, T ];L2(0, ⇡;R2))
and

kykL2(0,T ;H1
0 (0,⇡;R

2)) + kykC0([0,T ];L2(0,⇡;R2))  C
(
ky0kL2(0,⇡;R2) + kfkH−1(0,⇡)kvkL2(0,T )

)
,

where C is a positive constant only depending on D, A and B. ⇤

The proof of this result is similar to the proof of Proposition 6.1 and will be omitted.

As will be seen, the controllability properties of System (6.23) are different when d = 1 and

d 6= 1. Let us first study these controllability properties in the more complicated case d 6= 1.

System (6.23) enters the framework of Section 2 by setting X = L2(0, ⇡;R2), A given by (6.7)

and

B = f(·)B 2 L
(
R, H−1(0, ⇡;R2)

)
.
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When d 6= 1 and taking into account Proposition 6.12, we can write

A = −
X

k≥1

[λ1,k(·,  1,k)Xφ1,k + λ2,k(·,  2,k)Xφ2,k] ,

where the sequence {λ1,k, λ2,k}k≥1 is given by (6.10) and

{φ1,k, φ2,k}k≥1 := {V1,kΦk, V2,kΦk}k≥1 , { 1,k,  2,k}k≥1 := {W1,kΦk,W2,kΦk}k≥1 ,

(the vectors V1,k, V2,k, W1,k and W2,k are given in Propositions 6.11 and 6.12 and Φk(x) in (1.3)).

Following the proof of Proposition 6.12, we also have that the set {φ1,k, φ2,k}k≥1 is a Riesz basis of

eigenfunctions of A in X = L2(0, ⇡;R2) and its biorthogonal basis is { 1,k,  2,k}k≥1. Observe also

that the sequence of eigenvalues of −A, {−λ1,k,−λ2,k}k≥1, satisfies assumption (2.2).

On the other hand, we also have

X1 = D(A) = H2(0, ⇡;R2) \H1
0 (0, ⇡;R

2) and X−1 =
(
H2(0, ⇡;R2) \H1

0 (0, ⇡;R
2)
)0
,

and, therefore, B 2 L(R,X−1). Finally, from Proposition 6.28 we readily obtain that the operator B
is an admissible control operator for the semigroup generated by A. Furthermore, with the notations

of Subsection 6.2, we have:

hBv,  i,kiX−1,X1
= vB⇤Wi,khf,Φki,

and thus

B⇤ i,k = B⇤Wi,khf,Φki, 8k ≥ 1, i = 1, 2,

where h·, ·i is the duality pairing between H−1(0, ⇡) and H1
0 (0, ⇡).

The previous considerations together with Corollary 2.4 permit to state the approximate control-

lability result for System (6.23):

Theorem 6.29. Assume d 6= 1. Under the previous assumptions, System (6.23) is approximately

controllable in X = L2(0, T ;R2) at time T if and only if

8
<
:

p
d /2 Q, b1,k := B⇤W1,khf,Φki =


b1 +

b2
(d− 1)k2

]
hf,Φki 6= 0,

b2,k := B⇤W2,khf,Φki = b2hf,Φki 6= 0, 8k ≥ 1.

(6.24)

Proof. The proof of this result can be obtained following the ideas of the proof of Theorem 6.14. The

details are left to the reader.

Remark 6.30. The conditions in (6.24) can be written in the shorter way:
p
d /2 Q and b2

⇥
b1(d− 1)k2 + b2

⇤
hf,Φki 6= 0, 8k ≥ 1.

Again, these conditions can be seen as a Kalman condition for the approximate controllability of

System (6.23) at time T . In this case, conditions (6.24) are equivalent to the properties

1. The eigenvectors of the operator A are simple (geometric multiplicity 1).

2. The ordinary differential system
(
y0k = (−k2D +A)yk + hf,ΦkiBv on (0, T ),

yk(0) = y0,k 2 R2.

is controllable for any k. ⇤
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As a consequence of Theorem 2.6, we have the following result:

Theorem 6.31. Let us consider the matrices D, A and B given by (6.5) with d 6= 1. In addition,

assume that conditions (6.24) hold. Let us take

T0 = max
i=1,2

lim sup

✓
log 1/ |bi,k|+ log 1/ |E0(λi,k)|

λi,k

◆
,

where Λ = {Λ`}`≥1 := {λ1,k, λ2,k}`≥1 and bi,k are given in (6.10) and (6.24), and

E(z) =
1Y

`=1

✓
1− z2

Λ2
`

◆
, z 2 C.

Then:

1. System (6.23) is null controllable in X = L2(0, ⇡;R2) for T > T0;

2. System (6.23) is not null controllable in X = L2(0, ⇡;R2) for T < T0.

Proof. The proof can be deduced from Theorem 2.6, Proposition 6.11 and Proposition 6.12. The

details are left to the reader.

In order to finish this subsection, let us consider System (6.23) with D, A and B be given by (6.5)

in the simplest case d = 1. In this case, the eigenvalues of the operator −A (see (6.7)) are given by

{k2}k≥1 and the corresponding eigenfunctions are given by

φk =

✓
1
0

◆
Φk, 8k ≥ 1.

Observe that the set of eigenfunctions of −A is not a Riesz basis of X = L2(0, ⇡;R2) and therefore

Theorem 2.6 cannot be applied. Nevertheless, the controllability properties of System (6.23) can be

deduced from the results stated in [10, 9, 12, 3]. If we denote

fk := hf,Φki, 8k ≥ 1, (6.25)

one has:

Theorem 6.32. Let us consider the matrices D, A and B given by (6.5) with d = 1. Then,

1. System (6.23) is approximately controllable in X = L2(0, ⇡;R2) at time T if and only if

b2fk = b2hf,Φki 6= 0, 8k ≥ 1. (6.26)

2. Assume that (6.26) holds and take

T1 := lim sup
log 1/ |fk|

k2
2 [0,1].

Then,

(a) System (6.23) is null controllable in X = L2(0, ⇡;R2) for T > T1;

(b) System (6.23) is not null controllable in X = L2(0, ⇡;R2) for T < T1.
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Proof. Observe that for d = 1, we have D = Id. The proof is then a consequence of previous results

proved in [12] and [3].

As saw before, the controllability properties of System (6.23) are equivalent to appropriate prop-

erties of the adjoint system

8
><
>:

−@t' = (Id@xx +A⇤)', in Q,

'(0, ·) = '(⇡, ·) = 0 on (0, T ),

'(·, T ) = '0 in (0, ⇡),

(6.27)

where '0 2 L2(0, ⇡;R2) is given. In this case, it is not difficult to construct the solutions to the

adjoint system (6.27). Indeed, if

'0(x) =
X

k≥1

✓
ak
bk

◆
Φk(x), a.e. x 2 (0, ⇡),

where {ak}k≥1, {bk}k≥1 2 `2, then the solution ' to the adjoint system (6.27) is given by

'(x, t) =
X

k≥1

e−k2(T−t)

✓
1 0

T − t 1

◆✓
ak
bk

◆
Φk(x), a.e. (x, t) 2 Q.

Therefore

B⇤hf, '(·, t)i =
X

k≥1

e−k2(T−t) [Ak(T − t) +Bk] fk, a.e. t 2 (0, T ), (6.28)

where fk is given by (6.25) and

✓
Ak

Bk

◆
:=

✓
b2 0
b1 b2

◆✓
ak
bk

◆
, 8k ≥ 1. (6.29)

We will also need the following result:

Lemma 6.33. For every T > 0 and " > 0, there exists a positive constant C(", T ) such that

X

k≥1

1

k2
(
|Ak|2 + |Bk|2

)
e−2"k2  C(", T )

Z T

0

∣∣∣∣∣∣

X

k≥1

(Akt+Bk)e
−k2t

∣∣∣∣∣∣

2

dt

for any sequences {Ak}k≥1, {Bk}k≥1 2 `2. ⇤

The proof of this result is implicitly given in [12], (see the proof of Proposition 3.4, p. 1727–1728).

We are now ready to prove the theorem.

1. The approximate controllability result for system (6.23) in L2(0, ⇡;R2) at time T > 0 is equivalent

to the following unique continuation property for the solutions ' 2 C0([0, T ];L2(0, ⇡;R2)):

“If B⇤hf, '(·, t)i = 0 for almost all t 2 (0, T ), then '0 = 0.”

From (6.28) and (6.29) we deduce that (6.26) is necessary.

On the other hand, if (6.26) holds, the solutions to the adjoint problem (6.27) satisfies the previous

unique continuation property. Indeed, if B⇤hf, '(·, t)i = 0 for almost all t 2 (0, T ), from (6.28) and

Lemma 6.33 (applied to fkAk, fkBk and " = T ), we deduce fkAk = fkBk = 0 for any k ≥ 1.
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Using (6.29) and assumption (6.26) we get ak = bk = 0 for any k ≥ 1, i.e., '0 ⌘ 0. This proves the

first point of Theorem 6.32.

2. Let us now prove the second point of Theorem 6.32 and let us assume that (6.26) holds. In this case,

the null controllability result for System (6.23) is equivalent to the existence of a positive constant CT

such that the solutions to (6.27) satisfy the observability inequality:

k'(·, 0)k2L2(0,⇡;R2)  CT

Z T

0
|B⇤hf, '(·, t)i|2 dt

where '0 2 L2(0, ⇡;R2). Using the expression of ' and (6.28)–(6.29), the previous observability

inequality amounts to the existence of a positive constant CT such that

X

k≥1

e−2k2T

∣∣∣∣
✓

1 0
T 1

◆✓
ak
bk

◆∣∣∣∣
2

R2

 CT

Z T

0

∣∣∣∣∣∣

X

k≥1

e−k2t(Akt+Bk)fk

∣∣∣∣∣∣

2

dt, (6.30)

for any sequences {ak}k≥1, {bk}k≥1 2 `2, and where Ak and Bk are given by (6.29).

(a) Let us assume that T > T1, with T1 2 [0,1) given in the statement of the theorem. Let us fix

" > 0. From the definition of the time T1 we deduce

|fk| ≥ C"e
−k2(T1+"), 8k ≥ 1,

whereC" > 0 is a constant. On the other hand, from Lemma 6.33 applied to the sequences {fkAk}k≥1

and {fkBk}k≥1, we infer

Z T

0

∣∣∣∣∣∣

X

k≥1

e−k2t(Akt+Bk)fk

∣∣∣∣∣∣

2

dt ≥ C(", T )
X

k≥1

1

k2
(
|fkAk|2 + |fkBk|2

)
e−2"k2

≥ C(", T )
X

k≥1

1

k2
(
|Ak|2 + |Bk|2

)
e−2k2(T1+2")

≥ C(", T )
X

k≥1

(
|Ak|2 + |Bk|2

)
e−2k2(T1+3").

Finally, let us take " = (T − T1)/3. Thus, from (6.29) (b2 6= 0), the previous inequality gives

Z T

0

∣∣∣∣∣∣

X

k≥1

e−k2t(Akt+Bk)fk

∣∣∣∣∣∣

2

dt ≥ C(T )
X

k≥1

e−2k2T
(
|ak|2 + |bk|2

)
,

and, evidently, (6.30). This proves the point (a).

(b) Let us now assume that T < T1 2 (0,1]. This point is a direct consequence of the results stated

in [9]. Indeed, taking ak = 0 for any k ≥ 1, inequality (6.30) transforms into

X

k≥1

e−2k2T |bk|2  CT |b2|
Z T

0

∣∣∣∣∣∣

X

k≥1

e−k2tbkfk

∣∣∣∣∣∣

2

dt, (6.31)
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where {bk}k≥1 2 `2.

Let us see that inequality (6.31) fails when T < T1. To this end, let us take " > 0 such that

T + " < T1. From the definition of T1 we deduce that the series

X

k≥1

e−k2(T+")

|fk|

diverges. Thus, for a subsequence {kn}n≥1 we must have

e−k2n(T+")

|fkn |
≥ 1

k2n
, 8n ≥ 1.

Multiplying this last inequality by k2n we deduce that for a positive constant C", one has

e−k2nT

|fkn |
≥ k2n

e−k2n(T+")

|fkn |
≥ C", 8n ≥ 1.

Finally, let us take the sequence {b(n)k }k≥1 given by

b
(n)
k =

8
<
:

1

fkn
if k = kn

0 otherwise.

From inequality (6.31) applied to the previous sequence {b(n)k }k≥1 we deduce that for any n ≥ 1 one

has

C2
"  e−2k2nT

|f2kn |
 CT |b2|

Z T

0
e−2k2nt dt = CT |b2|

1

2k2n

⇣
1− e−2k2nT

⌘
.

With this last inequality we evidently obtain a contradiction. Therefore, inequalities (6.31) and, of

course, (6.30) fail. This proves the statement (b) and finalizes the proof of the result.
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A Proofs of Lemma 6.22 and Corollary 6.25

This appendix will be devoted to proving Lemma 6.22 and Corollary 6.25. To this end, we will use

some results from the diophantine approximation theory. Thus, in a first section we will recall some

known properties of continued fractions. We will devote the second section to proving the two results.

A.1 Some basic properties of continued fractions

We refer for this subsection to [22].

Let us recall that a (simple) continued fraction is an expression of the form

[a0, a1, . . . , an] = a0 +
1

a1 +
1

a2+
1

···+ 1
an

,

where a0, a1, . . . , an are real numbers satisfying ai 6= 0 for any i ≥ 1. By induction:

8
><
>:

[a0] = a0
[a0, a1] = a0 +

1
a1

[a0, a1, . . . , an] =
h
a0, a1, . . . , an−2, an−1 +

1
an

i
, n ≥ 1.
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Let us take a0 2 Z and {ak}k≥1 ⇢ N a sequence of positive integers. Then, it is easy to see that

[a0, a1, . . . , an] 2 Q for all n ≥ 0. On the other hand, if x 2 Q there exist n 2 N and integer numbers

a0, a1, . . . , an, with ak ≥ 1 for any 1  k  n, such that

[a0, a1, . . . , an] = x.

Let us point out the previous representation of the rational number x is not unique. Indeed, it is easy

to check

x =

(
[a0, a1, . . . , an] = [a0, a1, . . . , an − 1, 1] if an ≥ 2,

[a0, a1, . . . , an−1, 1] = [a0, a1, . . . , an−1 + 1] if an = 1.

Let us now recall some classical properties of simple continued fractions. One has:

Theorem A.1. Let us fix a0 2 Z and {ak}k≥1 ⇢ N a sequence of positive integers.

1. If p−1 = 1, p0 = a0, q−1 = 0 and q0 = 1 and

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2, 8n ≥ 1, (A.1)

then,

[a0, a1, . . . , an] =
pn
qn
, n ≥ 0.

2. The sequence {qn}n≥1 is strictly increasing and qn > 0 for all n ≥ 0. Moreover, if a0 ≥ 0,

then pn ≥ 1, for any n ≥ 1, and the sequence {pn}n≥0 is also strictly increasing.

3. The following identities hold:

8
>><
>>:

pn
qn

− pn−1

qn−1
=

(−1)n+1

qnqn−1
, 8n ≥ 1,

pn
qn

− pn−2

qn−2
=

(−1)n

qnqn−2
an, 8n ≥ 2.

(A.2)

In particular, pnqn−1 − pn−1qn = (−1)n+1 and pn and qn are co-prime for any n ≥ 0. ⇤

The second group of properties for simple continued fractions concerns the approximation of real

numbers. One has:

Theorem A.2. Let us fix a0 2 Z and {ak}k≥1 ⇢ N a sequence of positive integers. Then,

1. The sequence of simple continued fractions {[a0, a1, . . . , an]}n≥1 is convergent in R to an ir-

rational number x. Conversely, for all x 2 R \ Q, there exist a unique integer a0 2 Z and a

unique sequence {ai}i≥1 ⇢ N of positive integers such that lim pn
qn

= x, where pn and qn are

given by (A.1), i.e.,
pn
qn

= [a0, a1, . . . , an] , 8n ≥ 0.

In this case, we will write x = [a0, a1, . . . , an, . . .]. The rational number pn/qn is called the

n-th convergent of x.
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2. If x = [a0, a1, . . . , an, . . .] and pn/qn is the corresponding n-th convergent of x, then

1

qn (qn+1 + qn)
<

∣∣∣∣x− pn
qn

∣∣∣∣ <
1

qnqn+1
, 8n ≥ 0, (A.3)

and the sequence
n

p2n
q2n

o
n≥0

(resp.,
n

p2n+1

q2n+1

o
n≥0

) is increasing (resp., decreasing). Moreover,

the convergents of x satisfies lim |xqn − pn| = 0 and

|xq − p| ≥ |xqn − pn|, 8n ≥ 1, 8p, q 2 Z, with 1  q  qn, (A.4)

with equality if and only if p = pn and q = qn (it is said that the convergents of x are the best

approximation of x of the second kind). ⇤

Let us note that from (A.2), it follows that

[a0, a1, . . . , an] = a0 +
nX

k=1

✓
pk
qk

− pk−1

qk−1

◆
= a0 +

nX

k=1

(−1)k+1

qkqk−1
, 8n ≥ 0.

Thus,

[a0, a1, . . . , an, . . .] = a0 +
X

k≥1

(−1)k+1

qkqk−1
.

A.2 Proofs of the results

Let us first prove the first part of Lemma 6.22 and Corollary 6.25 when τ0 2 (0,1). To this end, let

us fix τ0 2 (0,1), x0 2 (0,1) and ε > 0. The objective will be to determine an integer a0 ≥ 0
and a sequence {ak}k≥1 of positive integer numbers such that the infinite simple continued fractionp
d := [a0, a1, . . . , an, . . .] satisfies (6.18) and (6.19), for pk and qk given by (A.1), and

|
p
d− x0|  ε.

Let us fix a0 2 Z and a sequence {ak}k≥1 ⇢ N of positive integers such that a0 ≥ 0 and

lim ak = 1. (A.5)

Consider the sequence of convergents
n

pn
qn

o
n≥0

, defined by (A.1), of

ν = [a0, a1, . . . , an, . . .] = lim
pn
qn

= lim [a0, a1, . . . , an] .

Multiplying inequality (A.3) by an+1q
2
n, n ≥ 0, we have:

an+1qn
qn+1 + qn

< an+1q
2
n

∣∣∣∣ν − pn
qn

∣∣∣∣ <
an+1qn
qn+1

, 8n ≥ 0.

On the other hand, from (A.1), we also deduce:

1− qn + qn−1

qn+1 + qn
< an+1q

2
n

∣∣∣∣ν − pn
qn

∣∣∣∣ < 1− qn−1

qn+1
, 8n ≥ 0. (A.6)
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Using once again (A.1), we obtain

qn+1

qn
= an+1 +

qn−1

qn
, 8n ≥ 1.

So that, since lim an = 1 and the sequence {qn}n≥0 is increasing , it follows that

lim
qn+1

qn
= 1 and lim

qn+1

qn−1
= 1.

Thus,

lim
qn + qn−1

qn+1 + qn
= 0,

and coming back to (A.6) we arrive to

lim

✓
an+1q

2
n

∣∣∣∣⌫ −
pn
qn

∣∣∣∣
◆

= 1.

Taking into account the previous identity, given τ0 2 (0,1), the task consists in finding an integer

a0 ≥ 0 and a sequence {ak}≥1 ⇢ N satisfying (A.5) for which

lim
an+1q

2
n

e⌧0p2n
= 1. (A.7)

Taking
p
d = ν = [a0, a1, . . . , an, . . .], we obtain the proof of (6.18).

We reason as follows: Let us fix k0 2 N, a0 2 Z and positive integers {a1, . . . , ak0} such that

a0 ≥ 0 and
1

k0(k0 + 1)
 ε

2
, |[a0, a1, . . . , ak0 ]− x0| 

ε

2
.

On the other hand, let us take p−1 = 1, p0 = a0, q−1 = 0 and q0 = 1. Following formula (A.1) we

can construct the convergents pk/qk for any k : 1  k  k0. Now, let us set

ak0+1 = max
n
1,
j
e
⌧0p2k0/q2k0

ko
,

where b·c is the floor function (for x 2 R, bxc gives the largest integer less than or equal to x). Again,

formula (A.1) allows us to compute pk and qk for k : 1  k  k0 + 1.

We can continue the argument reasoning by induction: Given n ≥ k0+1 and nonnegative integers

ak, with 0  k  n, we calculate pk and qk using (A.1), (0  k  n) and take

an+1 = max
n
1,
j
e⌧0p

2
n/q2n

ko
.

Clearly, the sequence {ak}k≥0 ⇢ N satisfies ak ≥ 1, for any k ≥ 1, and then, lim pn = lim qn = 1
and lim (pn/qn) = ν, where ν = [a0, a1, . . . , an, . . .]. So,

lim
e⌧0p

2
n

q2n
= lim

e⌧0p
2
n

p2n

p2n
q2n

= 1,

whence

lim an+1 = lim

$
e⌧0p

2
n

q2n

%
= 1.
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In conclusion, the sequence {ak}k≥0 ⇢ N satisfies (A.5) and, therefore, (A.7). This proves (6.18).

We can also write

|⌫ − x0|  |⌫ − [a0, a1, . . . , ak0 ] |+ |[a0, a1, . . . , ak0 ]− x0|

 1

qk0qk0+1
+
"

2
 1

k0(k0 + 1)
+
"

2
 ".

In the previous inequality we have used (A.3) and the property qk ≥ k, for any k ≥ 1, which is valid

for any sequence {ak}k≥0 ⇢ Z with a0 ≥ 0 and ak > 0 for k ≥ 1. This also proves Corollary 6.25

when τ0 2 (0,1).
The inequality (6.19) can be directly deduced from the property (A.4). This ends the first part of

Lemma 6.22.

The second part of Lemma 6.22 follows in the same way by constructing a sequence {ak}k≥1 ⇢ N

such that, for a given σ > 0, one has

lim
ep

2+σ
n

an+1q2n
= 0,

and this can be done choosing (for instance)

an+1 = max

(
1,

$
ep

2+σ
n

qn

%
,

)
8n ≥ k0.

This finalizes the proof of Lemma 6.22.

Finally, when τ0 = 1, Corollary 6.25 can be proved following the previous ideas. ⇤
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