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REMARKS ON MULTIVALUED NONEXPANSIVE

MAPPINGS

BY
GENARO LOPEZ ACEDO* AND HONG-KUN XU

Abstract. Convergence of fixed point sets of multivalued nonexpansive
mappings is studied under both the Mosco and Hausdorff senses. A
characterization for *-nonexpansive multivalued mappings is given. Also
a counterexample is constructed to show a negative answer to a question
raised by A. Canbtti, G. Marino and P. Pibtramala.

Let H be a Hilbert space, C' a bounded closed convex subset of H and T

C — C is a (single-valued) nonexpansive mapping (i.e., [Tz —Ty| < ||z —yl|,

z,y € C). Then for each fixed z, € C and X € [0,1), the mapping T\ : C — C
defined by

The=(1-XNzo+ Xz, z€C (1)

is a contraction on C. Hence, Banach’s Contraction Principle yields a unique

) € C such that Thxz) = z,; namely,

An elegant result in the fixed point theory of (single-valued) nonexpansive
mappings is Browder’s theorem [1] which states that the approximating curve

x defined by (2) converges strongly as A — 1 to a fixed point of T'. This result
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was extended by Reich [11] to a framework of a uniformly smooth Banach
space. For recent progress along the line, the reader is referred to [12], [7],
[14].

Now we turn to the multivalued case. For a metric space (X,d), we use
CB(X) to denote the family of all nonempty closed bounded subsets of X,
K (X) the family of all nonempty compact subsets of X, and H the Hausdorff
metric on CB(X) induced by the metric d of X; that is, for A, B € CB(X),

H(A, B) = max {sup d(a, B),supd(b, A)} ,

a€A beB
where d(z, E) = inf{d(z,y) : y € E} is the distance from a point z € X
to a subset £ C X. Now recall that a multivalued mapping T': X — CB(X)

is said to be nonezxpansive if

H(Tz,Ty) < d(z,y), =z,y€ X.

Recall also that a sequence {A,} in CB(X) is said to converge to an element
A € CB(X) under the Mosco sense if
ligsgp A, = ligglfAn = A,

where lim sup,_, A, = {r € X : there are subsequences {n;} and {z,,}
with z,, € A, such that z,, — z} and liminf, ,. A, = {x € X : there
exists z, € A, for each n such that z,, — x}. It is not hard to see that if
H(A,,A) — 0 (A,,A € CB(X)), then A, — A under the sense of Mosco.
Assume now H and C are as above and T : C — K(C) is nonexpansive. For
each fixed zy € C and X\ € [0,1), we define the mapping T} : C — K(C) by
the same formula (1) above. Then T) is a multivalued contraction and hence

has a (nonunique, in general) fixed point z, € C' (see[8]); i.e.,
zx € (1 = Nz + A\Tzy. (3)
Let y, € T'z) be such that

Ty = (1 = A)zo + Ay (4)
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A natrual question now gives rise to whether Browder’s theorem can be ex-
tended to the multivalued case. The following simple example presents a
negative answer.

Example 1.[10] Let C = [0, 1] x [0, 1] be the square in the real plane and
T :C — K(C) be defined by

T(a,b) = the triangle with vertices (0,0), (a,0), (0,b), (a,b) € C.
Then it is easy to see that for any (a;,b;) € C, 1 = 1,2,
H(T(a1,b1),T(az,b,)) = max{la; — axl, [by — bo|} < [[(a1,b1) — (a2, bs)]],

showing that 7" is nonexpansive. It is also easy to see that the fixed point set
of T'is F(T) = {(a,0) : 0 < a <1} U{(0,b) : 0 < b < 1}. Let 2o = (1,0).
Then the map T defined by (1) has the fixed point set

F(T,)={(a,0): 1 =X<a<1}.

Let
(£,0), ifx=1-1;
o { (1,0), otherwise.
Then {z,} satisfies (3) but is not convergent.

The same example also shows that the net {F(T3)} of fixed point sets of
the T)’s does not converge as A — 1 to the fixed point set F(T') of T under
either the Hausdorff metric or the Mosco sense. However, this will be so if
we put some restrictions on the fixed point set F/(T') of T. First recall that a
Banach space X is said to satisfy Opial’s property [9] if for any sequence {z, }
in X, the condition that {z,} converges weakly to x implies that

limsup ||z, — z|| < limsup||z, —y|| Yy € X, y#u=x.

n— 00 n— 00
Spaces saisfying this property include all Hilbert spaces and #? for 1 < p < oo.

Also it is known [3] that any separable Banach space can be equivalently

renormed so that it possesses Opial’s property.
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Theorem 1. Let C be a nonempty closed bounded convexr subset of a
Banach space X satisfying Opial’s property and T : C — K(C) be a non-
expansive mapping such that F(T) = {z}. Then for any z, € C, the net
{F(T\)} of fized point sets of the Ty ’s weakly converges as A\ — 1 to the fized
point set F(T) of T under the Mosco sense, i.e.,

w — limsup F(T\) = w — lig\nilan(TA) = F(T).

A—1

Proof. It is sufficient to show that
(i) F(T) 2 w — lim sup,_,, F(T\) and
(ii) w — lim inf\_,; F(Ty) 2 F(T).

To show (i), we assume that z € w — lim sup,_,; F(T\), which means
that there exist a sequence A, € [0,1) converging to 1 and a sequence {z,}
such that z, € F(T\,) and z, — x weakly. Let y, € Tz, be such that
T, = (1 = A\p)xo + A\pyn. Choose z,, € Tz satisfying

lyn = znll < H(Twn, Tz) < [y — . (5)

Since T'z is compact, we may assume that z, — z,, € Tz strongly. Noting

that ||z, — y,|| = 0, we obtain by (5) that
lim sup ||z, — 2z || < lim sup ||z, — z||. (6)

Since z,, — z weakly, it follows from (6) and Opial’s property that z = 2.,
and z € Tz. This concludes the proof of (i). Next we show (ii). For each
A € [0,1), choose any z, € F(T)) and y, € Tz, satisfying (4). Then by the
same proof as above, we see that every weak cluster point of {z,} is a fixed
point of 7. But, by assumption, F(T) = {z}. Hence {z,} converges weakly

as A — 1 to z.

If the unique fixed point z of T is such that Tz = {z}, then we have the

following strong convergence result.

Theorem 2. Let C be a nonempty closed convex subset of a Hilbert space
H and T: C — K(C) be a nonezpansive mapping with a unique fived point
z. Suppose in addition that Tz = {z}. Then H(F(T\),F(T)) — 0 as A — 1.
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Proof. First we observe that {F(7T))} is uniformly bounded. In fact,
given any ) € F(T)), we have some y, € Tx) such that 2, = (1—\)z¢+ Ayx.
However,

lyn — 2]l = d(y, T2) < H(Tzy, Tz) < ||zx — 2|
Hence
[zx = 2|l < Allyx — 2l + (L = N)[|zo — 2[| < Allza — 2]l + (1 = A)lzo — 2]

This implies that ||z) — z|| < ||zo — z|| and {z,} is uniformly bounded. Now

choose x5 € F(Ty) such that

H(F(T\),F(T)) = sup |lz—z|]| <|lzx—2z||+1—A.
z€F(Ty)

We shall show that ||y — z|| — 0 as A — 1. Indeed, we have y, € Tz,
satisfying (4). Since |lyy — z|| = d(yr,Tz) < H(Tz),Tz) < ||zy — 2|, we

obtain
—(1-=X
w —z|| <||lzx — 2|; that is,
Iy — To 2

v (@ —2)| < @y = o) + (20 — 2)|1%,

which leads to
IA = 50l < 75 (@n = 0,2 = 70) < llon = wolllz ol
Therefore,
[2x — @oll < ||z — zol- (7)

From the proof of theorem 1, we know that x, — z weakly as A — 1 . It then
easily follows from (7) that limsup,_,, [|z.]] < ||z||. On the other hand, due to
the lower weak continutiy of the norm of H, we have liminfy_,, [|z,]| > ||z||.

Therefore, we have limy_,; ||z,]| = ||z]| and
lzx = 2l = llzall” = 2(zx, 2) + 2 >0 as A— 1

This completes the proof of the theorem.
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Corollary 1. [10] Let the assumptions of theorem 2 be satisfied. Then

w —limsup F(Ty) = || - || = liminf F(T)) = F(T).
A—1 A—1

Remark 1. The example above shows that the conclusions of theorems 1
and 2 are not valid if the fixed point set F/(T') of T is not a singleton. However,
it is an open question whether the restriction Tz = {z} in Theorem 2 can be
removed. We also do not know if Theorem 2 is valid outside a Hilbert space.

Next we let (X, d) be a metric space. A multivalued map f: X — K(X) is
said to be *-nonexpansive [4] if for all z,y € X and u, € f(z) with d(z,u,) =
inf{d(z,z) : z € f(x)}, there exists u, € f(y) with d(y,u,) = inf{d(y,w) :
w € f(y)} such that

d(ug,u,) <d(z,y).

It is obvious that this notion is identical with the notion of nonexpansiveness
for singlevalued mappings. But they are different for multivalued mappings
(see [13]). We now give a characterization of multivalued *-nonexpansive map-
pings. Denote by P; the map z — {u, € f(z) : d(z,u,) = inf{d(u,z) : v €
f(z)}}. Note that P;(z) is nonempty for f(z) is compact.

Theorem 3. A multivalued map f : X — K(X) is *-nonexpansive if

and only if the associated map Py : X — K(X) is nonezpansive.

Proof. First assume that f is *-nonexpansive. Given any z,y € X and
u; € Pp(x). By definiition, there is u, € f(y) such that d(u,,u,) < d(z,y). It
follows that

sup d(“za Pf (y)) S sup d(“za uy) S d($7 y)

uz — Py () Uz — Py ()

The same argument shows that

sup d(uy, Pr(x)) < d(z,y).

uy— Py (y)

Hence
H(P;(z), P;(y)) < d(z,y)



REMARKS ON MULTIVALUED NONEXPANSIVE MAPPINGS 113

and Py is nonexpansive. Conversely, we assume that Py is nonexpansive. Then
given any z,y € X and u, € f(z) with d(z,u,) = inf{d(z,2) : z = f(x)}
(i.e., u, € Ps(x)). By compactness, we can choose u, € P;(y) such that
d(u,,u,) = d(u,, P(y)). Hence

and f is *-nonexpansive.

Remark 2. Theorem 3 indicates that the fixed point theory of multival-
ued nonexpansive mappings applies to multivalued *-nonexpansive mappings;
in particular, we have the following results whose nonexpansive counterparts

were proved in [5] and [6], respectively.

Corollary 2 Let X be a Banach space satisfying Opial’s property, C
a nonempty weakly compact conver subset of X , and T : C — K(C) a

*_nonexpansive mapping. Then T has a fized point.

Corollary 3. Let X be a uniformly conver Banach space, C' a nonempty
closed bounded convex subset of X, and T : C — K(C) a *-nonerpansive

mapping. Then T has a fized point.

Corollaries 2 and 3 improve upon the corresponding results of [4] and [13].
We conclude the paper with a counterexample that presents a negative
answer to a question raised by A. Canbtti, G. Marino and P. Pibtramala [2].
Suppose that H is a Hilbert space and K is a nonempty closed convex
subset of H. We denote by KC(K) the family of all nonempty compact convex
subsets of K, and by d(A, B) the distance between two subsets A, B C H, i.e.,
d(A,B) = inf{||lz —y|| : € A,y € B}. With each mapping T : K — KC(H)

one can associate a multivalued mapping 7' : K — KC(H) defined as follows:
Tz :={yeTz:dy, K)=dTz K)}.

The question raised by A. Canbtti, G. Marino and P. Pibtramala (see [2,
Remark 1, p. 207]) is whether the nonexpansiveness of T' implies that T is

nonexpansive. The following example shows that the answer is negative.
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Example 2. Let OABC be the unit square [0, 1] x [0, 1] in the plane H.
Let D and E be the midpoints of the segments AB and OC, respectively. Let
K be the triangle AADF. To each point P € K, let P' be the symmetric
point of P with respect to the diagonal segment AC. Let P/ be the projection
of P’ onto the segment OA. Now we define a map T : K — KC(H) by setting
(see the figure below)
T(P) := The segment CP;.

C B
El--\- —lF D
|

A P
N\
0 D, P A

It is then easy to see that 7" is a nonexpansive mappipng with the unique
fixed point A. We also have the following facts:
(i) T(A) = AC and hence d(T(A),K) = 0;
(ii) T'(A) is the segment AF;
(iii) T(D) = CD}, where D} is the midpoint of OA4;
(iv) T(D) = {G}, where G is the nearest point projection of F onto the
segment C'D}. Hence
H(T(A),T(D)) =sup{d(G, M) : M € AF}
=The length of the segment GA
>The length of the segment AD

=d(A, D),

showing that T' is not nonexpansive.
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