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Abstract. In this paper, we prove the local and global existence and attrac-
tivity of mild solutions for stochastic impulsive neutral functional differential

equations with infinite delay, driven by fractional Brownian motion.

1. Introduction

The theory of impulsive differential equations has become an active area of in-
vestigation due to their applications in the fields such as mechanics, electrical engi-
neering, medical biology, economical systems etc. One can find detailed information
in [3, 5, 14, 21, 22, 23, 24, 28] and references therein.

Neutral differential equations arise in many areas of applied mathematics and,
for this reason, these equations have received much attention over the last few
decades. Some good literature for ordinary neutral functional differential equations
are the books of Benchohra et al. [5], Graef et al. [14], Lakshmikantham et al.
[20] and the references therein. On the other hand, for partial neutral functional
differential equations we refer the reader to Balachandran [4], Benchohra et al. [6],
Jiang [17], Hale [15] and Hernandez [18].

The existence of neutral stochastic functional differential equation driven by
a fractional Brownian motion have attracted great interest of researchers. For
example, Boufoussi and Hajji [9] analyzed the existence and uniqueness of mild
solutions for a neutral stochastic differential equation with finite delay,driven by
a fractional Brownian motion in a Hilbert space, and established some sufficient
conditions ensuring the exponential decay to zero in mean square for the mild
solution. In [12] Caraballo and Diop, studied the existence and uniqueness of
mild solutions to neutral stochastic delay functional integro-differential equations
perturbed by a fractional Brownian motion. The existence and stability of second
order stochastic differential equations driven by a fractional Brownian motion has
been examined by Revathi et al. [34].

Recently, Boudaoui et al. [8] and Ren et al. [32] proved the existence of mild
solutions to stochastic impulsive evolution equations with time delays driven by
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fractional Brownian motion by using a Krasnoselski-Schaefer type fixed point theo-
rem. The existence of integral solution of non-densely impulsive neutral stochastic
differential equation was studied by Ren et. al. [31]

In this paper, our main objective is to establish sufficient conditions for the local
and global existence and attractivity of mild solutions to the following first order
neutral stochastic impulsive functional equation with time delays:

d[y(t)− g(t, yt)] = [Ay(t) + f(t, yt)]dt+ σ(t)dBHQ (t), t ∈ J := [0, T ], (1.1)

∆y|t=tk = y(t+k )− y(tk) = Ik(y(tk)), k = 1, . . . ,m, (1.2)
y(t) = φ(t) ∈ DF0 , for a.e. t ∈ J0 = (−∞, 0], (1.3)

in a real separable Hilbert space H with inner product (·, ·) and norm ‖ ·‖, where A
is the infinitesimal generator of an analytic semigroup of bounded linear operators
{S(t), t ≥ 0}, BHQ is a fractional Brownian motion on a real and separable Hilbert
space K, with Hurst parameter H ∈ (1/2, 1), and with respect to a complete proba-
bility space (Ω,F ,Ft, P ) furnished with a family of right continuous and increasing
σ-algebras {Ft, t ∈ J} satisfying Ft ⊂ F . The impulse times tk satisfy 0 = t0 <
t1 < t2 < . . . , tm < T (if T =∞, tk satisfies 0 = t0 < t1 < t2 < . . . , tm < · · · ). As
for yt, we mean the segment solution which is defined in the usual way, that is, if
y(·, ·) : (−∞, T ] × Ω → H, then for any t ≥ 0, yt(·, ·) : (−∞, 0] × Ω → H is given
by:

yt(θ, ω) = y(t+ θ, ω), for θ ∈ (−∞, 0], ω ∈ Ω.
Before describing the properties fulfilled by the operators f, g, σ and Ik, we need to
introduce some notation and describe some spaces.

In this work, we will employ an axiomatic definition of the phase space DF0

introduced by Hale and Kato [16].

Definition 1.1. DF0 is a linear space of a family of F0-measurable functions from
(−∞, 0] into H endowed with a norm ‖ · ‖DF0

, which satisfies the following axioms.
(A-1): If y : (−∞, T ] −→ H, T > 0, is such that y0 ∈ DF0 , then for every
t ∈ [0, T ) the following conditions hold:

(i): yt ∈ DF0 ,
(ii): ‖y(t)‖ ≤ L‖yt‖DF0

,
(iii): ‖yt‖D ≤ K(t) sup{‖y(s)‖ : 0 ≤ s ≤ t}+N(t)‖y0‖DF0

,
where L > 0 is a constant; K,N : [0,∞) −→ [0,∞), K is continuous,
N is locally bounded and K,N are independent of y(·).

(A-2): For the function y(·) in (A−1), yt is a DF0-valued function on [0, T ).
(A-3): The space DF0 is complete.

Denote
K̃ = sup{K(t) : t ∈ J} and Ñ = sup{N(t) : t ∈ J}.

Now, for a given T > 0, we define

DFT =
{
y : (−∞, T ]× Ω→ H, yk ∈ C(Jk,H) for k = 1, . . .m, y0 ∈ DF0 , and there exist

y(t−k ) and y(t+k ) with y(tk) = y(t−k ), k = 1, · · · ,m, and sup
t∈[0,T ]

E(|y(t)|2) <∞
}
,

endowed with the norm

‖y‖DFT = ‖φ‖DF0
+ sup

0≤s≤T
(E‖y(s)‖2)

1
2 ,
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where yk denotes the restriction of y to Jk = (tk−1, tk], k = 1, 2, · · · ,m, and J0 =
(−∞, 0].

Then we will consider our initial data φ ∈ DF0 .
Let K be another real separable Hilbert and suppose that BHQ is a K-valued

fractional Brownian motion with increment covariance given by a non-negative
trace class operator Q (see next section for more details), and let us denote by
L(K,H) the space of all bounded, continuous linear operators from K into H.

Then we assume that g : J×DF0 → H, f : J×DF0 → H and σ : J → L0
Q(K,H).

Here, L0
Q(K,H) denotes the space of all Q-Hilbert-Schmidt operators from K into

H, which will be also defined in the next section.
As for the impulse functions, we will assume that Ik ∈ C(H,H) (k = 1, . . . ,m),

and ∆y|t=tk = y(t+k )− y(t−k ), y(t+k ) = lim
h→0+

y(tk + h) and y(t−k ) = lim
h→0+

y(tk − h).

The plan of this paper is as follows. In Section 2 we introduce notations, defi-
nitions, and preliminary facts which are useful throughout the paper. In Section 3
we prove existence of mild solutions for problem (1.1)-(1.3). Our approach to prove
the local existence of mild solutions is based on a fixed point theorem of Burton
and Kirk ([10]) for the sum of a contraction map and a completely continuous one.
The global existence and uniqueness of mild solutions are discussed in Section 4 by
using the Banach fixed point theorem. In Section 5 we provides sufficient conditions
for the attractivity of mild solutions to problem (1.1)-(1.3). Finally, in Section 6,
an example is given to demonstrate the applicability of our results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
will be used throughout this paper. In particular, we consider fractional Brownian
motion as well as the Wiener integral with respect to it. We also establish some
important results which will be needed throughout the paper.

Recall that (Ω,F ,Ft, P ) is a complete probability space furnished with a family
of right continuous increasing σ-algebras {Ft, t ∈ J} satisfying Ft ⊂ F .

Definition 2.1. Given H ∈ (0, 1), a continuous centered Gaussian process βH =
{βH(t), t ∈ R}, with the covariance function

RH(t, s) = E[βH(t)βH(s)] =
1
2

(|t|2H + |s|2H − |t− s|2H), t, s ∈ R

is called a two−sided one−dimensional fractional Brownian motion, and H is the
Hurst parameter.

Now we aim at introducing the Wiener integral with respect to the one-dimensional
βH .

Let T > 0 and denote by Λ the linear space of R−valued step functions on [0, T ],
that is, ψ ∈ Λ if

ψ(t) =
n−1∑
i=1

xi1[si,si−1)(t),
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where t ∈ [0, T ], xi ∈ R and 0 = s1 < s2 < · · · < sn = T. For ψ ∈ Λ we define its
Wiener integral with respect to βH by∫ T

0

ψ(σ)dβH(σ) =
n−1∑
i=1

xi(βH(si+1)− βH(si)).

Let H be the Hilbert space defined as the closure of Λ with respect to the scalar
product

〈1[0,t], 1[0,s]〉H = RH(t, s).
Then, the mapping

ψ =
n−1∑
i=1

xi1[si,si+1) 7→
∫ T

0

ψ(σ)dβH(σ)

is an isometry between Λ and the linear space span {βH(t), t ∈ [0, T ]}, which can
be extended to an isometry between H and the first Wiener chaos of the fractional
Brownian motion spanL

2(Ω){βH(t), t ∈ [0, T ]} (see [29]). The image of an element
ψ ∈ H by this isometry is called the Wiener integral of ψ with respect to βH . Our
next goal is to give an explicit expression for this integral. To this end, consider
the kernel

KH(t, s) = cHs
1/2−H

∫ t

s

(u− s)H−3/2uH−1/2du,

where cH =
(

H(2H−1)

B(2−2H,H− 1
2 )

)1/2

, with B(·, ·) denoting the Beta function, and t ≤ s.
It is not difficult to see that

∂KH

∂t
(t, s) = cH

( t
s

) 1
2−H

(t− s)H− 3
2 .

Consider the linear operator K∗H : Λ −→ L2([0, T ]) given by

(K∗HΦ)(s) =
∫ t

s

Φ(t)
∂KH

∂t
(t, s)dt.

Then
(K∗H1[0,t])(s) = KH(t, s)1[0,t](s),

and K∗H is an isometry between Λ and L2([0, T ]) that can be extended to Λ (see
[2]). Considering W = {W (t), t ∈ [0, T ]} defined by

W (t) = βH((K∗H)−11[0,t]),

it turns out that W is a Wiener process and βH has the following Wiener integral
representation:

βH(t) =
∫ t

0

KH(t, s)dW (s).

In addition, for any Φ ∈ Λ,∫ T

0

Φ(s)βH(s)dW (s) =
∫ T

0

(K∗HΦ)(t)dW (t)

if and only if K∗HΦ ∈ L2([0, T ]).

Also denoting

L2
H([0, T ]) = {Φ ∈ Λ,K∗HΦ ∈ L2([0, T ])},
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since H > 1/2, we have
L1/H([0, T ]) ⊂ L2

H([0, T ]), (2.1)
see [26]. Moreover, the following useful result holds:

Lemma 2.2. ([27]) For Φ ∈ L1/H([0, T ]),

H(2H − 1)
∫ T

0

∫ T

0

|Φ(r)‖Φ(u)‖r − u|2H−2drdu ≤ cH‖Φ‖2L1/H([0,T ]).

Next, we consider a fractional Brownian motion with values in a Hilbert space
and give the definition of the corresponding stochastic integral.

Let Q ∈ L(K,H) be a non-negative self−adjoint operator. Denote by L0
Q(K,H)

the space of all ξ ∈ L(K,H) such that ξQ
1
2 is a Hilbert-Schmidt operator. The

norm is given by
|ξ|2L0

Q(K,H) = tr(ξQξ∗).

Then ξ is called a Q-Hilbert-Schmidt operator from K to H.
Let {βHn (t)}n∈N be a sequence of two-sided one-dimensional standard fractional

Brownian motions that are mutually independent on (Ω,F , P ). The following series
∞∑
n=1

βHn (t)en, t ≥ 0,

where {en}n∈N is a complete orthonormal basis in K, does not necessarily converge
in the space K. Thus, we consider a K−valued stochastic process BHQ (t) given
formally by the following series:

BHQ (t) =
∞∑
n=1

βHn (t)Q
1
2 en, t ≥ 0,

which is well-defined as a K-valued Q-cylindrical fractional Brownian motion.
Let ϕ : [0, T ] 7→ LQ0 (K,H) such that

∞∑
n=1

‖K∗H(ϕQ
1
2 en)‖L1/H([0,T ];H) <∞. (2.2)

Definition 2.3. Let ϕ : [0, T ] −→ L0
Q(K,H) satisfy (2.2). Then, its stochastic

integral with respect to the fractional Brownian motion BHQ is defined, for t ≥ 0, as∫ t

0

ϕ(s)dBHQ (s) :=
∞∑
n=1

∫ t

0

ϕ(s)Q1/2endβ
H
n (s) =

∞∑
n=1

∫ t

0

(K∗H(ϕQ1/2en))(s)dW (s).

Notice that if
∞∑
n=1

‖ϕQ1/2en‖L1/H([0,T ];H) <∞, (2.3)

then in particular (2.2) holds, which follows immediately from (2.1).

Lemma 2.4. ([11]) If ϕ : [0, T ] −→ L0
Q(K,H) satisfies∫ T

0

‖ϕ(s)‖2L0
Q(K,H)ds <∞,

then the series in (2.3) is well defined as a H-valued random variable and we have



6 A. BOUDAOUI, T. CARABALLO, AND A. OUAHAB

E
∣∣∣ ∫ t

0

ϕ(s)dBHQ (s)
∣∣∣2 ≤ 2Ht2H−1

∫ t

0

‖ϕ(s)‖2L0
Q(K,H)ds.

Assume that S(t) is an analytic semigroup with infinitesimal generator A such
that 0 ∈ ρ(A) (the resolvent set of A). Then, it is possible to define the fractional
power (−A)α, 0 < α ≤ 1 as a closed linear invertible operator with its domain
D((−A)α) being dense in H. We denote by Hα the Banach space D((−A)α) en-
dowed with the norm ‖y‖α = ‖(−A)αy‖, which is equivalent to the graph norm of
(−A)α. In the sequel, Hα represents the space D((−A)α) with the norm ‖ · ‖α.
Then, we have the following well-known properties that appear in ([30]).

Lemma 2.5. (i): If 0 < β < α ≤ 1, then Hα ⊂ Hβ and the embedding is
compact whenever the resolvent operator of A is compact.

(ii): For each 0 < α ≤ 1, there exists a positive constant Cα such that
‖(−A)αS(t)‖ ≤ Cα

tα e
−λt, t > 0, λ > 0.

Lemma 2.6. ([18]) Let v(·),w(·) : [0, T ] −→ [0,∞) be continuous functions. If
w(·) is nondecreasing and there are constants θ > 0 and 0 < α < 1 such that

v(t) ≤ w(t) + θ

∫ t

0

v(s)
(t− s)1−α ds, t ∈ J,

then

v(t) ≤ eθ
nΓ(α)ntnα/Γ(nα)

n−1∑
j=0

(
θTα

α

)j
w(t),

for every t ∈ [0, T ] and every n ∈ N such that nα > 1, where Γ(·) is the Gamma
function.

Definition 2.7. The map f : J ×DF0 → H is said to be L2-Carathéodory if
(i): t 7→ f(t, v) is measurable for each v ∈ DF0 ;
(ii): v 7→ F (t, v) is continuous for almost all t ∈ J ;
(iii): for each q > 0, there exists αq ∈ L1(J,R+) such that

E|f(t, v)|2 ≤ αq(t), for all ‖v‖2DF0
≤ q and for a.e. t ∈ J.

3. Existence result

Now we first define the concept of mild solution to our problem.

Definition 3.1. Given φ ∈ DF0 , a H−valued stochastic process {y(t), t ∈ (−∞, T ]}
is called a mild solution of the problem (1.1)-(1.3) if y(t) is measurable and Ft-
adapted, for each t > 0, y(t) = φ(t) on (−∞, 0], ∆y|t=tk = Ik(y(t−k )), k =
1, 2, · · · ,m, the restriction of y(·, ·) to [0, T ) − {t1, t2, · · · , tm} is continuous, and
for each s ∈ [0, t), the function AS(t − s)g(s, xs) is integrable, and y satisfies the
integral equation

y(t) = S(t)[φ(0)− g(s, φ)] + g(t, yt) +
∫ t

0

AS(t− s)g(s, ys)ds

+
∫ t

0

S(t− s)f(s, ys)ds+
∫ t

0

S(t− s)σ(s)dBHQ (s)

+
∑

0<tk<t

S(t− tk)Ik(y(t−k )), t ∈ J.

(3.1)
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Notice that this concept of solution can be considered as more general than the
classical concept of solution to equation (1.1)-(1.3). A continuous solution of (3.1)
is called a mild solution of (1.1)-(1.3).

Our main result in this section is based on the following fixed point theorem due
to Burton and Kirk [10].

Theorem 3.2. Let X be a Banach space, and Φ1,Φ2 : X → X be two operators
satisfying:

(1) Φ1 is a contraction, and
(2) Φ2 is completely continuous

Then, either the operator equation y = Φ1(y) + Φ2(y) possesses a solution, or the

set Ξ =
{
y ∈ X : λΦ1( yλ ) + λΦ2(y) = y, for some λ ∈ (0, 1)

}
is unbounded.

We are now in a position to state and prove our local existence result for the
problem (1.1)-(1.3). First we will list the following hypotheses which will be im-
posed in our main theorem.

• (H1) A is the infinitesimal generator of an analytic semigroup of bounded
linear operators S(t), t ≥ 0 and there exists a constant M such that
{‖S(t)‖2 ≤M} for all t ≥ 0 and ‖(−A)1−βS(t)‖ ≤ M1−β

t1−β
, for all t > 0.

• (H2) There exist constants 0 < β < 1, Lg ≥ 0 and a bounded continuous
function ζ : J −→ IR+ such that g is Hβ-valued, (−A)βg is continuous, and

(i): E|(−A)βg(t, y)|2 ≤ ζ(t)‖y‖2DF0
, t ∈ J, y ∈ DF0

(ii): E|(−A)βg(t, y1)− (−A)βg(t, y2)|2 ≤ Lg‖y1 − y2‖2DF0
, t ∈ J,

y1 and y2 ∈ DF0 with L0 = 4K̃2Lg

(
‖(−A)−β‖2 + (C1−βT

β)2

2β−1

)
< 1.

• (H3) For all y ∈ H, there exist constants dk > 0, k = 1, . . . ,m, . . . for each

|Ik(y)| ≤ dk, and
∞∑
k=0

dk <∞.

• (H4) f is a L2-Caratheodory map and for every t ∈ [0, T ] the function
t→ f(t, yt), yt ∈ DF0 , is mesurable.
• (H5) The function σ : J −→ LQ(K,H) satisfies∫ T

0

‖σ(s)‖2LQds <∞.

• (H6) For the initial value φ ∈ DF0 , there exists a continuous nondecreasing
function ψ : [0,∞) → [0,∞), ψ(0) = 0 and p ∈ L1(J, IR+) such that
E|f(t, y)|2 ≤ p(t)ψ(‖y‖2DF0

), for a.e. t ∈ J and y ∈ DF0

with ∫ ∞
ηK0

du

ψ(u)
> ηK2

∫ T

0

p(s)ds,

where K0 =
4 eK2ME|bφ(0)|2+4 eN2‖bφ‖2DF0

+4 eK2F

1−24 eK2(−A)−βζ∗
, K2 = 24T eK2M

1−24 eK2(−A)−βζ∗
, and

η = eK
n
1 (Γ(2β−1))nTn(2β−1)/Γ(n(2β−1))

n−1∑
j=0

(
K1T

2β−1

2β − 1

)
.
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Theorem 3.3. Assume that hypotheses (H1)-(H6) hold. If 12K̃2(−A)−βθ1 < 1,
then, problem (1.1)-(1.3) possesses at least one mild solution on (−∞, T ].

Proof. Transform the problem (1.1)-(1.3) into a fixed point problem. Consider the
operator Φ : DFT → DFT defined by

Φ(y)(t) =



φ(t), if t ∈ (−∞, 0],

S(t)[φ(0)− g(0, φ)] + g(t, yt) +
∫ t

0

AS(t− s)g(s, ys)ds

+
∫ t

0

S(t− s)f(s)ds+
∫ t

0

S(t− s)g(s)dBHQ (s)

+
∑

0<tk<t

S(t− tk)Ik(y(t−k ), if t ∈ J.

For φ ∈ DF0 , we define φ̂ by

φ̂(t) =
{

φ(t), t ∈ (−∞, 0],
S(t)φ(0), t ∈ J ;

then φ̂ ∈ DFT .
Let y(t) = z(t) + φ̂(t),−∞ < t ≤ T . It is evident that z satisfies z0 = 0, t ∈
(−∞, 0] and

z(t) = −S(t)g(0, φ) + g(t, zt + φ̂t) +
∫ t

0

AS(t− s)g(s, zs + φ̂s)

+
∫ t

0

S(t− s)f(s, zs + φ̂s) +
∫ t

0

S(t− s)g(s)dBHQ (s)

+
∑

0<tk<t

S(t− tk)Ik(z(t−k ) + φ̂(t−k )), t ∈ J.

Set D′FT = {y ∈ DFT , such that y0 = 0 ∈ DF0} ; for any y ∈ DF0 we have

‖y‖FT = ‖y0‖DF0
+ sup

t∈J
(E‖y(t)‖2)

1
2 = sup

t∈J
(E‖y(t)‖2)

1
2 ,

Then (D′FT , ‖ · ‖FT ) is a Banach space.

Let Bq =
{
y ∈ D′FT , ‖y‖2D′FT

≤ q, q ≥ 0
}

. Clear that the set Bq is a bounded

closed convex set in D′FT for each q ≥ 0 and for each y ∈ Bq. we have

‖zt + φ̂t‖2DF0
≤ 2(‖zt‖2DF0

+ ‖φ̂t‖2DF0
)

≤ 4(Ñ2‖φ‖2DF0
+ K̃2(q +ME|φ(0)|2))

= q′.

Let the operator Φ̂ : D′FT → D
′

FT be defined by

Φ̂(z) =



0, if t ∈ (−∞, 0],

−S(t)g(0, φ) + g(t, zt + φ̂t) +
∫ t

0

AS(t− s)g(s, zs + φ̂s)

+
∫ t

0

S(t− s)f(s, zs + φ̂s) +
∫ t

0

S(t− s)g(s)dBHQ (s)

+
∑

0<tk<t

S(t− tk)Ik(z(t−k ) + φ̂(t−k )), t ∈ J.
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Now, consider the two operators Φ̂1, Φ̂2 defined by:

Φ̂1(z)(t) =


0, if t ∈ (−∞, 0],

−S(t)g(0, φ) + g(t, zt + φ̂t) +
∫ t

0

AS(t− s)g(s, zs + φ̂s)

+
∫ t

0

S(t− s)g(s)dBHQ (s), if t ∈ [0, T ],

and

Φ̂2(z)(t) =


0, if t ∈ (−∞, 0],∫ t

0

S(t− s)f(s, zs) +
∑

0<tk<t

S(t− tk)Ik(z(t−k ) + φ̂(t−k )), if t ∈ [0, T ].

Clear that
Φ̂1 + Φ̂2 = Φ̂.

Then the problem of finding a solution of (1.1)-(1.3) is reduced to finding a
solution of the operator equation y(t) = Φ̂1(y)(t) + Φ̂2(y)(t), t ∈ (−∞, T ]. We
shall show that the operators Φ̂1 and Φ̂2 satisfy all the conditions of Theorem
3.2. The proof will be given in several steps.

Step 1: Φ1 is a contraction.

Let v, u ∈ D′FT . Then, for t ∈ J ,

E|Φ̂1(v)(t)− Φ̂1(u)(t)|2 ≤ 2E|g(t, vt + φ̂t)− g(t, ut + φ̂t)|2

+2E
∣∣∣∣ ∫ t

0

AS(t− s)(g(s, vs + φ̂s)− g(s, us + φ̂s))
∣∣∣∣2

≤ 2Lg‖(−A)−β‖2‖v(t)− u(t)‖2DF0

+2T
∫ t

0

C2
1−β

t− s2(1−β)
Lg‖v(s)− u(s)‖2DF0

ds,

≤ 2Lg

(
‖(−A)−β‖2 + (C1−βT

β)2

2β−1

)
×
[
2K̃2 sup

0≤s≤T
E|v(s)− u(s)|2

+2Ñ‖v0‖2DF0
+ 2Ñ‖u0‖2DF0

]
,

≤ L0 sup
0≤s≤T

E|v(s)− u(s)|2.

Since ‖u0‖2DF0
= 0, ‖v0‖2DF0

= 0. Taking the supremum over t, we obtain

‖Φ̂1(v)− Φ̂1(u)‖2D′FT
≤ L0‖v − u‖2D′FT

,

where L0 = 4K̃2Lg

(
‖(−A)−β‖2 + (C1−βT

β)2

2β−1

)
< 1. Thus Φ̂1 is a contraction.

Next, we prove that the operator Φ̂2 is completely continuous.
Step 2: Φ̂2 is continuous.

Let zn be a sequence such that zn → z in D′FT . Then, for t ∈ J , and thanks
to (H1), (H3) and (H4), Ik , k = 1, 2, · · · ,m, is continuous.
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By the dominated convergence theorem, we have

E|Φ̂2(zn)(t)− Φ̂2(z)(t)|2

≤ 2E
∣∣∣ ∫ t

0

S(t− s)(f(s, (zns + φ̂s))− f(s, zs + φ̂s))ds
∣∣∣2

+2E
∣∣∣ ∑

0≤tk≤t

|S(t− tk)|2|Ik(zn
t−k

+ φ̂(t−k ))− Ik(zt−k + φ̂(t−k ))
∣∣∣2

≤ 2MT

∫ t

0

E
∣∣∣(f(s, (zns + φ̂s))− f(s, zs + φ̂s))ds

∣∣∣2
+2ME

∣∣∣Ik(zn(t−k ) + φ̂(t−k ))− Ik(z(t−k ) + φ̂(t−k ))
∣∣∣2→ 0 as n→ +∞.

Thus, Φ2 is continuous.

Step 3: Φ̂2 maps bounded sets into bounded sets in D′FT .

Indeed, it is enough to show that for any q > 0, there exists a positive constant
l such that for each z ∈ Bq = {z ∈ D′FT : ‖z‖2D′FT

≤ q}, one has ‖Φ̂2(z)‖2D′FT
≤ l.

Let z ∈ Bq; then for each t ∈ [0, T ], we have

|Φ̂2z(t)|2 ≤

∣∣∣∣∣∣
∫ t

0

S(t− s)f(s, zs + φ̂s)ds+
∑

0≤tk≤t

S(t− tk)Ik(zn
t−k

+ φ̂(t−k ))

∣∣∣∣∣∣
2

≤ 2M
∣∣∣ ∫ t

0

f(s, zs + φ̂s)ds
∣∣∣2 + 2M

∑
0≤tk≤t

∣∣∣Ik(zn(t−k ) + φ̂(t−k ))
∣∣∣2 .

Thus,

E|Φ̂2z(t)|2 ≤ 2TM
∫ t

0

p(s)ψ(‖zs + φ̂s‖2D′FT
)ds

+2M
∑

0≤tk≤t

E|Ik(z(t−k ) + φ̂(t−k ))|2

≤ 2MTψ(q
′
)
∫ T

0

p(s)ds+ 2M
( m∑
k=1

dk

)2

.

Then we have

E|Φ̂2z(t)|2 ≤ 2MTψ(q
′
)‖p‖L1 + 2M

( m∑
k=1

dk

)2

= l.

Step 4: Φ̂2 maps bounded sets into equicontinuous sets in D′FT .
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Let 0 < ε ≤ τ1 < τ2 ∈ J, τ1, τ2 6= ti, i = 1, · · · ,m, and Bq be a bounded set of
D′FT as in Step 3. Let z ∈ Bq; then we have

E|(Φ̂2y)(τ2)− (Φ̂2y)(τ1)|2 ≤ 6T
∫ τ1−ε

0

|S(τ2 − s)− S(τ1 − s)|2E|f(s, zs + φ̂s)|2ds

+6T
∫ τ1

τ1−ε
|S(τ2 − s)− S(τ1 − s)|2E|f(s, zs + φ̂s)|2ds

+6T
∫ τ2

τ1

|S(τ2 − s)|2E|f(s, zs + φ̂s)|2ds

+4
∑

0<tk<τ1

|S(τ2 − tk)− S(τ1 − tk)|2E|Ik(zn(t−k ) + φ̂(t−k ))|2

+4
∑

τ1≤tk<τ2

|S(τ2 − tk)|2|Ik(zn(t−k ) + φ̂(t−k ))|2

≤ 6T
∫ τ1−ε

0

|S(τ2 − s)− S(τ1 − s)|2αq′ (s)ds

+6T
∫ τ1

τ1−ε
|S(τ2 − s)− S(τ1 − s)|2αq′ (s)ds

+6TM
∫ τ2

τ1

αq′ (s)ds

+4
∑

0<tk<τ1

|S(τ2 − tk)− S(τ1 − tk)dk|2

+4M
( ∑
τ1≤tk<τ2

dk

)2

.

The right-hand side tends to zero as τ2 − τ1 → 0, and ε sufficiently small, since
the compactness of S(t) for t > 0 implies the continuity in the uniform operator
topology [30]. This proves the equicontinuity. Here, we consider the case 0 <
τ1 < τ2 ≤ T , since the cases τ1 < τ2 ≤ 0 and τ1 ≤ 0 ≤ τ2 ≤ T are easier to
handle.

Step 5: (Φ̂2Bq)(t) is precompact in H
As a consequence of Steps 2 to 4, together with the Arzelá-Ascoli theorem, it

suffices to show that Φ̂2 maps Bq into a precompact set in H.
Let 0 < t < T be fixed and let ε be a real number satisfying 0 < ε < t. For

y ∈ Bq, we define

(Φ̂2εz)(t) = S(ε)
∫ t−ε

0

S(t−s−ε)f(s, zs+φ̂s)ds+S(ε)
∑

0<tk<t−ε
S(t−tk−ε)Ik(z(t−k )+φ̂(t−k )).

Since S(t) is a compact operator, the set

Yε(t) = {Φ̂2ε(z)(t) : z ∈ Bq}

is precompact in H for every ε and 0 < ε < t. Moreover, for every z ∈ Bq we
have



12 A. BOUDAOUI, T. CARABALLO, AND A. OUAHAB

E|(Φ̂2y)(t)− (Φ̂2ε(y)(t)|2 ≤ 4T
∫ t

t−ε
|S(t, s)|2E|f(s, zs + φ̂s)|2ds

+4
∑

t−ε<tk<t
|S(t− tk)|2E|Ik(z(t−k ) + φ̂(t−k ))|2

≤ 4TM
∫ t

t−ε
αq′ (s)ds+ 4M

( ∑
0<tk<t−ε

dk

)2

.

Therefore, there are precompact sets arbitrarily close to the set Yε(t) = {Φ̂2ε(z)(t) : z ∈
Bq}. Hence the set Y (t) = {Φ̂2(z)(t) : y ∈ Bq} is precompact inH, and therefore,
the operator Φ̂2 : D′FT → D

′

FT is completely continuous.
Step 5 : A priori bounds.
Now it remains to show that the set

Ξ = {z ∈ D
′

FT : z = λΦ̂2(z) + λΦ̂1

( z
λ

)
, for some 0 < λ < 1}

is bounded. For each t ∈ J

z(t) = −S(t)g(0, φ) + g(t, zt + φ̂t) +
∫ t

0

AS(t− s)g(s, zs + φ̂s)ds

+
∫ t

0
S(t− s)f(s, zs + φ̂s)ds+

∫ t
0
S(t− s)σ(s)dBHQ (s)

+
∑

0<tk<t

S(t− tk)Ik(z(tk) + φ̂(tk)).

This implies, for each t ∈ J ,

E|z(t)|2 ≤ 6(−A)−βMζ(t)‖φ‖2DF0
+ 6(−A)−βζ(t)‖zt + φ̂t‖2DF0

+6T
∫ t

0

C2
1−β

(t− s)2(1−β)
ζ(s)‖zs + φ̂s‖2DF0

ds+ 6MT

∫ t

0

p(s)ψ(‖zs + φ̂s‖2DF0
)ds

+12MHt2H−1
∫ t

0
‖σ(s)‖2

L0
Q
ds+ 6M

( m∑
k=1

dk

)2

≤ F + 6(−A)−βζ(t)‖zt + φ̂t‖2DF0

+6T
∫ t

0

C2
1−β

(t− s)2(1−β)
ζ(s)‖zs + φ̂s‖2DF0

ds

+6MT

∫ t

0

p(s)ψ(‖zs + φ̂s‖2DF0
)ds,

where

F = 6(−A)−βMζ∗‖φ‖DF0
+ 12MHT 2H−1

∫ T

0

‖σ(s)‖2L0
Q
ds+ 6M

( m∑
k=1

dk

)2

,

and
ζ∗ = sup

t∈J
|ζ(t)|.

But

‖zt + φ̂t‖2DF0
≤ 2(‖zt‖2DF0

+ ‖φ̂t‖2DF0
)

≤ 4K̃2 sup
s∈[0,T ]

E|z(s)|2 + 4K̃2ME|φ̂(0)|2 + 4Ñ2‖φ‖2DF0

≤ 4K̃2 sup
s∈[0,T ]

E|z(s)|2 + 4α2(M + 1)‖φ‖2DF0
,
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where
α2 = max{K̃2, Ñ2}.

If we set w(t) the right hand side of the above inequality we have that

‖zt + φ̂t‖2DF0
≤ w(t),

and therefore (3.2) becomes

E|z(t)|2 ≤F + 6(−A)−βζ(t)w(t) + 6T
∫ t

0

C2
1−β

(t− s)2(1−β)
ζ(s)w(s)ds

+ 6MT

∫ t

0

p(s)ψ(w(s))ds. (3.2)

Using (3.2) in the definition of w, we have that

w(t) ≤ 4K̃2

(
F + 6(−A)−βζ∗w(t) + 6T

∫ t

0

C2
1−β

(t− s)2(1−β)
ζ∗w(s)ds

+6MT

∫ t

0

p(s)ψ(w(s))ds
)

+ 4K̃2ME|φ̂(0)|2 + 4Ñ2‖φ̂‖2DF0
.

(3.3)

Thus, we obtain

w(t) ≤ K0 +K1

∫ t

0

w(s)
(t− s)2(1−β)

ds+K2

∫ t

0

p(s)ψ(w(s))ds. (3.4)

where

K0 =
4K̃2ME|φ̂(0)|2 + 4Ñ2‖φ̂‖2DF0

+ 4K̃2F

1− 24K̃2(−A)−βζ∗
,

K1 =
24TK̃2C2

1−βζ
∗

1− 24K̃2(−A)−βζ∗
,

and

K2 =
24TK̃2M

1− 24K̃2(−A)−βζ∗
.

By Lemma 2.6, we get

w(t) ≤ η
(
K0 +K2

∫ t

0

p(s)ψ(w(s))ds
)
, (3.5)

where

η = eC
n
1 (Γ(2β−1))nTn(2β−1)/Γ(n(2β−1))

n−1∑
j=0

(
K2T

2β−1

2β − 1

)
.

Let us denote the right-hand side of the inequality (3.5) by v(t). Then we have

v(0) = ηK0, w(t) ≤ v(t), t ∈ J,

and
v′(t) = ηK2p(t)ψ(w(t)), t ∈ J.

Using the increasing character of ψ, we obtain

v′(t) ≤ ηK2p(t)ψ(v(t)), for a.e. t ∈ J.
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This implies, for each t ∈ J, we have∫ v(t)

v(0)

ds

ψ(s)
≤ ηK2

∫ T

0

p(s)ds⇒ Γ(v(t)) ≤ ηK2‖p‖L1 ,

where Γ is nondegreasing function defined by

Γ(z) =
∫ z

ηK0

du

ψ(u)
.

Hence
v(t) ≤ Γ−1 (ηK2‖p‖L1) := K ⇒ w(t) ≤ v(t) ≤ K, t ∈ J.

From equation (4.5), we obtain that

E|z(t)|2 ≤F + 6(−A)−βζ∗K + 6T
∫ t

0

C2
1−β

(t− s)2(1−β)
ζ∗K

+ 6MT

∫ T

0

p(s)ψ(K)ds = L, (3.6)

(3.7)

Thus
‖z‖2D

F′
T

≤ L.

As a consequence of Theorem 3.2, we deduce that Φ̂ has a fixed point, since
y(t) = z(t) + φ̂(t), t ∈ (−∞, T ]. Then y is a fixed point of the operator Φ which
is a mild solution of the problem (1.1)-(1.3). �

4. Global existence and uniqueness result

In this section we establish a result for the global existence of mild solutions
(T = ∞) for our semilinear equations with infinite delay. In order to achieve
this end, we need to impose some stronger assumptions, but will obtain the mild
solutions defined in R, something that will be necessary for the study of attractivity
of solutions in the next section.

We will need to introduce the following hypotheses which are assumed thereafter:

• (H1
′
)The semigroup S(t) satisfies the additional condition:

∃λ > 0 and ∃M > 0 such that ‖S(t)‖ ≤Me−λt.

• (H2
′
) There exist constants, Lf and a function p ∈ L1(R+,R+) such that:

(i): E|f(t, y)− f(t, x)|2 ≤ Lf‖y − x‖2DF0
, t ∈ J = [0,∞);

(ii): E|f(t, y)|2 ≤ p(t)(‖y‖2DF0
+1) for a.e. t ∈ [0,∞) and each y ∈ DF0 ;

(iii): For every t ∈ [0,∞) the function t→ f(t, yt), yt ∈ DF0 is mesurable.
• (H3

′
) The function σ : J = [0,∞) −→ L0

Q(K,H) satisfies∫ ∞
0

e2γs‖σ(s)‖2L0
Q
ds <∞, γ > 0.
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Theorem 4.1. Assume that f(t, 0) = g(t, 0) = 0, ∀t ≥ 0, k ∈ N. Assume that
hypotheses (H2)(ii), (H3) and (H1

′
)-(H3

′
) hold. If

L1 = 6K̃2

(
Lg|(−A)−β |2 +M2

1−βLg
Γ2(β)
λ2β

+M2Lfλ
−2

)
< 1,

then, there exists unique mild solution to (1.1)-(1.3) defined on (−∞,∞).

Proof. We shall consider the space

DF∞ =
{
y : (−∞,∞)× Ω→ H, yk ∈ C(Jk,H) for k = 1, . . . , y0 ∈ DF0 ,

and there exist y(t−k ) and y(t+k ) with y(tk) = y(t−k ), k = 1, 2, · · · ,
and sup

t∈[0,∞)

E(|y(t)|2) <∞
}
,

where yk denotes the restriction of y to Jk = (tk−1, tk], k = 1, 2, · · · ; limk→∞ tk =
∞ and J0 = (−∞, 0]. Then we will consider our initial data φ ∈ DF0 .

Consider the set Z0
F∞ = {y ∈ DF∞ : sup

t∈J
E‖y‖2 <∞} endowed with the norm

‖y‖Z0
F∞

= ‖φ‖DF0
+ sup

0≤s≤∞
(E‖y(s)‖2)

1
2 .

We transform the problem (1.1)-(1.3) into a fixed point problem. Consider the
operator Ψ : Z0

F∞ → Z0
F∞ defined by

Ψ(y)(t) =



φ(t), if t ∈ (−∞, 0],

S(t)[φ(0)− g(0, φ)] + g(t, yt) +
∫ t

0

AS(t− s)g(s, ys)ds

+
∫ t

0

S(t− s)f(s)ds+
∫ t

0

S(t− s)g(s)dBHQ (s)

+
∑

0<tk<t

S(t− tk)Ik(y(t−k ), if t ∈ [0,∞).

For φ ∈ DF0 , we define φ̂ by

φ̂(t) =
{

φ(t), t ∈ (−∞, 0],
S(t)φ(0), t ∈ [0,∞).

Then φ̂ ∈ DF∞ . Let y(t) = z(t) + φ̂(t),−∞ < t <∞. It is evident that z satisfies
z0 = 0, t ∈ (−∞, 0] and

z(t) = −S(t)g(0, φ) + g(t, zt + φ̂t) +
∫ t

0

AS(t− s)g(s, zs + φ̂s)

+
∫ t

0

S(t− s)f(s, zs + φ̂s) +
∫ t

0

S(t− s)g(s)dBHQ (s)

+
∑

0<tk<t

S(t− tk)Ik(z(t−k ) + φ̂(t−k )), t ∈ J.

Set
Z1
F∞ =

{
z : (−∞,∞)× Ω→ H, zk ∈ C(Jk,H) for k = 1, . . .m, z ∈ Z0

F∞
and z0 = 0, and there exist z(t−k ) and z(t+k ) with z(tk) = z(t−k ), k ≥ 1,
and sup

t∈[0,∞)

E(|z(t)|2) <∞
}
.
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For any z ∈ Z1
F∞ , we have

‖z‖Z1
F∞

= ‖z0‖DF0
+ sup

t∈J
(E|z(t)|2)

1
2 = sup

t∈J
(E|z(t)|2)

1
2

Thus, (Z1
F∞ , ‖.‖Z1

F∞
) is a Banach space.

Let the operator Ψ̂ : Z1
F∞ → Z1

F∞ be defined by

Ψ̂(z) =



0, if t ∈ (−∞, 0],

−S(t)g(0, φ) + g(t, zt + φ̂t) +
∫ t

0

AS(t− s)g(s, zs + φ̂s)

+
∫ t

0

S(t− s)f(s, zs + φ̂s) +
∫ t

0

S(t− s)g(s)dBHQ (s)

+
∑

0<tk<t

S(t− tk)Ik(z(t−k ) + φ̂(t−k )), t ∈ [0,+∞).

The problem of finding a solution of problem (1.1)-(1.3) is reduced to finding a
solution of the operator equation Ψ̂(z)(t) = z(t), t ∈ [0,∞).

Consider the set

B = {z ∈ Z1
F∞ : ∃a > 0, M∗ = M∗(φ, a) such that E|z(t)|2 ≤M∗e−at, t ≥ 0};

then, B ⊂ Z1
F∞ is closed.

Now, we will show that by using the Banach fixed point theorem, the operator
Ψ̂ has a fixed point.

Step 1: We first verify Ψ̂(B) ⊂ B. We denote by M∗i , i = 1, 2, · · · finite positive
constants depending on φ and a.

For any z ∈ B, we have

Ψ̂(z)(t) =− S(t)g(0, φ(0)) + g(t, zt + φ̂t)

+
∫ t

0

AS(t− s)g(s, zt + φ̂t)ds+
∫ t

0

S(t− s)f(s, zt + φ̂t)ds

+
∫ t

0

S(t− s)σ(s)dBH(s) +
∑

0<tk<t

S(t− tk)Ik(z(tk) + φ̂(tk))

=:
∑

1≤i≤6

ηi(t).

By assumption (H1
′
), we have

E|η1(t)|2 ≤M2E|g(0, φ(0))|2e−λt ≤M∗1 e−λt. (4.1)

To estimate ηi(t), i = 2, · · · , 5, we observe that for z ∈ D′F∞ ,
the following useful estimate holds

E‖z(t)‖2 ≤2K̃2M∗e−at + 2Ñ‖z0‖2DF0
e−at

≤ 2K̃2M∗e−at,

where ‖z0‖2DF0
= 0.
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By assumption (H2)(ii) we have

E|η2(h)|2 ≤|(−A)−β |2E|(−A)βg(t, zt + φ̂t)− (−A)βg(t, 0)|2

≤ |(−A)−β |2LgE|z(t)|2

≤ 2K̃2M∗‖(−A)−β‖2e−at.
Then we have

E|η2(t)|2 ≤M∗2 e−at. (4.2)
Using Lemma 2.5, Hölder’s inequality and assumption (H3) we obtain that

E|η3(t)|2 ≤E
∣∣∣ ∫ t

0

AS(t− s)g(t, zs + φ̂s)
∣∣∣2

≤
∫ t

0

∣∣∣(−A)1−βS(t− s)
∣∣∣ds∫ t

0

∣∣∣(−A)1−βS(t− s)
∣∣∣E|(−A)βg(s, zs + φ̂s)|2ds

≤M2
1−βLg

∫ t

0

(t− s)β−1e−λ(t−s)ds

∫ t

0

(t− s)β−1e−λ(t−s)E|z(s)|2ds.

≤2M2
1−βLg

Γ(β)
λβ

K̃2M∗e−at
∫ t

0

(t− s)β−1e(a−λ)(t−s)ds

≤2M2
1−βLg

Γ2(β)
λβ(λ− a)β

K̃2M∗e−at.

We therefore have
E|η3(t)|2 ≤M∗3 e−at (4.3)

Similarly, by assumption (H2
′
),

E|η4(t)|2 ≤E
∣∣∣ ∫ t

0

S(t− s)f(t, zs + φ̂s)ds
∣∣∣2

≤M2Lf

∫ t

0

e−λ(t−s)ds

∫ t

0

e−λ(t−s)E|z(s)|2ds

≤ 2M2Lfλ
−1K̃2M∗

∫ t

0

e−λ(t−s)e−asds

≤ 2M2Lfλ
−1(λ− a)−1K̃2M∗e−at

≤M∗4 e−at

Therefore,
E‖η4(t)‖2 ≤M∗4 e−at. (4.4)

Now, for the term η5(t), we have

η5(t) ≤ 2M2Ht2H−1

∫ t

0

e−2λ(t−s)‖σ(s)‖2LQds. (4.5)

From this inequality we can ensure that

E|η5(t)|2 ≤ 2M2Ht2H−1e−2λ1t

∫ t

0

e2λ2s‖σ(s)‖2LQds, (4.6)

where λ1 = λ ∧ λ2. Indeed, if λ < λ2, then λ1 = λ and we have

E|η5(t)|2 ≤2M2Ht2H−1e−2λt

∫ t

0

e2λs‖σ(s)‖2LQds
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≤2M2Ht2H−1e−2λ1t

∫ t

0

e2λ2s‖σ(s)‖2LQds.

If λ2 < λ, then λ1 = λ2 and we have

E|η5(t)|2 ≤2M2Ht2H−1e−2λ2t

∫ t

0

e−2(λ−λ2)(t−s)e2λ2S‖σ(s)‖2LQds

≤2M2Ht2H−1e−2λ1t

∫ ∞
0

e2λ2s‖σ(s)‖2LQds.

Since sup
t≥0

(t2H−1e−λ1t) <∞ , this, together with (4.6), gives us

E|η5(t)|2 ≤M∗5 e−λ2t.

From (H3) and Hölder’s inequality, we obtain the following estimate for η6(t)

E|η6(t)|2 ≤ E
∣∣∣∑0<tk<t

S(t− tk)Ik(z(tk) + φ̂(tk))
∣∣∣2

+E
(∣∣∣∑0<tk<t

S(t− tk)
∣∣∣∣∣∣Ik(z(tk) + φ̂(tk))

∣∣∣)2

≤ M2e−at
∑∞
k=1 dk

∑∞
k=1 dke

−2λtk ≤M∗6 e−at.
We therefore have

E‖η4(t)‖2 ≤M∗6 e−at. (4.7)

Combining (4.1)-(4.7) we see that there exist M
∗
> 0 and a > 0 such that

E‖Ψ̂(t)‖2 ≤M∗e−at, t ≥ 0

Hence, we can conclude that Ψ̂(B) ⊂ B.
Step 2: Now, we prove that Ψ̂ is a contracting mapping in B.
For every z1, z2 ∈ B and t ∈ [0,∞), we obtain

E|Ψ̂(z1)(t)− Ψ̂(z2)(t)|2

≤ 3E|g(t, z1t + φ̂t)− g(t, z2t + φ̂t)|2

+ 3E
∣∣∣∣ ∫ t

0

AS(t− s)(g(s, z1s + φ̂s)− g(s, z2s + φ̂s))
∣∣∣∣2ds

+ 3E
∣∣∣∣ ∫ t

0

S(t− s)(f(s, z1s + φ̂s)− f(s, z2s + φ̂s))
∣∣∣∣2ds

≤ 3Lg‖(−A)−β‖2E‖z1(t)− z2(t)‖2DF0

+ 3M2
1−βLg

∫ t

0

(t− s)β−1e−λ(t−s)ds

∫ t

0

(t− s)β−1e−λ(t−s)E‖z1(t)− z2(t)‖2DF0
ds,

+ 3M2Lf

∫ t

0

e−λ(t−s)ds

∫ t

0

e−λ(t−s)E‖z1(t)− z2(t)‖2DF0
ds

≤ 3Lg‖(−A)−β‖2E‖z1(t)− z2(t)‖2DF0

+ 3M2
1−βLg

Γ2(β)
λ2β

E‖z1(t)− z2(t)‖2DF0

+ 3M2Lfλ
−2E‖z1(t)− z2(t)‖2DF0
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≤
(

3Lg‖(−A)−β‖2 + 3M2
1−βLg

Γ2(β)
λ2β

+ 3M2Lfλ
−2

)
×
[
2K̃2 sup

t≥0
E|z1(t)− z2(t)|2 + 2Ñ2‖z10‖2DF0

+ 2Ñ2‖z20‖2DF0

]
,

≤ L1 sup
t≥0

E|z1(t)− z2(t)|2.

Hence, Ψ̂ is a contraction mapping on B and therefore Ψ̂ has a unique fixed point,
since y(t) = z(t) + φ̂(t), t ∈ (−∞,∞). Then y is a fixed point of the operator Ψ
which is a mild solution of the problem (1.1)-(1.3). This completes the proof. �

5. Attractivity of solutions

In this section we study the local attractivity of solutions of the problem (1.1)-
(1.3)

Definition 5.1. ([13]) We say that solutions of (1.1)-(1.3) are locally attractive if
there exists a closed ball B̄(z∗, ρ) in the space Z1

F∞ for some z∗ ∈ Z0
F∞ such that

for arbitrary solutions z and z̃ of (1.1)-(1.3) belonging to B̄(z∗, ρ) we have

lim
t−→+∞

E|z(t)− z̃(t)|2 = 0.

Under the assumptions of Section 3 and 4 , let z∗ be a solution of (1.1)-(1.3) and
B̄(z∗, ρ) the closed ball in DF ′T with ρ satisfying

ρ ≥ 6M2λ−1‖p‖L1

1− 12Lg

(
‖(−A)−β‖2 +

C2
1−βΓ2(β)

λ2β

)
× K̃2 − 24M2λ−1K̃2‖p‖L1

.

Moreover, we assume that

lim
t−→∞

ζ(t) = 0, lim
t−→∞

∫ t

0

e−λ(t−s)

(t− s)1−β ζ(s) = 0 and lim
t−→∞

∫ t

0

e−λ(t−s)p(s)(s) = 0.

(5.1)
Then, for z ∈ B̄(z∗, ρ) by (H1

′
), (H2

′
) and (H2) we have

E|z(t)− z∗(t)|2

= E|Ψ̂1(z)(t)− Ψ̂1(z∗)(t)|2

≤ 3E|g(t, zt + φ̂t)− g(t, z∗t + φ̂∗t )|2

+3
∫ t

0

AS(t− s)(g(s, zs + φ̂s)− g(s, z∗s + φ̂∗s))
∣∣∣∣2

+3E
∣∣∣∣ ∫ t

0

S(t− s)f(s, zs + φ̂s)− f(s, z∗s + φ̂∗s)|2ds

≤ 3Lg‖(−A)−β‖2‖(z(t) + φ̂(t))− (z∗(t) + φ̂∗(t))‖2DF0

+3
Γ(β)
λβ

∫ t

0

C2
1−β

(t− s)β−1
e−2λ(t−s)Lg‖(z(t) + φ̂(t))− (z∗(t) + φ̂∗(t))‖2DF0

ds,

+3λ−1M2

∫ t

0

e−λ(t−s)p(s)
[
‖z + φ̂‖2DF0

+ ‖z∗ + φ̂∗‖2DF0
+ 2
]
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≤ 12Lg

(
‖(−A)−β‖2 +

C2
1−βΓ2(β)
λ2β

)
× K̃2ρ

+6M2λ−1(4K̃2ρ+ 1)‖p‖L1 ≤ ρ,
Therefore, we have Φ(B̄(z∗, ρ)) ⊂ B̄(z∗, ρ).

So, for each solution of problem (1.1)-(1.3) z ∈ B̄(z∗, ρ) and t ∈ J = [0,∞), we
have

E|z(t)− z∗(t)|2 = E|Φ̂(z)(t)− Φ̂(z∗)(t)|2

≤ 3E|g(t, zt + φ̂t)− g(t, z∗t + φ̂∗t )|2

+3E
∣∣∣∣ ∫ t

0

AS(t− s)(g(s, zs + φ̂s)− g(s, z∗s + φ̂∗s))ds
∣∣∣∣2

+3E
∣∣∣∣ ∫ t

0

S(t− s)f(s, zs + φ̂∗s)− f(s, z∗s + φ̂∗s)ds
∣∣∣∣2

≤ 6‖(−A)−β‖2ζ(t)(‖z(t) + φ̂(t))‖2DF0
+ ‖z∗(t) + φ̂∗(t)‖2DF0

)

+6C2
1−β

Γ(β)
λβ

∫ t

0

e−λ(t−s)

(t− s)1−β ζ(s)(‖z(s) + φ̂(s)‖2DF0
+ ‖z∗(s)) + φ̂∗(s)‖2DF0

ds,

+6λ−1M2

∫ t

0

e−λ(t−s)p(s)
[
‖z + φ̂‖2DF0

+ ‖z∗ + φ̂∗‖2DF0
+ 2
]

≤ 12‖(−A)−β‖2(4(α2(M + 1)‖φ‖2DF0
+ K̃2ρ)ζ(t)

+12C2
1−β

Γ(β)
λβ

(4(α2(M + 1)‖φ‖2DF0
+ K̃2ρ))

∫ t

0

e−λ(t−s)

(t− s)1−β ζ(s)ds

+12λ−1M2(4(α2(M + 1)‖φ‖2DF0
+ K̃2ρ+ 2)

∫ t

0

e−λ(t−s)p(s)ds,

where
‖φ‖2DF0

= max{‖φ̂‖2DF0
, ‖φ̂∗‖2DF0

}.
Hence, from (5.1), we conclude that

lim
t−→∞

E|z(t)− z̃(t)|2 = 0.

Consequently, the solutions of problem (1.1)-(1.3) are locally attractive.

6. An example

Consider the following stochastic partial differential equation with delays and
impulsive effects

d[u(t, ξ) +G(t, u(t− h, ξ))] =
∂2

∂ξ2
u(t, ξ) + F (t, u(t− h, ξ))

+ σ(t)
dBHQ
dt

, t ≥ 0, t 6= tk, 0 ≤ ξ ≤ π,

u(t+k , ξ)− u(t−k , ξ) = αku(t−k , ξ), k = 1, · · · ,m,
u(t, 0) = u(t, π) = 0, t ≥ 0,

u(t, ξ) = φ(t, ξ), −∞ ≤ t ≤ 0, 0 ≤ ξ ≤ π,

(6.1)

where αk > 0, BHQ denotes a fractional Brownian motion and G,F : R × R → R
are continuous functions.
Let

y(t)(ξ) = u(t, ξ) t ∈ J = [0, T ], ξ ∈ [0, π],
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Ik(y(tk)) = αku(t−k , ξ), ξ ∈ [0, π], k = 1, · · · ,m,

g(t, φ)(ξ) = G(t, φ(−h, ξ)), θ ∈ (−∞, 0], ξ ∈ [0, π],

f(t, φ)(ξ) = F (t, φ(−h, ξ)), θ ∈ (−∞, 0], ξ ∈ [0, π],

φ(θ)(ξ) = φ(θ, ξ), θ ∈ (−∞, 0], ξ ∈ [0, π].

Take K = H = L2([0, π]). We define the operator A by Au = u
′′
, with domain

D(A) = {u ∈ H, u
′′
∈ H and u(0) = u(π) = 0}.

Then, it is well known that

Az = −
∞∑
n=1

e−n
2t〈z, en〉en, z ∈ H,

and A is the infinitesimal generator of an analytic semigroup {S(t)}t≥0 on H, which

is given by S(t)u =
∞∑
n=1

e−n
2t〈u, en〉en, u ∈ H, where en(u) = (2/π)1/2 sin(nu), n =

1, 2, · · · , is the orthogonal set of eigenvectors of A. Due to the fact that the semi-
group {S(t)} is analytic and compact, there exists a constant M ≥ 1 such that
‖S(t)‖2 ≤M for all t ∈ J .

In order to define the operatorQ : K −→ K, we choose a sequence {σn}n≥1 ⊂ R+,
set Qen = σnen, and assume that

tr(Q) =
∞∑
n=1

√
σn <∞.

Define the process BHQ (s) by

BHQ =
∞∑
n=1

√
σnγ

H
n (t)en,

where H ∈ (1/2, 1), and {γHn }n∈N is a sequence of two-sided one-dimensional frac-
tional Brownian motions that are mutually independent. Assume now that

(i): There exist positive number, dk, k = 1, · · · ,m such that

|Ik(ξ)| ≤ dk,

for any ξ ∈ R
(ii): The function g : [0, T ] × H −→ H defined by g(t, u)(.) = G(t, u(.)) is

continuous and we impose suitable conditions on G to satisfy assumption
(H2) .

(iii): Assume that there exists an integrable function η : [0, T ] −→ R+ such
that

E|F (t, u(ω)|2 ≤ η(t)ψ(E|u(ω)|2)

for any t ∈ [0, T ] and any random variable u(·) ∈ L2(Ω), where ψ :
[0,∞) −→ (0,∞) is continuous and nondecreasing with∫ ∞

1

ds

ψ(s)
= +∞.
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(iv): The function g : [0, T ] −→ L2
Q(K,H) is bounded, that is, there exists a

positive constant L such that∫ T

0

‖σ(s)‖2L2
Q
< L.

The problem (6.1) can be written in the abstract form


d[y(t) + g(t, yt)] = [Ay(t) + f(t, yt)]dt+ σ(t)dBHQ (t), t ∈ J := [0, T ],
y(t+k )− y(tk) = Ik(y(tk)), k = 1, . . . ,m,
y(t) = φ(t), for a.e. t ∈ (−∞, 0].

Thanks to those assumptions, it is straightforward to check that all the conditions
of Theorem 3.3 hold. Hence, we can conclude that the problem (6.1) has at least
one mild solution on (−∞, T ].

In the case of t ∈ J = [0,+∞) we observe that

(i
′
): ‖S(t)‖ ≤ e−π2t, and ‖(−A)

3
4 ‖ = 1;

(ii
′
): The function f : [0,∞) × H −→ H defined by f(t, u)(.) = F (t, u(.))
is continuous and it is easy to impose suitable conditions on F to make
assumption (H2

′
) hold;

(iii
′
): The function g : [0, T ] −→ L2

Q(K,H) is bounded, that is, there exists a
positive constant L such that∫ ∞

0

eγs‖σ(s)‖2L0
Q
< L;

(iv
′
): There exist positive number, dk, k = 1, · · · ,m, · · · such that

|Ik(ξ)| ≤ dk and
∞∑
k=1

dk <∞

for any ξ ∈ R.
Thus, the problem (6.1) can be written in the abstract form


d[y(t) + g(t, yt)] = [Ay(t) + f(t, yt)]dt+ σ(t)dBHQ (t), t ∈ J := [0,∞);
y(t+k )− y(tk) = Ik(y(tk)), k = 1, . . . ,m, . . . ,
y(t) = φ(t), for a.e. t ∈ (−∞, 0].

Thanks to these assumptions, it is straightforward to check that (H1
′
)-(H3

′
),

(H2) and (H3) hold. The assumptions in Theorem 4.1 are fulfilled, and conclude
that system (6.1) has a unique mild solution on (−∞,∞), which implies that the
mild solution of (6.1) is locally attractive.

7. Concluding remarks

In this paper, by using the fixed point theory we investigated the problem (1.1)-
(1.3) under various assumptions on the right hand-side and we have obtained a
number of new results regarding the existence of mild solution and the local at-
tractivity of mild solution. The main assumptions on the right hand-side are the
Carathéodory or Lipschitz conditions, and for jump functions we require they be
continuous bounded or satisfy a Lipschitz condition.
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In the case where the jump functions Ik ≡ 0 the existence and exponential
stability of mild solutions for (1.1) and (1.3) was studied by Boufoussi and Hajji
[9], Caraballo et al. [11], Caraballo and Diop [12] and Revathi et al [33] . Also, it
is interesting to consider the case when the jump functions Ik are multivalued and
coupled system of impulsive stochastic differential equations and inclusions. Such a
case is motivated by some models from control theory [1, 7]. In the current paper,
we have focused on the existence and attractivity of mild solutions for impulsive
neutral stochastic differential equations with infinite delay.

Acknowledgements. We would like to thank the referees for the helpful sug-
gestions and comments which allowed us to improve the presentation of this paper.
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