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Abstract

The widely used Support Vector Machine (SVM) method has shown to yield good

results in Supervised Classification problems. When the interpretability is an important

issue, then classification methods such as Classification Trees (CART) might be more

attractive, since they are designed to detect the important predictor variables and, for each

predictor variable, the critical values which are most relevant for classification. However,

when interactions between variables strongly affect the class membership, CART may

yield misleading information. Extending previous work of the authors, in this paper an

SVM-based method is introduced. The numerical experiments reported show that our

method is competitive against SVM and CART in terms of misclassification rates, and,

at the same time, is able to detect critical values and variables interactions which are

relevant for classification.
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1



1 Introduction

One of the most important tasks in Data Mining (Hand et al., 2001) is Supervised Classification,

which seeks procedures for classifying objects in a set Ω into a set C of classes. Each object

u ∈ Ω has associated a pair (cu, xu), where cu ∈ C is the class membership of u, and xu, the

predictor vector, which takes values on a set X, usually assumed to be a subset of IRp. Hereafter,

we will simply use the term variable to refer to each component of the predictor vector. Not

all the information about the objects in Ω is available: the class membership cu is only known

for those objects u in some subset I ⊂ Ω, called the training sample. With this information,

a classification rule, i.e., a function which yields a label c ∈ C for any predictor vector x, is

sought.

The best studied case, which is the case analyzed in this paper, is the 2-class problem:

C = {−1, 1}. The general case of arbitrary finite C can be reduced to a series of 2-class problems,

as has been suggested e.g. in Hastie and Tibshirani (1998), Herbrich (2002) and Vapnik (1998).

A popular and powerful tool for Supervised Classification is the so-called Support Vector

Machine (SVM) (Cortes and Vapnik, 1995), which consists in finding the separating hyperplane

with maximal margin, i.e., the one furthest from the closest object. This geometrical problem

is expressed as a smooth convex problem with linear constraints, solved either in its primal or

dual form.

The most popular and powerful versions of SVM embed, via a so-called kernel function,

the original variables x`, ` = 1, 2, . . . , p, into a higher (possibly infinite) dimensional space

(Herbrich, 2002). This way one obtains classifiers with good generalization properties, but it

is usually hard to find out which variables are more relevant for the classification and how

interactions between them affect the classifier. Many authors have attempted to overcome this

weakness by proposing a two-step procedure: first, SVM is run, and then a rule, resembling

the SVM-classifier but easier to interpret, is built. See e.g. Baesens et al. (2003); Barakat and

Diederich (2006); Martens et al. (2007, 2009); Van Gestel et al. (2007). See also Mannino and

Koushik (2000) and the references therein for other approaches to combine the good generaliza-

tion behavior of SVMs with interpretability, trying to obtain some insights in the final decision

model.

The approach proposed here is different, since a one-step SVM-based procedure is designed.

In Carrizosa et al. (2009), the authors have introduced the so-called Binarized Support Vector
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Machine (BSVM) method: each variable is replaced by a set of binary variables, defined by

cutoffs of the original variables. The classification rules obtained this way have a classification

behavior comparable to the standard linear SVM and clearly better than Classification and

Regression Tress (CART). Moreover, BSVM gives a powerful tool for detecting which are the

most relevant variables and critical values.

In this paper we introduce an improvement of the BSVM, the Non-linear Binarized Support

Vector Machine (NBSVM), which is able to detect the relevant variables and the relevant

interactions between variables. In this way we obtain a new classification procedure which

is much more informative, in terms of detection of relevant variables and interactions, than

benchmark procedures such as CART, and, as shown in the numerical tests, with competitive

classification rates.

In essence, NBSVM is a standard SVM after transforming the variables into a very large

set of binary features, generated via queries of type

Is variable `1 greater/lower than or equal to b1,

and variable `2 greater/lower than or equal to b2?
(1)

The remainder of the paper is organized as follows. In Section 2, some synthetic examples are

presented, where interactions between the variables play an important role. It is seen in these

examples that CARTs yield misleading information: variables which are irrelevant are presented

as important ones, and values which do not play an important role at all are presented as critical

values for classification. In Section 3, NBSVM is introduced. In Section 4, the construction

of the classifier is reduced to solving a linear program, and a solution procedure is outlined.

The numerical results are discussed in Section 5 and show that the proposed method is able to

find the relevant variables in the synthetic examples presented, and, at the same time, yields

good classification rates in publicly available and widely used datasets. Finally, conclusions

and some lines for future research are discussed in Section 6.

2 Illustrating the relevance of interactions for classifica-

tion

Since CART uses a greedy strategy to choose the splitting variable, it may fail to detect the

most relevant variables in datasets in which the marginal distribution of each variable alone
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is not informative about class membership. Similarly, the BSVM proposed in Carrizosa et al.

(2009) is not able to capture interactions between the variables since the classifier constructed

this way is separable in the variables.

This important weakness of CART and BSVM is illustrated with three artificial datasets.

The first two datasets, cross and chess, are taken from Robnik-Sikonja and Kononenko (2008)

and contain exactly one relevant interaction each. The third dataset, cube, is introduced here

for the first time and has several interactions influencing the class membership.

From a training set, two classification trees, referred to as default tree and tuned tree, are

built. The default tree is the CART given by Matlab 6.5 (Matlab 6.5, 2002) with the default

options, whereas the tuned tree is the best pruned CART, whose size is chosen by 10-fold

crossvalidation (Kohavi, 1995). A BSVM classifier is built as well, using the default options,

as proposed in Carrizosa et al. (2009).

2.1 Cross synthetic dataset

Dataset cross has six variables, out of which only x1 and x2 are relevant to the class. It is

generated as follows: the vector (x1, x2) is uniformly generated on the cross {(x1, x2) ∈ [0, 1]2 :

0.4 ≤ x1 ≤ 0.6 or 0.4 ≤ x2 ≤ 0.6}, whereas the remaining variables are independent and

uniformly generated in the interval [0, 1].

The class only depends on the two first variables: objects satisfying (x1− 0.5)(x2− 0.5) > 0

belong to class 1, and to class −1 otherwise. The remaining variables x`, ` = 3, . . . , 6, are noise

variables, and therefore useless for classification. Moreover, the value 0.5 is the only critical

value for the two relevant variables.

We have considered a training set with 1, 000 objects. A graphical representation of the two

first variables in the training set can be found in Figure 1. Objects from class 1 are represented

as crosses and objects from class −1 as circles.

The default tree is partially shown in Figure 2, although the comments below refer to the

whole tree. First, observe that noise variables x3 and x4 are used at the first and second levels

of the tree, respectively. Second, even though no method will be able, in general, to spot

exactly the critical values, CART gets again misleading information. Table 1 shows all cutoffs

for the two meaningful variables, x1 and x2. Clearly, some of them are far away from the only

critical value 0.5, where the most remarkably case is 0.0783, which, instead, is very close to the
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Figure 1: Representation of training set for cross dataset.
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theoretical minimum 0. The tree default classified correctly 98.70% of an independent testing

sample of size 1, 000.

The top part of the tuned tree can be found in Figure 3. As in Figure 2, noise variables,

namely x3 and x4, are again used. All cutoffs provided by the tuned tree in the two meaningful

variables are summarized in Table 2. Even though the extreme cutoff in the default tree has

disappeared from the table, there are still two cutoffs being far from the critical value 0.5,

namely 0.8066 and 0.3682. With this tuned tree, 98.90% of the independent testing set was

correctly classified.

Figure 2: Default CART for cross dataset.

Figure 3: Tuned CART for cross dataset.

variable cutoffs

x1 0.4914 0.4992 0.4998 0.5002 0.5027 0.5038

x2 0.0783 0.3682 0.4980 0.5001 0.5002 0.5010 0.8066

Table 1: Cutoffs of default CART for variables x1 and x2 and dataset cross

We have run the BSVM and obtained a simple classifier that assigns objects to class −1

if x1 < 0.5297 and x2 ≥ 0.4826, and to class 1 otherwise. In this example it is evident that

BSVM detects the two relevant variables, and the cutoffs are relatively close to the only critical
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variable cutoffs

x1 0.4914 0.4992 0.4998 0.5027 0.5038

x2 0.3682 0.4980 0.5001 0.5002 0.5010 0.8066

Table 2: Cutoffs of tuned CART for variables x1 and x2 and dataset cross

value 0.5. However, BSVM is outperformed by both CARTs in terms of classification accuracy

in the testing set, yielding a classification rate of 68.80%. It is evident that BSVM is not

able to capture that the interaction between the two relevant variables is important for the

classification.

2.2 Chess synthetic dataset

Dataset chess has four variables. As in cross, the only two relevant variables are x1 and x2,

which together with the class label yield a 4× 4 chess board. In short, the vector of variables

(x1, x2, x3, x4) is generated uniformly in the interval [0, 1]4. Then class 1 is assigned to the

objects satisfying one of the following conditions:

• x1 ≤ 0.25 and x2 ≤ 0.25

• 0.5 ≤ x1 ≤ 0.75 and x2 ≤ 0.25

• 0.25 ≤ x1 ≤ 0.5 and 0.25 ≤ x2 ≤ 0.5

• 0.75 ≤ x1 and 0.25 ≤ x2 ≤ 0.5

• x1 ≤ 0.25 and 0.5 ≤ x2 ≤ 0.75

• 0.5 ≤ x1 ≤ 0.75 and 0.5 ≤ x2 ≤ 0.75

• 0.25 ≤ x1 ≤ 0.5 and 0.75 ≤ x2

• 0.75 ≤ x1 and 0.75 ≤ x2.

Class value −1 is assigned to the remaining objects.

By construction, the critical values for the relevant variables x1 and x2 are seen to be 0.25,

0.5 and 0.75.

We have considered a training set with 1, 000 objects, depicted in Figure 4.
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Figure 4: Representation of training set for chess dataset.
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The three top levels of both the default tree and the tuned tree coincide and are depicted in

Figure 5. The cutoffs used in the meaningful variables are given in Tables 3 and 4, respectively.

In the default case, 49 out of the 62 nodes in the tree use one of the meaningful variables,

where in the tuned tree, 42 out of 52 do (80% and 79%, respectively). In both trees, some

of the cutoffs provided are far away from any of the critical values. As in cross, we have an

extreme cutoff 0.9858, which is virtually equal to 1, the theoretical maximum. There are other

examples of meaningless cutoffs. For instance, the cutoff in the root node 0.4018 is between

critical points 0.25 and 0.5, and close to their middle point, therefore not being discriminative

at all.

The correct classification rate for each tree in an independent testing sample of 1, 000 objects

is 90.2% and 90.7% respectively.

BSVM does not give more encouraging results. Indeed, the classifier obtained has 92 fea-

tures, 45 of which correspond to noise variables. The critical values are not properly identified.

For instance, the feature with the highest weight has a cutoff equal to 0.4559, which again does

not spot its closest critical value, 0.5. Moreover, the classification rate in the testing set is again

discouraging, 50.60%.

Figure 5: Default CART for chess dataset.

2.3 Cube synthetic dataset

In the third synthetic dataset, cube, several interactions between variables are relevant to the

class membership.

It has six variables, whose values are generated uniformly in [0, 1]6. The class is determined

by the three first variables as follows: Class value 1 is given to objects satisfying one of the two

following conditions,

• x1 < 0.5 and x2 > 0.5 and x3 > 0.5

• x1 > 0.5 and x2 < 0.5 and x3 < 0.5.
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variable cutoffs

x1 0.2457 0.2473 0.2495 0.2511 0.2527 0.4018 0.4941 0.4974

0.4986 0.5054 0.5058 0.5160 0.6726 0.7188 0.7427 0.7447

0.7513 0.7526 0.7557 0.7569 0.7693 0.7726 0.8016 0.9858

x2 0.0415 0.2430 0.2460 0.2484 0.2506 0.2549 0.2559 0.2578

0.2628 0.4878 0.4961 0.4988 0.5003 0.5048 0.5073 0.5121

0.5501 0.5796 0.7374 0.7381 0.7501 0.7505 0.7558 0.7567

0.7898

Table 3: Cutoffs of default CART for variables x1 and x2 and dataset chess

variable cutoffs

x1 0.2457 0.2473 0.2527 0.4018 0.4941 0.4974 0.4986 0.5054

0.5160 0.6726 0.7188 0.7427 0.7447 0.7513 0.7557 0.7569

0.7726 0.8016 0.9858

x2 0.2430 0.2460 0.2484 0.2506 0.2549 0.2559 0.2578 0.2628

0.4878 0.4961 0.4988 0.5003 0.5048 0.5073 0.5121 0.5501

0.5796 0.7374 0.7501 0.7505 0.7558 0.7567 0.7898

Table 4: Cutoffs of tuned CART for variables x1 and x2 and dataset chess

Class value −1 is assigned to the remaining objects.

Observe that the three relevant variables have exactly one critical value, with the same

value, namely 0.5.

We have considered a training set with 1, 000 objects, depicted in Figure 6.

The top part of the default and the tuned tree are shown in Figures 7 and 8, respectively.

First, observe that noise variable x6 is used at the root of both trees. Second, meaningful

variable x1 is used in the second level, but the suggested critical value, 0.9076, is clearly mis-

leading. Third, the default tree uses noise variables in 9 out of 49 nodes. The tuned tree uses

noise variables in 5 out of 21 nodes. Finally, both CARTs yield many misleading cutoffs. This

is particularly true for variable x1 for which we have several cutoffs close to the theoretical

maximum 1, where the most clear example is 0.9864.

The classification rate of CART in an independent testing set with 1,000 objects are 91.40%
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Figure 6: Representation of training set for cube dataset.
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and 88.50%, respectively.

Figure 7: Default CART for cube dataset.

Figure 8: Tuned CART for cube dataset.

variable cutoffs

x1 0.2857 0.3387 0.3949 0.4499 0.4807 0.4967 0.5000

0.5007 0.7932 0.8660 0.9076 0.9491 0.9844 0.9864

x2 0.0614 0.4144 0.4734 0.4934 0.4934 0.4945 0.4994

0.5016 0.5045 0.5049 0.5229 0.5450 0.5597 0.8552

x3 0.1150 0.1741 0.4793 0.4902 0.4975 0.5016 0.5139

0.5262 0.5510 0.6000 0.6008 0.9130

Table 5: Cutoffs of default CART for variables x1, x2 and x3 and dataset cube

We have run the BSVM and obtained the trivial classifier that classifies all the objects in

the same class −1. Hence, BSVM is not able to capture any interaction between the variables.

Moreover, correct classification rate in the independent testing set is 74.70%, which coincides

with the percentage of objects in the most common class.

In other words, refinements of the BSVM are needed to properly detect interactions between

variables.
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variable cutoffs

x1 0.3949 0.4967 0.5000 0.5007 0.7932 0.9076 0.9491

x2 0.4934 0.4945 0.5045 0.5049

x3 0.4975 0.5016 0.5139 0.5262 0.6008

Table 6: Cutoffs of tuned CART for variables x1, x2 and x3 and dataset cube

3 Binarizing the variables and their interactions

The set of features proposed in Carrizosa et al. (2009) is extended here. For ` = 1, 2, . . . , p, let

B` equal to the finite set of middle points between two consecutive values from {xu` : u ∈ I}.

Moreover, for b ∈ B`, define

φ≥`b(x) =

 1 if x` ≥ b

0 otherwise.
(2)

Analogously, define φ≤`b replacing x` ≥ b by x` ≤ b.

Let

F≥ = {φ≥lb : ` = 1, . . . , p, b ∈ B`},

and define F≤ analogously.

In Carrizosa et al. (2009) classifiers consisting of linear combinations of features in F≥ (or,

equivalently, in F≤) are considered. Such features are meant to detect important variables and

their critical values, but not the interaction between them. In this paper, we extend the set of

features to

F =
{
φ · φ̃ : φ, φ̃ ∈ F≥ ∪ F≤

}
.

Since clearly φ · φ = φ, for all φ ∈ F≥ ∪ F≤, we have that F ⊇ F≥. We consider classifiers

constructed via a score function f of the form

f(x) =
∑
φ∈F

ωφφ(x) + β = ω>Φ(x) + β, (3)

yielding the following classifier: objects are assigned to class 1 if f(x) > 0, and they are assigned

to class −1 otherwise.

Note that for each feature φ, the absolute value of coefficient ωφ indicates the weight φ has

in the score function, and thus it can be seen as a measure of the importance of such feature
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for the classification. Hence, these weights will be helpful to detect the importance of variables

and interactions between.

4 Building the classifier

In order to choose ω and β in (3) we follow a soft-margin SVM-based approach (Cortes and

Vapnik, 1995), which consists in finding the hyperplane which maximizes the margin in the

feature space, but allowing some objects to be misclassified.

The remainder of this section is as follows: We first derive the Mathematical Programming

formulation for the problem of maximizing the soft margin, which will be solved by a Column

Generation approach. In Section 4.2, we describe in detail how we tackle the pricing problem,

devoted to generate new features. In Section 4.3, we summarize the entire column generation

procedure and give some implementation details.

4.1 Soft-margin formulation and column generation

With the motivation given in Carrizosa et al. (2009) for the BSVM, we formulate the NBSVM

as the following Linear Programming (LP) problem,

min
∑

φ∈F(ω+
φ + ω−φ ) + C

∑
u∈I ξ

u

s.t. :
∑

φ∈F(ω+
φ − ω

−
φ )cuφ(xu) + βcu + ξu ≥ 1 ∀u ∈ I

ω+
φ ≥ 0 φ ∈ F

ω−φ ≥ 0 φ ∈ F

ξu ≥ 0 ∀u ∈ I

β ∈ IR,

(4)

with dual

max
∑

u∈I λu

s.t. : −1 ≤
∑

u∈I λuc
uφ(xu) ≤ 1 ∀φ ∈ F∑

u∈I λuc
u = 0

0 ≤ λu ≤ C ∀u ∈ I.

(5)

After finding the maximal margin hyperplane in the feature space defined by F , the score

function has the form described in (3).
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As in Carrizosa et al. (2009), the well-known Mathematical Programming tool called Column

Generation (Gilmore and Gomory, 1961) is proposed to solve Problem (4). This is an iterative

procedure in which Problem (4) is solved for a reduced set of columns (in our case features),

F ⊂ F , yielding problems analogous to Problem (4) and its dual (5), but where F is replaced

by its subset F. We denote such problems as Problem (4-F ) and (5-F ), respectively.

A check to the reduced problem is performed to see whether the current solution is optimal

for Problem (4) or not. In the latter case, we generate new features, with the aim of improving

the objective value of the current solution. The generated features, obtained from the informa-

tion given by the dual problem (5-F ), are added to F, and then Problem (4-F ) is solved again.

This process is repeated until no other promising feature is found.

Let (ω∗, β∗, ξ∗) be an optimal solution of the reduced problem (4-F ), (λ∗u)u∈I be the values

of the corresponding optimal dual solution, and define Γ(φ) as

Γ(φ) =
∑
u∈I

λ∗uc
uφ(xu). (6)

If (ω∗, β∗, ξ∗) is not optimal for Problem (4), then the corresponding dual solution will be

infeasible for Problem (5), i.e., the dual constraint

−1 ≤
∑
u∈I

λ∗uc
uφ(xu) ≤ 1 (7)

will be violated for at least one feature in F \ F. Therefore, promising features can be found

by solving the two following pricing problems:

max
φ∈F

Γ(φ), (8)

min
φ∈F

Γ(φ). (9)

Features found this way and violating dual constraint (7), i.e. satisfying |Γ(φ)| > 1, will be

added to set F .

4.2 Generation of features

For the particular case in which just features of degree one are considered, φ ∈ F≥, an exact

algorithm to solve the pricing problem is proposed in Carrizosa et al. (2009). In this algorithm,

the candidates to cutoffs are sorted with respect to their value for variable `, and the optimal
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class x1 x2

c1 5 8

c2 9 3

c3 6 6

c4 3 10

Table 7: Simple example of database.

λ1c
1 + λ2c

2 + λ3c
3 + λ4c

4 λ1c
1 + λ2c

2 + λ3c
3 λ2c

2 + λ3c
3 λ2c

2

λ1c
1 + λ3c

3 + λ4c
4 λ1c

1 + λ3c
3 λ3c

3 -

λ1c
1 + λ4c

4 λ1c
1 - -

λ4c
4 - - -

Table 8: Value of Γ for features in F .

value of the pricing problem is found by inspecting the ordered list, for each ` = 1, . . . , p. We

show now how to generate features of degree 2, i.e., φ ∈ F .

Recall that features in F are defined by six parameters: two variables (`1, `2), their corre-

sponding relations (≥ or ≤) and their corresponding cutoffs (b1, b2). We propose a heuristic

procedure to generate new features, where the variables and relations are chosen randomly,

while their cutoffs are sought using a local search procedure. Hereafter, and without loss of

generality, we will assume that the variables are fixed and their relations are ≥. The following

example gives some insights on the design of our local search procedure.

Example 1 In Table 7, a simple dataset with two variables and four objects is presented. For

variable x1, the candidates to cutoffs are 4, 5.5 and 7.5, while the ones for variable x2 are 4.5, 7

and 9.

In Table 8, the values of Γ in (6) for all features in F , i.e., for different cutoffs for variable

x1 (columns) and different cutoffs for variable x2 (rows) are shown. (For ease of notation,

we have dropped the symbol ∗ from λ.) By adding the trivial cutoff 3 for both variables, their

minimum, we also include all features of degree 1, found in the first column and the first row

of the table.

When we move along the positions in the table, right-to-left and down-to-up movements
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lead to either Γ gaining one term of the form λuc
u or Γ remaining unchanged. This suggests a

heuristic procedure to find a promising feature to be added to F.

Our local search procedure to generate a new feature is iterative and has the aim of improving

the current cutoffs, one at a time. Suppose the feature at hand is φ = φ≥`1,b1 ·φ
≥
`2,b2

. In Example 1,

Γ(φ) corresponds to a position in Table 8. Suppose we choose to improve the cutoff associated

with variable `1. Once the variable has been chosen, the objects in I can be sorted increasingly

by their values in variable `1. Let u(i) the object in the i-th position. (As said before, and in

order to consider all features of degree 1, we add the trivial cutoff x
u(1)
`1

to the list of candidates

to cutoffs. This is done by simply considering a dummy object u(0) with x
u(0)
`1

= x
u(1)
`1

.) We want

to replace the current cutoff b1 =
x
u(i)
`1

+x
u(i−1)
`1

2
in order to create a different feature φ̂ = φ≥

`1,b̂1
·φ≥`2,b2

with a better Γ. When changing b1 to b̂1, with b̂1 =
x
u(j)
` +x

u(j−1)
`

2
, the values of φ change only in

the objects u(k) with i < k ≤ j if i < j (and, respectively j < k ≤ i if j < i). Taking this

into account, we know that, when moving backward, i.e. j < i, then the change in Γ is easily

computed using that

Γ(φ̂) = Γ(φ)−
∑

k:φ(xu(k))=1, j<k≤i

λ∗u(k)c
u(k).

When moving forward, i.e. j > i, then, in order to know if the term λ∗u(k)c
u(k) must be added,

we need to check, for all objects u(k) with i < k ≤ j, whether x
u(k)
`1

is greater than or equal to

the cutoff b̂1. If the new feature improves the existing Γ, we update the cutoff. The remaining

types of features can be analyzed in a similar way.

All the above comments are taken into account to implement a local search heuristic that,

in every step, moves forward or backward in the ordered set of candidates to cutoffs for a

randomly chosen variable. The algorithm stops when T movements are performed without any

improvement in the value of Γ.

In the following we give the algorithm corresponding to maximizing Γ.

Algorithm c-NBSVM

Step 0. Initialization:

• Sort objects in I in increasing order with respect to x`k and add the dummy

object, ∀k = 1, 2.
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• ik ← 1, ∀k = 1, 2.

• bk ← x
u`k (1)

`k
, ∀k = 1, 2.

• steps ← 0 and max← 0.

Step 1. Randomly choose a variable ` ∈ {`1, `2}.

Step 2. Randomly choose a type of movement: forward or backward.

Step 3. • If forward, then randomly choose h ∈ {ik + 1, . . . , ](I)}.

• If backward, then randomly choose h ∈ {1, 2, . . . , ik − 1}.

Step 4. Let b =
x
u`(h)

` +x
u`(h−1)

`

2
and compute Γ(φ), where b is the new cutoff for x` in feature

φ.

Step 5. If Γ(φ) > max then b` ← b, max← Γ(φ) and steps ← 0. Otherwise, steps ←

steps+1.

Step 6. If steps < T , then go to Step 1. Otherwise, stop.

Notice that in the initialization step, both cutoffs are chosen equal to the trivial one, i.e.,

the minimum in each variable. For this feature,

Γ(φ) =
∑
u∈I

λ∗uc
u = 0,

because of the second constraint in the dual formulation (5), which coincides with the amount

to which max is initialized. If at the end of the algorithm one of the two cutoffs is equal to the

trivial one, we can rewrite the feature as one of degree 1. Thus, the algorithm always generates

features with cutoffs in B`.

An analogous algorithm for minimizing Γ can be developed replacing max by min and chang-

ing Step 5 in the obvious way.

4.3 Our column generation implementation

Our implementation of the column generation algorithm is as follows:
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Column Generation Algorithm

Step 0. Run Algorithm CG-BSVM (Carrizosa et al., 2009) to build an initial set F with

features of degree one.

Step 1. Repeat Q times:

Step 1.1. Randomly choose a pair of variables `1, `2 and their corresponding rela-

tions. Select b1, b2 by maximizing Γ using Algorithm c-NBSVM.

Step 1.2. If Γ(φ) > 1, then F ← F ∪ {φ}.

Step 2. Repeat Q times:

Step 2.1. Randomly choose a pair of variables `1, `2 and their corresponding rela-

tions. Select b1, b2 by minimizing Γ using Algorithm c-NBSVM.

Step 2.2. If Γ(φ) < −1, then F ← F ∪ {φ}.

Step 3. If F has not been modified in either Step 1 or Step 2, then STOP: we have found a

solution to Problem (4). Otherwise, solve Problem (4-F ) and go to Step 1.

We have chosen our initial set of features to be equal to the set of features generated by the

BSVM. Other choices for the initial set of features are possible. For instance, a plausible one

would be to generate one feature φ≥`b per variable `, with b equal to the median of variable x`

in the objects of I.

5 Numerical results

Two different types of experiments have been considered to illustrate the advantages of NBSVM

against benchmark procedures.

We first illustrate that indeed NBSVM is able to capture the importance of interactions

between relevant variables and detect their critical values. For this purpose, we use the synthetic

datasets introduced in Section 2. The results are presented in Section 5.1.

Another fundamental issue of any classifier is its classification ability. In Section 5.2, six

datasets from UCI Machine Learning Repository (Newman et al., 1998) are used to compare

the classification rates of NBSVM with CART, standard SVM and BSVM.
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In all the experiments we have used CPLEX 8.1.0 (CPLEX Reference Manual, 2002) as the

LP solver, and the values of T and Q have been fixed to 100 and 25, respectively. Preliminary

experiments suggest these values of T and Q yield good results.

5.1 Detecting interactions and critical values on synthetic datasets

In Section 2 three synthetic datasets were described. The behavior of CART and BSVM in these

datasets was analyzed. It was shown that, in those examples, none of the methods considered

was able to detect the relevant variables and the critical values. In this section, the behavior of

NBSVM in these three datasets is studied, showing that, when interactions play an important

role in the class membership, NBSVM is able to detect the important variables and their critical

values.

As training and testing sets, those in Section 2 have been taken. The tradeoff parameter C

is chosen by 10-fold crossvalidation among the values 2i, for i = −12, . . . , 12.

5.1.1 Cross synthetic dataset

After running NBSVM in the dataset cross, the score function is:

f(x) = −1 + 2φ≥1,0.4998 · φ
≥
2,0.5001 + 2φ≤1,0.5005 · φ

≤
2,0.5013.

Several observations are worth to remark. First, none of the four noise variables are used by

the classifier. Second, the classifier is based on a very simple score function that uses only two

features from F . Moreover, such features reflect the interaction between variables x1 and x2.

Finally, the critical values for classification are successfully found. From the description of the

dataset, it is clear that a good classification can be expected. Indeed, 99.80% of the objects in

the testing set are correctly classified.

5.1.2 Chess synthetic dataset

In the dataset chess, NBSVM behaves very differently. The obtained classifier has 568 features,

116 of which use at least one noise variable. At first sight, crude NBSVM is unable to attain the

goal of identifying relevant variables and critical values. However, a closer analysis reveals that

valuable information is provided by the classifier. Indeed, if, as done in wrapping procedures for

feature selection (Guyon and Elisseff, 2003), all features with weight close to zero are discarded,
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the picture is quite different, since the 331 features with highest weight (in absolute value) use

both relevant variables, being below 10−3 the weight of the first feature that uses a noise

variable. All the weights of features with noise variables sum up to only 0.0058 in absolute

value, out of 36, the total for all the features. Hence, we can conclude that even after extracting

many features, the interaction between the relevant variables is well detected.

Table 9 shows the cutoffs of both relevant variables in the five features with the highest

weight. They all are rather close to the exact critical values, namely 0.25, 0.5 or 0.75. The NB-

SVM classifier yields a correct classification rate of 97.50%, outperforming the 90.7% obtained

with CART in Section 2.2.

variable cutoffs

x1 0.2682 0.2503 0.5027 0.7512 0.2498

x2 0.4969 0.2457 0.7458 0.7501 0.7464

Table 9: Cutoffs of NBSVM for variables x1 and x2 and dataset chess.

Interpreting just the features with highest weight might be unfair without information

about classification ability of such features by themselves. For the dataset chess, additional

experiments have been done to address this issue. We fix the tradeoff parameter C to the one

used in the experiment above, i.e. C = 4. A backward elimination wrapping procedure is used

(Guyon and Elisseff, 2003) fixing to m the maximum number of features to be allowed. First,

NBSVM is run in the training set, then the features with lowest weight are taken off, until a set

of m features or less remains. The weights of these features are recomputed solving Problem

(4). Not all the features are used after weights are recomputed. For example, with m = 50,

only 30 features are used, and the correct classification rate is 97.90%. When reducing even

further, m = 20, 17 features are used, and the classification rate remains almost the same:

97.80%.

5.1.3 Cube synthetic dataset

As described in Section 2.3, the interactions in dataset cube are more complex and affect several

variables. After running NBSVM in the dataset cube, the score function is:

f(x) = −1 + 2φ≤1,0.4974 · φ
≥
2,0.5034 + 2φ≤2,0.4969 · φ

≤
3,0.4994 − 2φ≤3,0.5013 · φ

≤
1,0.4983.
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As in the case of cross, several facts are remarkable: First, none of the four noise variables

are used by the classifier. Second, the classifier is based on a very simple score function that

uses only three features from F . Third, the critical values for classification in the interactions

between relevant variables x1, x2 and x3 are successfully found. Finally, the classification rate

in the independent testing set is 99.80%, which outperforms the 92.80% obtained by CART.

Observe that, although the interactions in this data set involve three variables, our algorithm,

by considering pairwise interactions, is able to detect critical values and relevant interactions.

5.2 Classification ability on real-life datasets

Several experiments have been performed with real-life datasets from the UCI Machine Learn-

ing Repository (Newman et al., 1998). The proposed procedure, NBSVM, is compared with

benchmark procedures such as CART (Breiman et al., 1984), (linear) BSVM (Carrizosa et al.,

2009), and SVM (Cortes and Vapnik, 1995) with three popular choices of the kernel, namely,

the linear kernel (linear), polynomial of degree 2 (deg 2) and radial basis function (rbf).

We follow Rätsch et al. (2001) for the experiment setting: 80% of the objects in the dataset

were chosen randomly to train the classifier. The remaining 20% objects were used for testing.

The whole procedure is repeated 30 times. The tradeoff parameter C in SVM, BSVM and

NBSVM is chosen by 10-fold crossvalidation in the training set, among the values 2i, for i =

−12, . . . , 12. Table 10 shows the averages and standard deviations of the percentages of correctly

classified objects in the testing set. The box-and-whisker plots are shown in Figure 9.

dataset SVMs CART interpretable SVMs

linear deg 2 rbf default tuned BSVM NBSVM

credit 86.21(2.58) 87.23(2.61) 85.09(2.05) 83.31(2.80) 86.26(2.84) 87.10(2.56) 87.18(2.70)

pima 77.16(3.18) 77.47(2.88) 77.60(2.93) 70.54(3.36) 73.72(3.93) 74.74(2.98) 75.58(3.32)

housing 85.59(3.60) 87.03(2.71) 87.58(3.21) 83.04(3.28) 82.91(3.89) 85.69(3.82) 87.29(2.75)

bupa 67.44(4.32) 72.37(4.86) 72.13(4.78) 63.57(5.17) 64.64(4.95) 71.98(5.11) 72.90(6.79)

wdbc 97.60(1.44) 97.69(1.29) 97.87(1.36) 91.90(2.50) 91.17(2.83) 96.67(1.75) 96.81(1.82)

cleveland 81.39(4.57) 80.94(4.95) 80.61(4.14) 73.22(4.93) 75.78(5.62) 80.61(6.60) 81.17(5.33)

Table 10: Classification results in six datasets from the UCI Machine Learning Repository.

From the results we can see that classification performance obtained by NBSVM is not

worse than the one obtained with SVM using the rbf kernel.
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Figure 9: Classification results using linear kernel (lin), quadratic kernel (quad) and rbf kernel

(rbf), default tree (tree), tuned tree (t-tree), BSVM (B) and NBSVM (NB)
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In housing and bupa, the rbf kernel behaves clearly better than the linear kernel. The

reason might be that some interactions between variables are important for classification. This

fact is highlighted by a better classification performance of NBSVM, which uses interactions

between variables, compared with BSVM, which only uses linear combination of the binarized

variables.

Comparing NBSVM with CART, which also yields easy-to-interpret classifiers, we can see

that the classification rates of NBSVM are clearly better than those of CART.

6 Conclusions and further research

In this paper an extension of BSVM for supervised classification, the NBSVM, has been pro-

posed. The classification rule is constructed via a binarization of the original variables, since

each variable is transformed into a large series of binary variables corresponding to queries of

type (1).

Our numerical experiments show that, in situations where interactions are important for

classification, NBSVM is able to find the relevant variables and critical values, whereas other

methods give misleading information. Moreover, NBSVM provides this useful information

without deterioration of the classification ability. Indeed, NBSVM classification ability is com-

parable to classical SVM with the powerful rbf kernel.

In other words, NBSVM is a very competitive classification tool when one seeks good clas-

sification rates as well as information on the critical values of variables and interactions of

variables most relevant for classification.

Set F contains features of degree up to two, allowing us to model pairwise interactions. The

very same approach can be used when set F is enlarged to include features of degree up to g,

thus modeling interactions between groups of at most g variables. Clearly, these interactions

will only make sense for small values of g, which makes our approach still computationally

affordable. A first attempt to address the problem for values of g larger than two has been

given in Mart́ın-Barragán (2006). The design of more efficient heuristics deserves further study.

As in Carrizosa et al. (2009), the norm used is the `1, thus constructing the classifier

amounts to solving a large-dimensional linear program. A column-generation procedure has

been suggested as heuristic solution procedure. How to use more sophisticated heuristics and
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other norms (such as the usual Euclidean distance) deserves further study.
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