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rity of the existing techniques to mine association rules typically use the support and the confidence to 
the quality of the rules obtained. However, these two measures may not be sufficient to properly assess 
ity due to some inherent drawbacks they present. A review of the literature reveals that there exist many 
 to evaluate the quality of the rules, but that the simultaneous optimization of all measures is complex and 
d to poor results. In this work, a principal components analysis is applied to a set of measures that evaluate 
ive association rules' quality. From this analysis, a reduced subset of measures has been selected to be 
in the fitness function in order to obtain better values for the whole set of quality measures, and not only 
included in the fitness function. This is a general-purpose methodology and can, therefore, be applied to 
s function of any algorithm. To validate if better results are obtained when using the function fitness 
 of the subset of measures proposed here, the existing QARGA algorithm has been applied to a wide 

 datasets. Finally, a comparative analysis of the results obtained by means of the application of QARGA 
riginal fitness function is provided, showing a remarkable improvement when the new one is used.
1. Introduction

Hybrid artificial intelligent systems are rapidly gaining rele-
vance in the scientific community due to the ability shown to deal 
with real-life problems [1,13,14]. These systems combine the use of 
both extracted knowledge and raw data to solve problems.

High volume of data can be stored nowadays; therefore, the use 
of efficient computational techniques has become a task of the 
utmost importance. In this context, the discovery of association 
rules (AR) – and particularly of quantitative association rules (QAR) 
in this work – is a popular methodology that allows the discovery 
of significant and apparently hidden relations among variables that 
form databases [3,4,27,28].

The AR extraction process consists in using a non-supervised 
strategy to explore data properties. The main goal pursuit is, then, 
to find groups of attributes appearing frequently together in a 
les able to explain the 

hat there exist many 
based on the methods 
priori [3] or SETM [26].
Nonetheless, there is another big group of techniques to extract
AR that are based on evolutionary algorithms (EA). EA are search
algorithms that generate solutions for optimization problems
using techniques inspired in natural evolution [18,23], in which a
population of abstract representations (chromosomes) of candi-
date solutions (individuals) evolves toward better solutions.
EA can be used to discover AR, since they offer several advantages
for knowledge extraction and for rule induction processes [7].

The algorithms that discover AR are normally assessed by
means of certain interestingness measures that are able to
evaluate the quality of a rule. From all of them, support and
confidence highlight although lift, gain, certainty factor or leverage
are also indicators that provide useful information about the
extracted rules.

A review on AR learning based on the use of EA applied to
boolean, categorical, quantitative and fuzzy variables has been
described in [16]. However, as this work is focused on quantitative
variables only the works using this kind of data are reviewed in
this section. Table 1 summarizes the measures used for both
evaluation and optimization in several works recently published.
From the observation of this table, one conclusion can be easily
drawn: There is no uniformity on the selection of measures to
assess the algorithms' performance.

For instance, an EA called EARMGA was used in [45] to obtain
QAR. The confidence was the only objective to be optimized in the
fitness function. To achieve this goal, the authors avoided the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.01.056&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.01.056&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.01.056&domain=pdf
mailto:mariamartinez@us.es
mailto:fmaralv@upo.es
mailto:ali@upo.es
mailto:riquelme@us.es


Table 1
Quality measures used in the literature.

Algorithm Quality measures considered

Support Confidence Re-covered Comprehensibility
or # Attributes

Amplitude Interest

GENAR [33] √ √ √
GAR [34] √ √ √ √ √
Tong et al. [43] √ √
QuantMiner [40] √ √
Kaya and Alhajj [27] √ √ √
Kaya and Alhajj [28] √ √ √
Dehuri et al. [15] √ √ √
Alatas and Akin [5] √ √ √ √ √
MODENAR [6] √ √ √ √
Orriols-Puig et al. [36] √ √
Ayubi et al. [9] √ √
EARMGA [45] √
Quodmanan et al.

[39]
√ √

NSGA-II-QAR [29] √ √ √ √ √
GAR-plus [37] √ √ √ √ √
specification of the actual minimum support, which can be
considered the main contribution of the work.

The combination of confidence and support as only quality
measures can be found in several works. Hence, the work
introduced in [43] proposes an approach to discover QAR by
clustering items of a dataset and projecting the clusters into the
domains of the quantitative attributes to form meaningful inter-
vals. Also, the algorithm called QuantMiner [40] proposed a
genetic algorithm to mine QAR and optimize support and con-
fidence, by using a fitness function based on the gain measure
proposed in [19].

The extraction of QAR has also been applied to the data streams
field. A classifier, whose main novelty lied on its adaptability to on-
line gathered data was presented in [36]. By contrast, a multi-
objective approach was proposed in [39]. The algorithm did not
consider the minimum support and confidence and applied the
FP-tree algorithm [25]. The fitness function maximized both
support and confidence of the rule. Finally, some works such as
[9] have proposed the use of an extended set of operators to mine
general association rules and have evaluated the proposal in terms
of confidence and support.

Additionally to support and confidence, the authors of the work
introduced in [33] used the number of recovered instances to
evaluate their approach, called GENAR. GENAR is an EA-based
approach capable of obtaining an undetermined number of quan-
titative attributes in the antecedent of the rule. The same quality
measures plus the comprehensibility and the amplitude of the
intervals forming the rule were used to evaluate the GAR algo-
rithm [34] (and in its extension [37]). The comprehensibility
measure [22] is defined as the logarithm of the number of
attributes in the consequent divided by the logarithm of the
number of attributes in the rule. The amplitude measure is defined
as the addition of the amplitudes for each interval of the attributes
which belong to the rule divided by the number of attributes. The
authors proposed another EA but, this time, it was necessary to
select which attributes formed the antecedent and which one the
consequent. Recently, a comparative analysis of the effectiveness
in QAR extraction has been presented [7], in which the algorithms
GENAR [33], GAR [34] and EARMGA [45] were applied to two
different datasets showing their efficiency in terms of coverage
and confidence. These five features (support, confidence, recov-
ered, comprehensibility and amplitude) were also evaluated on a
multi-objective Pareto-based EA called MODENAR [6]. The same
authors proposed an optimization metaheuristic based on rough
particle swarm techniques to mine QAR [5]. The fitness function
was composed of four different objectives in both works: Support,
confidence, comprehensibility of the rule (to be maximized) and
the amplitude of the intervals that forms the rule (to be
minimized).

Alternatively, the support and confidence have been combined
with the interest to form fitness functions in some works [27,28].
Their main particularity lies on the use of genetic algorithms to
mine fuzzy association rules. The authors in [29] went one step
further and used, in addition to the three measures aforemen-
tioned, the amplitude of the intervals as well as the comprehen-
sibility of the rule to form the fitness function.

Finally, the authors in [15] proposed a fast and scalable multi-
objective GA for mining AR from large datasets using parallel
processing and a homogeneous dedicated network of worksta-
tions. The confidence, comprehensibility and interest were the
measures maximized.

There is no unanimity in choosing the set of quality measures to
be optimized, thus it becomes essential to propose a methodology
to automatically select a subset of them whose optimization leads
to the optimization of the entire set. Therefore, this work is focused
on finding relations among different quality measures in order to
determine which measures must be optimized in the fitness
function. This way, it is expected that better rules can be extracted,
regarding the whole set of measures and not only those included in
the fitness function. To fulfill this task, this subset is generated
according to a principal component analysis (PCA). The QARGA
algorithm [31] has been used to check the new fitness function
composed of the selected measures versus the original fitness
function based on a weighting scheme that involved several
evaluation measures such as support, confidence, number of
attributes and amplitude of intervals of the attributes belonging
to the rules. In particular, datasets from the public Bilkent University
Function Approximation (BUFA) repository [24] have been used.
Likewise, four different real-world datasets have been analyzed,
specifically, datasets from biological, meteorological and seismolo-
gical nature.

The remainder of the paper is as follows. Section 2 introduces
the foundations underlying QAR. It also explores the most used
measures found in the literature as well as some of their inherent



drawbacks. Section 3 provides the statistical analysis conducted to
select the target measures and a brief description of the QARGA's
main features. The methodology introduced in previous Section is
applied to a wide variety of datasets in order to determine the
fitness function in Section 4. The results obtained by QARGA using
both original and new fitness functions along with statistical tests
can also be found in this section. Finally, Section 5 summarizes the
achievements reached in this work and the conclusions drawn.
Table 3
Illustrative dataset.

Instance F1 F2 F3

t1 35 183 88
t2 42 154 47
t3 37 186 93
t4 30 199 112
t5 33 173 83
t6 24 178 75
t7 63 177 91
t8 22 167 60
2. Quantitative association rules

This section provides a brief description on QAR including some
definitions. In addition, some measures of interest proposed in the
literature and some of their flaws are presented.

2.1. Definitions

Formally, AR were first defined by Agrawal et al. in [2] as
follows. Let I ¼ fi1; i2;…; ing be a set of n items and D¼ ft1; t2;…; tNg
a set of N transactions, where each tj contains a subset of items.
Thus, a rule can be defined as X⇒Y , where X;YD I and X∩Y ¼∅.
Finally, X and Y are called antecedent (or left side of the rule) and
consequent (or right side of the rule), respectively.

When the domain is continuous, the AR are known as QAR.
In this context, let F ¼ fF1;…; Fng be a set of features, with values in
R. Let A and C be two disjunct subsets of F, that is, A⊂F , C⊂F , and
A∩C ¼∅. A QAR is a rule X⇒Y , in which features in A belong to the
antecedent X, and features in C belong to the consequent Y, such
that X and Y are formed by a conjunction of multiple boolean
expressions of the form Fi∈½v1; v2�. The consequent Y is usually a
single expression.

2.2. Quality measures for QAR

This section details the most popular quality measures used to
evaluate QAR. Note that it is very important to measure the quality
of the rules to evaluate the results obtained by any methodology.
In Table 2 the mathematical definition, the description of the
evaluated properties and the range of variability of these measures
are shown. Note that n(X) is the number of occurrences of the
Table 2
Quality measures for quantitative association rules.

Measures Equation

Sup(X) nðXÞ=N
Sup(X⟹Y) nðX∩YÞ=N
Conf ðX⟹Y) supðX⟹YÞ=supðXÞ
Lift(X⟹Y) [10] supðX⟹YÞ=ðsupðXÞ � supðYÞÞ

ConvictionðX⟹YÞ [11] ð1�supðYÞÞ=ð1�conf ðX⟹YÞÞ

GainðX⟹YÞ [21] conf ðX⟹YÞ�supðYÞ
Certainty FactorðX⟹YÞ [41] � If conf ðX⟹YÞ4supðYÞ :

ðconf ðX⟹YÞ�supðYÞÞ=ð1�supðYÞÞ
� If conf ðX⟹YÞo ¼ supðYÞ :
ðconf ðX⟹YÞ�supðYÞÞ=supðYÞ

LeverageðX⟹YÞ [38] supðX⟹YÞ�supðXÞsupðYÞ

Accuracy(X⟹Y) [21] supðX⟹YÞ þ supð:X⟹:YÞ
itemset X in the dataset and N is the total number of instances in
the dataset.
2.3. Drawbacks of the quality measures

The support and the confidence are the most used measures for
QAR optimization. However, if only these measures were opti-
mized, some inconveniences might occur. The optimization of the
support may not be enough since very general QAR could be
obtained, and the amplitude of the intervals could be enlarged
until reaching the whole domain of each attribute. Moreover, to
optimize only the confidence also presents some problems
because this measure does not consider the support of the
consequent of the rule, therefore it is not able to detect negative
dependence among items.

To overcome these issues, the measures lift and leverage can be
optimized as they consider the antecedent and the consequent of
the rule. Furthermore, the lift evaluates the interest of the rule
and the leverage measures the degree of dependence between the
antecedent and the consequent of the rule. However, the
lift is sensitive to noise in small databases since rare set of items
with low probability to occur together can produce huge lift values.
On the other hand, the measures gain, certainty factor and convic-
tion also consider the support of the antecedent and the consequent
of the rule and therefore, these measures also consider the rule's
direction of the implication. Despite the accuracy does not consider
the support of the rule nor the direction of the implication of the
rule, this measure is very useful and powerful to validate QAR.
Description Range

Coverage of X [0, 1]
Generality of the rule [0, 1]
Reliability of the rule [0, 1]
Interest of the rule ½0; þ1Þ
� Value o1: X and Y negatively dependent
� Value¼ 1: X and Y independent
� Value 41: X and Y positively dependent
Implication of the rule ð0; þ1Þ
� Value o1: X and Y negatively dependent
� Value¼ 1: X and Y independent
� Value 41: X and Y positively dependent
Added value or change of support [�0.5, 1]
Gain normalized, strength of the rule [�1, 1]
� Value o0: X and Y negatively dependent
� Value¼ 0 : X and Y independent
� Value 40: X and Y positively dependent
Strength of the rule [�0.25, 0.25]
� Value o0: X and Y negatively dependent
� Value¼ 0 : X and Y independent
� Value 40: X and Y positively dependent
Veracity of the rule [0, 1]



Table 4
Quality measures for the example rules 1 and 2.

Measure Rule 1 Rule 2 Best

Antecedent support 0.38 0.38 Tie
Consequent support 0.38 0.88 Rule 2
Rule support 0.25 0.25 Tie
Confidence 0.66 0.66 Tie
Lift 1.76 0.75 Rule 1
Leverage 0.23 �0.57 Rule 1
Accuracy 0.75 0.25 Rule 1
Gain 0.29 �0.21 Rule 1
Certainty factor 0.46 �0.34 Rule 1
Conviction 1.87 0.37 Rule 1
For a better understanding of the quality measures meaning an
illustrative example is given in Table 3, by using a dataset that
comprises eight instances and three features. Consider then two
example rules, henceforth called Rules and 2, respectively:
�
 Rule 1:

F1∈½30;38�∧F2∈½179;200�⇒F3∈½84;94�
�
 Rule 2:

F1∈½30;38�∧F2∈½179;200�⇒F3∈½46;94�
Table 4 describes the values of the quality measures related to
Rules 1 and 2. As can be observed, Rules 1 and 2 have the same
support of the antecedent and the support of the rule. Therefore,
the confidence for both rules is also the same although the support
of the consequent is higher for Rule 2.

Note that Rule 1 is a refinement of Rule 2 because the
amplitude of the consequent is lower and the percentage of
covered records is the same in both rules. It can be clearly seen,
that the first rule has higher quality although both rules have the
same support and confidence values.

The lift of Rules 1 and 2 is 1.76 and 0.75, respectively. Here, lift
of Rule 1 is larger than the lift of Rule 2, confirming the intuition
that the first rule is more interesting than the second one.
Regarding the values of accuracy and leverage, they are also higher
in Rule 1. Therefore, it can be concluded that the first rule has
better quality, accuracy, interest and strong degree of dependence
between the antecedent and consequent than the second one even
if they have the same confidence. In the case of the two example
rules, gain, certainty factor and conviction also show that Rule 1 is
better since the values of the measures are higher and positive,
contrary to Rule 2 that presents negative values in gain and
certainty factor measures.

To base the QAR optimization on only one measure is not
sufficient in most cases, and an adequate combination of some of
them is required. A study to select the target measures that
summarize the whole set is conducted in Section 3.
3. Methodology

This section presents the methodology based on PCA in order
to determine a fitness function, which simultaneously optimizes
the maximum number of quality measures possible. Also, a brief
description of QARGA and its fitness function is provided.
3.1. Principal component analysis

A statistical analysis of the relationships among the measures
of interest described in Section 2 has been carried out to select a
set of measures to be included in the fitness function of any
algorithm to obtain association rules. In other words, the goal of
the statistical analysis is to find the set of measures that char-
acterize the full set of measures and which will form the fitness
function.

As a preliminary step, the QARGA algorithm [31] has been
applied to several datasets of different nature to avoid the
dependence between the results and the datasets. In particular,
the real-world and public datasets described in Section 4.2 have
been used to obtain five hundred QAR for each dataset
(5 executions of 100 rules per dataset). In the case of the BUFA
repository composed of thirty-five datasets, the average values of
the measures for the five hundred rules have been obtained for
each dataset. Thus, a matrix composed of 2035 rows (5 execu-
tions�100 QAR�4 datasets + 35 average values of BUFA reposi-
tory) and 10 columns (one column for each measure) has been
generated as PCA's input.

For this purpose, the relations and dependencies existing
among the measures have been obtained by the application of
PCA. This method identifies the components that can synthesize
the maximum information possible contained in the original set of
variables. In particular, PCA uses an orthogonal transformation to
convert a set of observations of possibly correlated variables into a
set of values of uncorrelated variables called principal compo-
nents. In this work, the well-known rotation method Varimax
with Kaiser Normalization has been used. Once PCA has been
applied to the measures computed for the QAR obtained for each
dataset, one measure representing each component is selected.
Thus, all selected measures will be the objectives to optimize by
the fitness function of any approach. The complete process of the
application of PCA can be observed in Fig. 1.

3.2. Description of QARGA

This section describes the main features of QARGA algorithm,
which is used to validate the suitability of using the selected
subset of measures as fitness function. QARGA is a real-coded
genetic algorithm designed to discover existing relationships,
specifically QAR, among several variables. This algorithm uses
adaptive intervals instead of fixed ranges to represent the
membership of the values of the attributes and a particular
codification of the individuals that does not perform a previous
attribute discretization. Moreover, it is not necessary to set which
variables belong to the antecedent or consequent.

The search of the most appropriate intervals is carried out by
means of an evolutionary process and the intervals are adjusted to
find high-quality QAR. Each individual constitutes a rule in the
population. Each gene of an individual represents the limits of
the intervals and the type of each attribute in order to indicate
whether it belongs to the antecedent or to the consequent or if
does not belong to the rule. Thus, the representation of an
individual consists of two data structures where the first structure
includes all the attributes of the database and the second structure
indicates the membership of an attribute to the rule represented
by an individual.

The individuals of the population are subjected to an evolu-
tionary process in which the crossover and mutation operators are
applied. At the end of this process, the individual with the highest
fitness is designated as the best rule. Moreover, the fitness
function detailed in Section 3.3 was provided with a set of weights
(ws;wc;wn;wa and wr) so that the user can direct the search
process depending on the desired rules. Thus, high values of ws



Fig. 1. General scheme of the application of PCA.
might be used when rules fulfilled by many instances are pre-
ferred. Similarly, high values of wc may be used when rules with
low error are desired.
To obtain a set of rules a scheme based on the Iterative Rule
Learning (IRL) [44] was proposed. In QARGA, this scheme is
implemented by penalizing those instances matching a rule. The
fitness function includes a weight of penalization so the instances
already covered are less probable to appear in subsequent rules.
3.3. The fitness function of QARGA

The fitness of each individual in the evolutionary algorithm
allows determining which are the best candidates to remain in
subsequent generations. In order to make this decision, its calcula-
tion involves several measures that provide information about the
rules. The fitness function has been designed to maximize a
combination of different measures of association rules.

The fitness function proposed in [31] to be maximized by
QARGA was

f ðruleÞ ¼ws � supþwc � conf þwn � nAttrib

�wa � ampl�wr � recov ð1Þ

where sup is the support of the rule, conf is the confidence of the
rule, recov is the number of recovered instances, nAttrib is the
number of attributes appearing in the rule, ampl is the average size
of intervals of the attributes belonging to the rule and ws, wc, wr,
wn and wa are weights to drive the process of search of rules, and
will vary depending on the required rules. The recov term indicates
the ratio of instances which had already been covered, as defined
in [31].

Note that this function takes into consideration the support and the
confidence of the rule, and therefore, QAR with high support and
confidence are obtained. High values of the weight ws imply more
covered samples from the database, and high values of the weight wc

imply rules with higher reliability. Moreover, this fitness function
includes a measure to bound the growth of the intervals during the
evolutionary process. This is to avoid that the algorithm enlarges the
amplitude of the intervals until the whole domain of each attribute is
completed to obtain a great support. In addition, this function is able
to find rules that cover different regions of the search space because it
also includes a measure to negatively penalize an instance that has
already been covered by a previous rule.

However, the use of only support and confidence implies some
drawbacks as previously discussed in Section 2.3. Thus, a new
fitness function has been proposed based on the analysis described
in Section 4.3.
4. Experimental results

The results obtained by the application of the QARGA algorithm
with both original and new fitness functions to the datasets
described in Section 4.2 are presented in this section. The goal of
this experimentation is to show that better rules could be obtained
when the measures selected with the help of PCA are considered
in the fitness function.

First, a summary of the main parameters of configuration for
QARGA can be found in Section 4.1. Section 4.2 provides a detailed
description of all used datasets. The statistical analysis carried out
to select the measures to be included in the function fitness is
described in Section 4.3, according to the methodology described
in the previous section. Section 4.4 includes the results obtained
by QARGA when using the new and original fitness function and,
finally, non-parametric statistical tests have been conducted to
evaluate the significance of these results in Section 4.5.



4.1. Parameters configuration

It is noteworthy that all the weights appearing in both original
and new fitness functions have been set to one to avoid the
influence of the weights and thus to make possible the comparison
of the results. QARGA has been executed five times for each
dataset and the average results are shown for each fitness func-
tion. The main parameters of the QARGA algorithm are 100 for the
number of rules, 100 for the size of the population, 100 for the
number of generations, 0.0 for the minimum support and the
minimum confidence and 0.8 for the probability of mutation.

4.2. Datasets description

This section presents the main features of the datasets used in
the statistical study carried out by PCA. Several datasets have been
tested from the public BUFA repository. Likewise, four different
real-world datasets have been analyzed, specifically, datasets from
biological, meteorological and seismological context.
�

Tab
Pub

D

A
B
B
B
B
B
C
C
C
E
E
Fr
H
K
Lo
M
N
P
2
P
P
P
P
Q
R
S
S
S
T
T
T
U
V
W
W

Public datasets
Relevant information about thirty-five public datasets from BUFA
repository [24] is summarized in Table 5. Note that Buying,
Country, College, Education, Read and Usnews Colleges have been
preprocessed using K-means Imputation method proposed in [17]
(available in the KEEL tool [8]) in order to deal with missing values.
�
 Biological dataset
The microarray dataset of Spellman [42] and Cho [12] for the
budding yeast (Saccharomyces cerevisiae) cell-cycle has also been
selected. This dataset considers a set of well-described genes,
which encode important proteins for cell-cycle regulation. The
le 5
lic datasets.

ataset Records Attributes

ilerons (AI) 7154 41
aseball (BA) 337 17
asketball (BK) 96 5
odyfat (FA) 252 18
olts (BL) 40 8
uying (BU) 100 40
omputer activity (CA) 8192 22
ountry (CN) 122 21
ollege (CO) 236 21
ducation (ED) 1500 44
levators (EV) 16,599 19
ied (FR) 40,768 11
ouse_16H (HH) 22,784 17
inematics (KI) 8192 9
ngley (LO) 16 7
ortgage (MO) 1049 17
ormal body temperature (NT) 130 3
lastic (PL) 1650 3
Dplanes (PN) 40,768 11
w Linear (PW) 200 11
ollution (PO) 60 16
ole telecomm (PT) 9065 49
yramidines (PY) 74 28
uake (QU) 2178 4
ead (RE) 681 26
chool (SC) 62 20
leep (SL) 57 8
tock price (SP) 950 10
elevisions (TV) 40 5
reasury (TR) 1049 17
riazines (TZ) 186 61
snews College (US) 1269 32
ineyard (VY) 52 4
eather Ankara (WA) 1609 11
eather Izmir (WI) 1641 11

Tab
Tot

C

1
2
3

budding yeast cell cycle microarray dataset consists of 20 attributes
and 23 samples.
�
 Tropospheric ozone
The tropospheric ozone of Seville (TOS) dataset is composed of
climatological time series such as temperature, humidity,
direction and speed of the wind, several variables such as the
hour of the day and the day of the week and, finally, the
tropospheric ozone. These variables have an influence on the
ozone concentration in the atmosphere, the target agent. All
variables have been retrieved from the meteorological station
of the city of Seville in Spain for the months July to August
during the years 2003 and 2004, generating a dataset with
7 quantitative attributes and 1488 instances. The reason for
selecting such periods is due to the highest concentration of
ozone there reported.
�
 Total ozone content
Four datasets have been used containing a set of monthly average
values including Total Ozone Content (TOC) [32] over different sites
at Iberian Peninsula: Madrid, Arenosillo, Lisbon and Murcia. TOC
series are based on ozone data from the Total Ozone Mapping
Spectrometer (TOMS) on board the NASA Nimbus-7 satellite from
1st November 1978 to 6th May 1993. Each dataset consists of
8 quantitative attributes and 172 samples.
�
 Earthquakes
The earthquake dataset [30,35] has been retrieved from the
Spanish Geographical Institute (SGI). This dataset consists of four
quantitative attributes and 873 instances related to the location
and the magnitude of Spanish earthquakes from 1981 to 2008.

4.3. Selecting the measures to be included in the new fitness function

This section details the statistical analysis performed by the
application of PCA. This analysis has been applied to the following
quality measures: Support of the rule, support of the antecedent,
support of the consequent, confidence, leverage, accuracy,
lift, gain, certainty factor, amplitude and finally, number of
attributes of the rule. Note that the conviction measure has been
excluded because this measure reached the value infinity many
times and, therefore, its use is not suitable for PCA. Only the
analysis of principal components for the TOS dataset is now
described, as the results obtained for the other datasets were
similar. However, several relevant tables regarding the other
datasets can be found in Appendix Appendix A.

Table 6 presents the value of the eigenvalues, the percentage of
variance and the percentage of cumulative variance explained for
each component obtained by PCA when it was applied to TOS
dataset. In this case, three components were extracted and the
total variance explained by the three components was 89.424%. In
particular, the components one, two and three explain the
48.785%, 20.371% and 20.267% of the variance, respectively.

Table 7 describes the principal components extracted by PCA for
the TOS dataset. It can be noticed that three principal components,
each of them corresponding to an independent group of measures,
have been obtained. Support of the antecedent, support of the rule,
support of the consequent, leverage, amplitude and the number of
le 6
al explained variance according to three components for the TOS dataset.

omponent Eigenvalues Variance (%) Cumulative variance (%)

5.366 48.785 48.785
2.241 20.371 69.156
2.229 20.267 89.424



Table 8
Summary of measures according to the principal components.

Group 1 Group 2 Group 3 Group 4

Anteced. support Accuracy Certainty factor Gain
Rule support Lift Confidence
Conseq. support
Leverage
Amplitude
Attributes

Table 7
Matrix of rotated components obtained by PCA for the TOS dataset.

Measure Comp. 1 Comp. 2 Comp. 3

Accuracy �0.224 0.910 �0.001
Certainty factor �0.381 0.062 0.914
Confidence �0.018 �0.004 0.984
Gain �0.606 0.579 0.515
Lift 0.061 0.738 0.020
Antecedent support 0.966 �0.117 �0.187
Rule support 0.972 �0.117 �0.169
Consequent support 0.702 �0.681 �0.082
Leverage 0.896 �0.075 �0.029
Amplitude 0.825 �0.140 �0.267
Attributes �0.973 0.113 0.128
attributes of the rule belong to the first group because they are the
most correlated measures in the first component. On the other
hand, the second component is composed of the accuracy and lift
measures. Finally, the certainty factor and the confidence belong to
the third group due to the high correlation they present in it.
Nevertheless, the measure gain has a similar correlation in the three
components, and therefore, it could be considered the least depen-
dent to the measures of the other groups.

Table 8 presents the grouped measures according to the
principal components obtained when PCA was applied to the
TOS dataset. It can be observed that there are three remarkable
independent groups. The first group, which corresponds to the
Group 1 column, is formed by the support of the antecedent,
support of the rule, support of the consequent, leverage, amplitude
and the number of attributes measures. The accuracy and lift
belong to the second group represented by Group 2, and finally,
Group 3 is composed of certainty factor and confidence measures.
Note that the gain measure does not clearly belong to any of the
components obtained by PCA as it has a similar correlation in the
three components. Therefore, the gain has been considered as a
new independent group and denoted as Group 4.

From Tables 6 and 8, it can be concluded that the support of the
antecedent, support of the rule, support of the consequent,
leverage, amplitude and the number of attributes measures
corresponding to the Group 1 explain the highest percentage of
variance (48.785%) versus the lowest percentages of variance
explained by the two remaining groups (20.371% for accuracy
and lift measures and 20.267% for certainty factor and confidence
measures).

The next step is to select a representative measure for each
component. The support of the rule, the confidence and the
accuracy measures are chosen because they are the measures
with the highest correlation in each group (0.972, 0.984 and 0.910,
respectively). Moreover, the gain must also be added because this
measure is equally distributed among all components, and there-
fore, all the measures could be optimized by maximizing this
measure too. Therefore, the support of the rule, the confidence, the
gain and the accuracy are the measures that characterize the full
set of measures and will eventually form the fitness function.
From all the analysis discussed before, it can be concluded that
the new fitness function to be maximized is given by the following
equation:

f ðruleÞ ¼ws � supþwc � conf þwg � gain
þwa � acc�wr � recov ð2Þ

where gain is the gain measure of the rule, acc is the accuracy
value of the rule and wg and wa are weights to drive the process of
search according to required rules. High values of the weight wg

induce a higher gain of information on the rules regarding the
consequent when the antecedent is also present and high values of
the weight wa imply a higher accuracy and precision in the rules to
be obtained.

This function is composed of the measures selected by PCA,
that is, the support of the rule, the confidence, the gain and the
accuracy measures instead of the use of only the support and the
confidence measures. Every measure belongs to an independent
group, and therefore, this set summarizes all the measures and
simultaneously optimizes different properties of the QAR. It can be
observed that the amplitude of the intervals or the number of
attributes are not included in this function according to the results
obtained by PCA.

The amplitude of the intervals is inversely proportional to the gain
and the accuracy measures. Thus, if these measures are maximized, it
is ensured that the intervals of attributes do not extend to the whole
domain. On the other hand, the number of attributes is not necessary
because the optimal number of attributes could be reached by
maximizing the selected measures. In particular, the number of
attributes is minimum when the support of the rule is maximized
since both measures belong to the same component but with negative
correlation. Finally, note that this function also includes a measure to
penalize the instances that have already been covered by a previous
rule as in the former function fitness.
4.4. Analysis of results

In this section, the results obtained by QARGAwhen optimizing
the original and the new fitness functions using the datasets
described in Section 4.2 are discussed.

The average results obtained for the five executions are
summarized in Tables 9–11. QARGA 1 denotes QARGA when using
the original fitness function and QARGA 2 is used to refer the
QARGA algorithm when the new fitness function is maximized. It
can be noted that the first four rows represent the real-world
datasets, specifically, TOS, TOC, microarray for the budding yeast
cell-cycle and earthquake datasets and the thirty-five remaining
datasets are those that belong to the BUFA repository.

Table 9 shows the percentage of covered records, the average
support, the average amplitude and the average number of
attributes for the rules obtained by the QARGA 1 and QARGA 2
algorithms for all datasets. It can be noted that the average
percentage of the records covered by the rules obtained by
QARGA 2 are greater than that of QARGA 1, reaching values close
to 80% even though the weight to penalize the covered instances
was the same for both cases. However, the average support
obtained by QARGA 2 is less than that obtained by QARGA 1.
Equally remarkable is that the greatest difference between the
average support of QARGA 1 and QARGA 2 occurs in those datasets
with a larger number of attributes and viceversa.

Then, it can be concluded that QARGA 2 mined narrower rules
with respect to the amplitude and with less number of attributes
than those of QARGA 1. In terms of average values, these results
lead to conclude that QARGA 2 discovers more specific rules than
QARGA 1 by obtaining a lower number of attributes which helps to
improve the comprehensiveness of the rules.



Table 9
Percentage of covered records, support of the rule, amplitudes and number of attributes of the rules.

Dataset Records (%) Rule support (%) Rule amplitude (%) Rule size

QARGA 1 QARGA 2 QARGA 1 QARGA 2 QARGA 1 QARGA 2 QARGA 1 QARGA 2

Tropospheric ozone 6.85 57.00 0.08 0.63 8.10 6.39 7.00 5.72
Total ozone content 38.82 71.88 0.59 1.09 8.25 5.83 8.99 5.63
Budding yeast cell-cycle 95.83 99.17 4.17 4.20 8.00 5.01 17.10 3.98
Earthquakes 79.40 100.00 1.10 2.12 8.36 6.82 4.00 3.72

Ailerons (AI) 99.86 88.82 4.46 0.92 7.76 4.10 23.06 14.22
Baseball (BA) 69.38 8.13 1.00 0.30 8.10 5.02 14.84 7.12
Basketball (BK) 64.58 70.00 1.09 1.51 8.04 5.53 5.00 4.22
Bolts (BL) 96.50 89.50 2.82 3.15 8.05 5.12 7.60 4.64
Buying (BU) 84.00 57.60 1.71 1.01 8.12 5.01 17.09 9.56
Computer activity (CA) 87.40 99.10 0.91 1.01 8.48 5.42 9.09 8.93
Country (CN) 87.38 67.21 1.56 0.91 8.14 5.13 15.92 6.82
College (CO) 88.64 41.86 1.29 0.55 8.12 5.09 10.38 8.24
Education (ED) 95.08 64.69 1.02 0.68 8.09 5.10 14.85 8.64
Elevators (EV) 99.91 98.80 6.50 1.56 7.75 4.04 8.86 7.22
Bodyfat (FA) 83.10 66.59 1.34 0.94 8.46 5.32 6.98 3.45
Fried (FR) 0.23 77.21 0.00 0.77 8.03 6.16 14.14 7.10
House_16H (HH) 95.29 99.61 0.99 1.00 9.07 5.63 3.00 2.86
Kinematics (KI) 1.07 40.47 0.01 0.41 8.03 5.67 3.00 2.96
Longley (LO) 100.00 100.00 6.50 6.51 8.06 5.13 9.18 6.19
Mortgage (MO) 79.52 90.26 1.82 1.56 8.51 6.06 14.47 5.24
Normal body temp. (NT) 85.08 100.00 1.58 2.19 8.22 6.45 4.55 15.21
Plastic (PL) 68.58 99.96 1.27 1.89 10.41 7.94 9.06 6.61
2Dplanes (PN) 10.34 90.65 0.11 1.84 8.26 6.78 19.07 8.27
Pollution (PO) 99.00 87.00 2.55 1.88 8.09 5.06 3.99 3.76
Pole telecomm (PT) 100.00 100.00 66.50 1.06 0.89 0.00 16.72 5.69
Pw Linear (PW) 41.40 67.20 0.52 1.05 8.00 5.31 7.79 4.56
Pyramidines (PY) 99.46 96.76 5.32 2.38 7.23 3.87 9.98 6.30
Quake (QU) 64.28 97.65 0.74 1.16 8.26 6.75 14.84 7.36
Read (RE) 81.62 16.65 0.95 0.23 8.20 5.09 5.00 3.56
School (SC) 90.82 90.49 2.11 1.68 8.01 5.04 30.83 16.18
Sleep (SL) 100.00 85.10 3.09 2.51 8.01 5.12 4.00 3.63
Stock price (SP) 39.54 59.71 0.65 0.79 8.60 6.39 8.93 6.29
Treasury (TR) 74.64 93.46 1.77 1.59 8.41 6.11 9.93 6.50
Televisions (TV) 97.50 99.50 4.62 3.46 8.17 5.18 26.62 7.85
Triazines (TZ) 100.00 57.96 7.17 1.62 7.11 2.80 17.09 7.07
Usnews College (US) 86.44 45.50 0.96 0.48 8.26 5.13 18.53 8.31
Vineyard (VY) 97.31 81.15 2.51 2.40 8.37 5.31 25.79 13.54
Weather Ankara (WA) 93.76 99.75 1.06 1.08 8.47 6.05 19.93 9.52
Weather Izmir (WI) 89.61 99.04 1.06 1.08 8.63 5.96 21.42 11.11

Average 76.21 78.34 3.68 1.57 8.03 5.33 12.53 7.12
(729.56) (724.10) (710.49) (71.19) (71.27) (71.27) (77.12) (73.31)
Table 10 presents the average of the percentage of the con-
fidence, certainty factor and leverage measures for the rules
obtained by QARGA 1 and QARGA 2.

In contrast to the previous table, the average confidence
obtained by QARGA 1 is greater than that of QARGA 2. However,
both certainty factor and leverage measures for the rules discov-
ered by QARGA 2 are better than that of QARGA 1. Therefore, it can
be concluded that the rules obtained by QARGA 2 presents a strong
dependency between the antecedent and consequent, although
QARGA 1 presents better results in confidence. As discussed pre-
viously, the confidence has some drawbacks because it is not able
to find negative dependencies between the antecedent and the
consequent, hence it should not be considered particularly rele-
vant if the confidence is slightly higher in QARGA 1.

It can be appreciated that the initial goal has been achieved
since leverage values of the rules obtained by QARGA 2 are better
than those of QARGA 1. Although leverage is not explicitly opti-
mized in the new fitness function described in Section 3.3, this
measure is improved in QARGA 2 due to its correlation with the
support of the rule, which is optimized by the new fitness
function. As stated in Section 1, the optimization of the selected
measures by the methodology proposed using PCA did involve the
optimization of other measures too.
Finally, Table 11 summarizes the lift, accuracy and gain measures
for the QAR obtained by both QARGA 1 and QARGA 2 algorithms.
Regarding the first four datasets, the lift, accuracy and gain measures
of the rules discovered by QARGA 2 are higher, and therefore better in
these datasets. With respect to the datasets from BUFA repository,
QARGA 2 obtained better results in all datasets in terms of lift and
accuracy, even getting better values for the gain measure in almost
95% of datasets. From its observation, it can be concluded that
QARGA 2 discovers more accurate and interesting rules, and reaches
higher information gain on the rules regarding the consequent when
the antecedent is also present.

Note that lift values are better in QARGA 2 since similar conclusions
regarding the leverage and support measures can be drawn. That is,
lift and accuracy measures belong to the same group due to the
correlation existing between them. Thus, lift is also optimized even if it
was not explicitly included in the new fitness function.

Some other interesting conclusions can be drawn from these
results. QARGA 2 presents less number of attributes, in other
words, the new fitness function obtains more comprehensible
rules helping the user to easily understand them. As for the rest of
quality measures, although the confidence is slightly lower,
QARGA 2 obtains better results producing interesting and precise
rules with a high degree of dependence between the antecedent



Table 10
Confidence, certainty factor and leverage measures for rules obtained by QARGA with both original and new fitness function.

Dataset Confidence (%) Certainty factor Leverage

QARGA 1 QARGA 2 QARGA 1 QARGA 2 QARGA 1 QARGA 2

Tropospheric ozone 99.12 96.71 0.99 0.96 0.0007 0.0021
Total ozone content 99.53 97.44 1.00 0.97 0.0056 0.0090
Budding yeast cell-cycle 100.00 98.10 1.00 0.98 0.0397 0.0401
Earthquakes 90.25 94.71 0.81 0.94 0.0016 0.0012

Ailerons (AI) 95.12 96.13 0.93 0.96 0.0007 0.0016
Baseball (BA) 99.91 99.70 1.00 1.00 0.0033 0.0030
Basketball (BK) 99.70 98.34 1.00 0.98 0.0098 0.0109
Bolts (BL) 99.80 86.37 1.00 0.86 0.0236 0.0293
Buying (BU) 99.95 99.90 1.00 1.00 0.0100 0.0100
Computer activity (CA) 96.94 94.70 0.95 0.95 0.0003 0.0002
Country (CN) 99.96 99.47 1.00 0.99 0.0089 0.0090
College (CO) 99.99 99.25 1.00 0.99 0.0043 0.0053
Education (ED) 99.97 99.80 1.00 1.00 0.0006 0.0030
Elevators (EV) 86.23 96.76 0.81 0.97 0.0029 0.0055
Bodyfat (FA) 99.96 99.09 1.00 0.99 0.0050 0.0052
Fried (FR) 100.00 99.49 1.00 0.99 0.0000 0.0000
House_16H (HH) 97.00 95.24 0.95 0.95 0.0002 0.0001
Kinematics (KI) 99.90 98.18 1.00 0.98 0.0001 0.0001
Longley (LO) 100.00 97.90 1.00 0.98 0.0597 0.0602
Mortgage (MO) 97.14 92.02 0.97 0.92 0.0166 0.0145
Normal body temperature (NT) 91.57 81.79 0.85 0.80 0.0075 0.0101
Plastic (PL) 99.14 99.86 0.99 1.00 0.0093 0.0077
2Dplanes (PN) 99.26 87.39 0.99 0.85 0.0003 0.0079
Pollution (PO) 99.98 98.67 1.00 0.99 0.0162 0.0167
Pole telecomm (PT) 84.52 81.04 0.16 0.80 0.0001 0.0003
Pw Linear (PW) 99.90 97.28 1.00 0.97 0.0043 0.0080
Pyramidines (PY) 95.56 99.67 0.94 1.00 0.0112 0.0187
Quake (QU) 94.24 90.67 0.86 0.90 0.0005 0.0016
Read (RE) 99.92 100.00 1.00 1.00 0.0023 0.0022
School (SC) 99.99 99.03 1.00 0.99 0.0174 0.0165
Sleep (SL) 99.43 97.45 0.99 0.97 0.0148 0.0223
Stock price (SP) 96.26 92.84 0.96 0.93 0.0060 0.0071
Treasury (TR) 97.16 92.51 0.97 0.92 0.0161 0.0148
Televisions (TV) 96.56 96.78 0.95 0.97 0.0281 0.0320
Triazines (TZ) 95.89 100.00 0.91 1.00 0.0041 0.0120
Usnews College (US) 99.96 99.60 1.00 1.00 0.0011 0.0032
Vineyard (VY) 93.85 99.80 0.93 1.00 0.0204 0.0230
Weather Ankara (WA) 97.98 93.68 0.96 0.94 0.0007 0.0008
Weather Izmir (WI) 98.31 92.88 0.97 0.93 0.0009 0.0009

Average 97.44 95.90 0.94 0.96 0.0091 0.0107
(73.77) (74.85) (70.14) (70.05) (70.0123) (70.0126)
and the consequent. Therefore, to optimize the measures selected
by the methodology proposed in this work leads to obtain better
results instead of optimizing only the support and the confidence
as most algorithms of the literature propose.

4.5. Statistical tests

Finally, a non-parametric statistical analysis [20] has been
conducted to show if better results are really obtained when the
set of selected measures are optimized. For this purpose, the
support of the rule, confidence, leverage, lift, gain, accuracy and
certainty factor measures obtained from the application of
QARGA 1 and QARGA 2 to the real-world datasets and thirty-five
datasets from BUFA repository have been calculated.

Specifically, theWilcoxon test has been applied to detect significant
differences in the measures of the rules obtained by QARGA 1 and
QARGA 2. Let Rþ be the sum of ranks for the datasets inwhich the new
fitness function (QARGA 2) outperformed the original one (QARGA 1),
and R� the sum of the opposite ranks. The results obtained by the
Wilcoxon test for the level of significance α¼ 0:05 are summarized in
Table 12. The winner fitness function is stressed in bold in each row
when the p-value associated is less than 0.05.

In the case of the confidence measure, the original fitness
functions has presented better average results, the R� value is
greater than the Rþ and the p-value obtained is lower than the
level of significance considered. Therefore, the test rejects the
hypothesis concluding that the original fitness function is better
than the new fitness function in terms of confidence.

Regarding the support of the rule and certainty factor, the R�

values are also greater than the Rþ values. However, the p�values
obtained are greater than the level of significance considered,
hence, the test accepts the hypothesis indicating that in terms of
support and certainty factor the original fitness function and the
new one do not present significant differences.

The new fitness function really outperforms the original fitness
function in the rest of the measures considered in the Wilcoxon test,
specifically, the measures accuracy, leverage, lift and gain. In all cases,
the Rþ value is greater than the R� and also, the p� values obtained
are less than the level of significance 0.05. Thus, the test rejects the
hypothesis and it can be stated that there exist significant differences
between the results obtained by both fitness functions.
5. Conclusions

A study based on the PCA method has been proposed to obtain
the set of measures to be included in a fitness function to discover
QAR. In particular, the support of the rule, confidence, gain and



Table 11
Lift, accuracy and gain measures for rules obtained by QARGA with both original and new fitness function.

Dataset Lift Accuracy (%) Gain

QARGA 1 QARGA 2 QARGA 1 QARGA 2 QARGA 1 QARGA 2

Tropospheric ozone 42.02 489.20 89.56 99.27 0.89 0.95
Total ozone content 50.04 138.16 96.04 99.76 0.95 0.96
Budding yeast cell-cycle 22.83 23.40 99.48 99.83 0.95 0.94
Earthquakes 8.89 235.74 51.64 98.20 0.41 0.91

Ailerons (AI) 104.84 1739.72 72.49 99.36 0.66 0.95
Baseball (BA) 98.04 321.30 93.22 99.97 0.92 0.99
Basketball (BK) 30.63 86.94 91.62 99.82 0.90 0.97
Bolts (BL) 11.88 25.30 88.06 97.81 0.85 0.82
Buying (BU) 62.57 99.10 97.76 99.99 0.96 0.99
Computer activity (CA) 26.60 2110.06 58.25 99.65 0.54 0.93
Country (CN) 46.09 114.65 93.73 99.97 0.92 0.99
College (CO) 41.08 212.96 88.03 99.93 0.87 0.99
Education (ED) 45.01 1032.03 83.50 99.83 0.82 0.99
Elevators (EV) 107.84 1470.62 71.50 98.94 0.59 0.94
Bodyfat (FA) 27.24 211.03 92.37 99.82 0.91 0.98
Fried (FR) 198.03 4030.80 92.81 99.55 0.93 0.98
House_16H (HH) 7.64 3780.50 59.69 99.72 0.56 0.94
Kinematics (KI) 204.94 2757.58 93.64 99.72 0.94 0.97
Longley (LO) 14.20 15.39 98.63 99.68 0.92 0.91
Mortgage (MO) 23.83 116.48 94.52 99.47 0.90 0.90
Normal body temperature (NT) 2.97 16.36 57.17 92.97 0.47 0.73
Plastic (PL) 4.89 17.93 77.31 88.88 0.75 0.87
2Dplanes (PN) 3.26 9.58 60.04 85.49 0.59 0.71
Pollution (PO) 37.63 58.27 95.97 99.90 0.93 0.97
Pole telecomm (PT) 1.20 1457.33 70.72 97.04 0.03 0.77
Pw linear (PW) 13.89 66.72 83.25 97.89 0.83 0.94
Pyramidines (PY) 10.55 63.95 73.38 99.79 0.67 0.97
Quake (QU) 2.14 69.26 42.35 96.10 0.36 0.86
Read (RE) 66.26 571.19 94.34 99.90 0.93 1.00
School (SC) 44.02 59.14 97.61 99.93 0.95 0.97
Sleep (SL) 10.83 43.84 69.89 99.44 0.66 0.94
Stock price (SP) 31.06 222.12 93.85 99.57 0.89 0.92
Treasury (TR) 23.89 119.33 94.55 99.48 0.90 0.90
Televisions (TV) 13.03 31.83 73.54 99.18 0.66 0.93
Triazines (TZ) 5.29 70.50 51.61 96.64 0.44 0.95
Usnews College (US) 47.05 976.14 84.73 99.91 0.84 0.99
Vineyard (VY) 17.87 42.19 91.84 99.48 0.84 0.97
Weather Ankara (WA) 10.35 598.21 57.73 99.46 0.55 0.92
Weather Izmir (WI) 7.71 536.14 55.85 99.35 0.53 0.91

Average 39.18 616.44 80.31 98.48 0.75 0.93
(747.07) (71009.51) (716.55) (73.02) (70.22) (70.07)

Table 12
Wilcoxon test to compare QARGA with the original and new fitness function.

Measure QARGA 2 Rþ QARGA 1 R� p-Value

Confidence 189 591 4.2900E�03
Accuracy 780 0 3.6380E�12
Gain 763 17 7.5300E�10
Leverage 643 137 2.3400E�04
Lift 780 0 3.6380E�12
Rule support 288 492 1.5821E�01
Certainty factor 300 480 0.205031
accuracy are the measures that best summarize all the considered
measures. Real-world climatological datasets, biological datasets
and public datasets retrieved from the BUFA repository have been
used to test the quality of the rules discovered by QARGA using a
new fitness function that includes the set of selected measures.
All the results show a remarkable performance of the new fitness
function outperforming in many cases that of the original fitness
function. The analysis of the quality measures has been very
helpful to choose the most suitable objective function to be
optimized by any algorithm, contrary to optimize only the support
and confidence as most of the algorithms to discover QAR in
the literature do. As future work, the authors want to analyze
correlations between performance of different measures and
attributes, as well as analyzing how some properties in datasets
may have an influence on the quality measures performance.
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Appendix A. Statistical analysis performed by PCA in several
datasets

This appendix extends Section 4.3 including the statistical
analysis based on the PCA method, which has been undertaken
on a wide range of data sets in addition to the TOS dataset.

Tables A1–A3 present the value of eigenvalues, the percentage
of cumulative variance explained for each component obtained by
PCAwhen it was applied to several datasets detailed in Section 4.2.
Specifically, thirty-five datasets from BUFA datasets, TOC dataset
and Earthquakes dataset, respectively.



Table A3
Total explained variance according to the three components for the earthquakes
dataset.

Component Eigenvalues Variance (%) Cumulative variance (%)

1 4.261 38.737 38.737
2 2.55 23.183 61.92
3 2.254 20.487 82.407

Table A4
Matrix of rotated components obtained by PCA for BUFA datasets.

Measure Comp. 1 Comp. 2 Comp. 3

Accuracy 0.238 0.237 0.906
Certainty factor �0.099 0.931 0.117
Confidence 0.097 0.863 0.097
Gain �0.544 0.553 0.6
Lift �0.427 �0.208 0.616
Antecedent support 0.809 �0.525 0.021
Rule support 0.854 �0.425 0.012
Consequent support 0.598 �0.427 �0.622
Leverage 0.789 0.318 0.086
Amplitude 0.779 0.16 �0.178
Attributes �0.69 0.108 0.302

Table A5
Matrix of rotated components obtained by PCA for the Total Ozone Content dataset.

Measure Comp. 1 Comp. 2 Comp. 3

Accuracy 0.011 �0.012 0.942
Certainty factor �0.069 0.997 �0.009
Confidence �0.018 0.999 �0.015
Gain �0.808 0.334 0.468
Lift �0.157 �0.024 0.835
Antecedent support 0.996 �0.03 �0.04
Rule support 0.997 �0.024 �0.04
Consequent support 0.852 �0.01 �0.502
Leverage 0.993 �0.015 �0.04
Amplitude 0.987 �0.019 �0.071
Attributes �0.982 0.031 0.018

Table A6
Matrix of rotated components obtained by PCA for the earthquakes dataset.

Measure Comp. 1 Comp. 2 Comp. 3

Accuracy 0.29 0.93 �0.154
Certainty factor �0.164 0.125 0.944
Confidence 0.118 �0.1 0.962
Gain �0.18 0.774 0.585
Lift �7.40E�05 0.388 0.064
Antecedent support 0.97 �0.07 �0.101
Rule support 0.971 �0.07 �0.095
Consequent support 0.293 �0.94 0.097
Leverage 0.769 0.103 0.163
Amplitude 0.878 �0.049 �0.014
Attributes �0.879 0.055 0.11

Table A2
Total explained variance according to the three components for the Total Ozone
Content dataset.

Component Eigenvalues Variance (%) Cumulative variance (%)

1 6.321 57.46 57.46
2 2.106 19.143 76.604
3 2.066 18.778 95.382

Table A1
Total explained variance according to the three components for BUFA datasets.

Component Eigenvalues Variance (%) Cumulative variance (%)

1 3.058 33.973 33.973
2 2.432 27.02 60.993
3 1.635 18.171 79.165
Tables A4–A6 depict the principal components extracted after
the application of PCA in thirty-five datasets from BUFA datasets,
TOC dataset and earthquake dataset, respectively.

As can be observed from these tables, three principal compo-
nents have been obtained, each of them corresponding to an
independent group of measures. All measures are clearly in a
specific component at least in any dataset except the gain measure
that is not clear to which component does it belong in any dataset
as it was described in Section 4.3.
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