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The forecasting process of real-world time series has to deal with especially unexpected values, com-
monly known as outliers. Outliers in time series can lead to unreliable modeling and poor forecasts.
Therefore, the identification of future outlier occurrence is an essential task in time series analysis to
reduce the average forecasting error. The main goal of this work is to predict the occurrence of outliers
in time series, based on the discovery of motifs. In this sense, motifs will be those pattern sequences pre-
ceding certain data marked as anomalous by the proposed metaheuristic in a training set. Once the motifs
are discovered, if data to be predicted are preceded by any of them, such data are identified as outliers,
and treated separately from the rest of regular data. The forecasting of outlier occurrence has been added
as an additional step in an existing time series forecasting algorithm (PSF), which was based on pattern
sequence similarities. Robust statistical methods have been used to evaluate the accuracy of the proposed
approach regarding the forecasting of both occurrence of outliers and their corresponding values. Finally,
the methodology has been tested on six electricity-related time series, in which most of the outliers were
properly found and forecasted.
1. Introduction

This work proposes a new strategy to predict the occurrence of 
outlying data in time series, as well as providing accurate forecasts 
for them. It is worth highlighting that the goal of this methodology 
is to forecast their appearance, instead of detecting them in an 
already known set of values, which is a common goal in robust sta-
tistics (Maronna et al., 2007). The majority of robust statistical 
techniques perform a posteriori detection, that is, they determine 
whether a datum is an outlier or not, but once it has already 
occurred. However, a comparison with these techniques will be 
of the utmost importance in order to evaluate the accuracy of the 
proposed metaheuristic.

A general-purpose forecasting algorithm, called PSF, was pre-
sented in Martínez-Álvarez et al. (in press). Its main feature lied 
in performing a discretization of the time series by means of cer-
tain clustering technique. Then, it only used the generated labels 
ous discretization, this 
nces (henceforth called 
e occurrence of outliers 
thodology is inserted in 
The prediction of outliers plays an important role as wrong mod-
els and poor forecasts are obtained when ignoring outliers. This
work presents a metaheuristic to discover motifs in time series
and, then, if data to be predicted are preceded by any of these discov-
ered motifs, consider these data as outlier. The motifs are deter-
mined during the training phase as those pattern sequences that
precede data with remarkable forecasting error. Thus, the existing
PSF algorithm is modified by adding a new motif extraction step.

The enhanced version is capable of predicting the appearance of
such outliers with great reliability when the motifs extraction step
is added. In fact, the approach has been successfully tested on six
real-world electricity-related time series, in particular, on energy
prices and demand of three different markets, reaching sensitivity
values greater than 82%, and specificity values greater than 95%.
Furthermore, results about the effect of outliers on the average
forecasting errors are reported for all the six time series, exhibiting
remarkable forecasting error reduction.

Despite the vast variety of works related to outliers detection
and motifs discovery in time series, there is no approach in time
series in order to forecast the occurrence of outliers, to the authors’
knowledge.

The remaining of the paper is organized as follows. A review of
the most recently published works regarding energy time series
forecasting, motifs discovery and outliers detection can be found
in Section 2. Section 3 provides formal description for sensitive
terms, and presents a brief explanation of the original algorithm.
As for Section 4, it introduces the proposed methodology, showing
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how to insert the outlier occurrence forecasting in the original algo-
rithm’s general scheme. The results obtained for the six electricity
prices and demand time series are reported and discussed in Section
5. Finally, Section 6 summarizes the main conclusions achieved.
2. Related work

This section provides useful and recent references about the
three main topics involved in this paper: Energy time series fore-
casting, motifs discovery in temporal data and robust statistical
methods to detect outliers. For the sake of clarity, these topics have
been separated in three different sections.
2.1. Energy time series forecasting

The interest of analyzing electricity price time series resides in
the progressive deregulation of electric power markets. Further-
more, electricity price time series possess certain features that turn
the prediction into a difficult task: non-constant mean/variance
and frequently outlier occurrences. For this reason, electricity-pro-
ducer companies want optimized bidding strategies as well as
needing assessment about the risk of trusting forecasts (Plazas
et al., 2005).

On the other hand, the process of forecasting the quantity of
electricity required for a specific geographical area during a time
period is called load forecasting or demand forecasting. This pro-
cess is key since current technology allows to store a limited
amount of electricity in batteries. Therefore, the demand forecast-
ing plays an important role for electricity power suppliers because
both excess and insufficient energy production may lead to in-
creased costs and a significant reduction of profits.

The pursuit of accurate forecasting in electricity price time ser-
ies has motivated research works by many authors (Aggarwal et al.,
2009). Thus, the use of mixed models was proposed in García-
Martos et al. (2007) to forecast prices for different horizons of
prediction. Also remarkable was the work introduced in Troncoso
et al. (2007) that, by means of weighted nearest neighbors method-
ology, forecasted next-day electricity prices. Also, the use of an
artificial neural network to fulfil the same goal can be found in Pino
et al. (2008). Even the use of classical autoregressive models has
been recently used to forecast prices in several markets (Weron
and Misiorek, 2008).

On the contrary, the authors in Troncoso et al. (2004) proposed
a weighted nearest neighbors-based methodology to forecast elec-
tricity demand. The proposed approach was tested over the next-
day Spanish load forecasting. Also, the authors in El-Telbany and
El-Karmi (2008) forecasted the Jordanian electricity demand with
an artificial neural network, which was trained by means of parti-
cle swarm optimization techniques. This market was also studied
in Badran et al. (2008) but, this time, the authors preferred to con-
centrate on short and medium-term load forecasting by using
regression models. Finally, Wang and Wang (2008) proposed a
new prediction approach based on support vector machines
(SVM) techniques with a previous selection of features from data
sets by using an evolutionary method.

The discovery of outliers in electricity price time series has also
been widely discussed in literature. Thus, the authors in Lu et al.
(2005) proposed a model based on the analysis of several variables
(among which the electricity demand is highlighted) by means of
Bayesian classification (BC) and similarity searching techniques.
A hybrid methodology that combined SVMs and BC was developed
in Wu et al. (2006) to classify both spikes and normal electricity
prices. Alternatively, a data mining framework based on SVM and
probability classifiers was described in Zhao et al. (2007) with
the aim of forecasting spikes in prices accurately.
By contrast, the prediction of peaks in electricity demand was
addressed in Saini (2008). This work forecasted demand peaks up
to seven days ahead using feed forward neural network and adap-
tive backpropagation learning methods. In the work introduced in
Ismail et al. (2009), the authors developed a rule-based method
that combined regression models and fuzzy systems to analyze
daily electricity peak load demands in Malaysia. Also, the authors
in Hyndman and Fan (2010) described a semi-parametric additive
model to discover relationships between the demand and exogen
variables. The approach was applied to long-term peaks for the
South Australian market.

2.2. Motifs discovery

The discovery of motifs in continuous data, also known as func-
tional data in many works (Valderrama, 2008), was originally for-
malized in Lin et al. (2002), in which the authors introduced
several algorithms to mine motifs in time series, among which
the k-motif algorithm highlights. However, the main drawback of
this algorithm is its dependence on a pre-fixed pattern length.
Later, the authors in Tang and Liao (2008) proposed a modified
version that improved, precisely, this feature. Furthermore, they
generated original patterns by considering the discovered motifs.

The detection of on-line motifs in continuous data has also been
addressed. Particularly, a new methodology to detect on-line
motifs in time series by combining probabilistic models and poly-
nomial least-squares approximations was proposed in Fuchs et al.
(2009). This topic was also studied in Mueen and Keogh (2010) in
which the authors found and maintained time series motifs from
robotics, online compression and wildlife management domains.

Besides these goals, different objectives have been fulfilled by
discovering motifs recently. Hence, the work presented in Tanaka
et al. (2005) proposed an algorithm devoted to discover motifs
based on the minimum description length principle. The approach
also allowed to obtain motifs from multi-dimensional time series
data by using principal component analysis. Mueen et al. (2009)
proposed in 2009 an exact algorithm to find time series motifs
much faster than brute-force searching strategies do. Also, an ap-
proach based on tree-construction search to discover motifs in
multivariate time series was proposed in Wang et al. (2010) and
applied to sensory datasets.

Since Stormo (2000) first reviewed strategies to find DNA motifs
(meaningful base sequence patterns that identify binding sites
responsible for transcription factors) in 2000, a large amount of
algorithms have been developed. Thus, an ensemble algorithm
attempting to discover regulatory motifs in DNA sequences was
proposed in Hu and Kihara (2006). Another algorithm was pro-
posed in Wijaya et al. (2007) which, given a set of sequences, exe-
cutes m different motif finders, each of them reporting n motifs.
Finally, Sharov and Minoru (2009) presented CisFinder, a software
that generates a comprehensive list of motifs enriched in a set of
DNA sequences and describes them with position frequency
matrices.

2.3. Robust statistical methods to detect outliers

The problem of a posteriori outliers detection in time series has
been widely studied in the literature, and faced from many differ-
ent points of view. In fact, the existence of even few outliers
usually leads to inaccurate models and not satisfactory forecasts
(Galeano et al., 2006), since they may deeply influence the
estimates that classical methods propose (Carnero et al., 2007).

For this reason, there is a large family of robust statistical
methods (Rousseeuw and Hubert, 2011) that deal with outliers
and, particularly, propose approaches to detect their existence in
the datasets subjected to analysis. Gelper et al. proposed an



adapted version of the classical exponential and Holt-Winters
smoothing methodologies, providing them with robustness
(Gelper et al., 2010). Another version of a robust multivariate
exponential smoothing applied to time series can be found in
Croux et al. (2010). Following with classical methods, a work that
enhanced ARMA by adding robustness can be found in Muler et al.
(2009), in which the authors succeeded in limiting the effect of
outlying data to the time stamp in which they happen.

Support vector machines (SVM) have also been adapted to deal
with outliers. Actually an approach to model time series using ro-
bust SVM was proposed in Camps-Valls et al. (2004). In particular,
the authors claimed that their proposal provides stable models
and allows the analysis of models’ memory depth. Recently, a two-
steps methodology was proposed in Chuang and Lee (2011) that
combined the use of robust SVM to remove anomalous observations,
and non-robust SVM to obtain estimates from that reduced dataset.

Many of these proposals have been implemented and freely dis-
tributed in software packages. But from all of them there are two
that highlight. LIBRA (Verboven and Hubert, 2005) is a Matlab li-
brary for robust analysis, that contains (among others) robust
covariance estimation, regression, principal component analysis,
principal component regression or partial least squares, as well
as methodologies to detect outlying observations in datasets. The
TOMCAT toolbox Daszykowski et al. (2007), also developed in the
Matlab environment, includes almost the same methods that
LIBRA does, but also includes a graphical interface.

3. Fundamentals

This Section first defines some terms in order to prevent possi-
ble misinterpretations in sensitive terms. Since the proposed
methodology is based on an existing algorithm, this Section also
provides a brief summary of the mathematical fundamentals
underlying the PSF algorithm. Note that a more detailed explana-
tion can be found in Martínez-Álvarez et al. (in press).

3.1. Definitions

This work uses certain concepts –such as outlier or motif– that
can be interpreted in many different senses, depending on the
application or even the author. For this reason, this Section pro-
vides a formal definition for these sensitive terms.

Definition 1 (Hourly time series). An hourly time series T is a set of
real-valued data in successive order, occurring every hour. In this
work, T = [t1, . . . , tp], where p is the length of the time series and
usually a multiple of 24.
Definition 2 (Daily time series). From an hourly time series, a daily
time series D is formed by tuples in R24, D = [d1, . . . ,dp/24], where
di = [t24(i�1)+1, . . . , t24i].
Definition 3 (Label). In this work, the term label is used to identify
a set of possible categorical values. Thus, L ¼ fl1; . . . ; lKg, where K is
a pre-fixed number.
Definition 4 (Sequence). A sequence S is a set of labels occurring in
successive order. In this work, S = [s1, . . . ,sq], where q is the length
of the sequence and si 2 L.
Definition 5 (Outlier). Given a test set, an outlier is an observation
which appears to be inconsistent with the rest of the data, relative
to an assumed model (Everitt, 2006). Outliers are usually
represented by a binary random variable vi, for i = 1, . . . , p that
models their occurrence (vi = 1 if it occurs, and vi = 0 otherwise),
and by another real random variable zi, for i = 1, . . . , p that models
their magnitude (Maronna et al., 2007). Although different outlier
types can be found in the literature, only the additive outlier model
is considered in this work, due to the nature of the studied data:

ti ¼ xi þ v izi; ð1Þ

where ti the observed value, and xi the i � th cleaned data modeled
by any approach.
Definition 6 (Motif). A motif MW is a sequence of W consecutive
labels considered to occur just before an outlier, where W is the
pre-fixed length of the sequence. In addition, MW is a subsequence
found in S and, consequently: MW ¼ ½s01; . . . ; s0W �, where s0i 2 L.
3.2. Time series forecasting: the PSF algorithm

The PSF algorithm is a general-purpose time series forecasting
algorithm whose main feature is that it only makes use of certain
labels –obtained by means of a clustering process– to forecast arbi-
trary horizons of prediction. However, the output is not composed
by labels but by real values.

PSF can deal with an arbitrary number of samples per day. How-
ever, specifically in this paper, the time series considered consists
of twenty-four samples per day. That is, given the hourly values up
to day i for a time series, the PSF algorithm provides the 24 hourly
values corresponding to day i + 1. Formally, let di 2 R24 be a vector
that comprises the 24 hourly values of a certain day, i.

First, PSF applies clustering techniques to such data in order to
assign a label to each day. Formally, it uses a function FK that as-
signs a label li 2 L to the values di 2 D of each day by means of a
clustering process, FK : D! L, that is, every 24 h are identified by
a label. Once K is fixed, this process transforms the daily time series
D into a sequence of labels S, thus discretizing the original data. Let
li be the label assigned to the day i obtained by means of the appli-
cation of a clustering technique. Let Si

W be the labels’ subsequence
of W consecutive days, from day i backward:

Si
W ¼ ½li�ðW�1Þ; li�ðW�2Þ; . . . ; li�1; li� ð2Þ

where the length of the window, W, is a parameter to be
determined.

Let W⁄ be the length of the window determined by PSF. For a day i
and length of window W⁄, the PSF algorithm searches for the subse-
quences of labels which are exactly equals to Si

W� in the dataset, pro-
viding the equal subsequences set, ES, defined by the equation,

ESði;W�Þ ¼ days j 2 D such that Sj
W� ¼ Si

W�

n o
ð3Þ

It is worth remarking that if no subsequence equal to Si
W� was found

in the dataset, that is, ES(i,W⁄) = ;, the length of the window would
decrease by one unit, W0 = W⁄ � 1, and the PSF would search for
subsequences equal to Si

W 0 . This process may be repeated until
any subsequence is found, that is, ES(i,W) – ;.

Therefore, the W⁄ consecutive labels that precede the day to be
predicted are extracted and searched for in the historical data.
Once all occurrences of Si

W� are found, the 24 hourly values of the
day i + 1 are predicted by averaging the real values found immedi-
ately after each Si

W� match. Mathematically,

d̂iþ1ðW�Þ ¼ 1
#ESði;W�Þ

X
j2ESði;W�Þ

djþ1 ð4Þ

Finally, the daily error for any day i is defined by:

edayði;W�Þ ¼ jd̂iðW�Þ � dij ð5Þ
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Fig. 1. Illustrative distribution of candidates in Cl, Cm and Ch.
4. Outlier forecasting in time series

This section explains the methodology proposed to improve the
forecasting process provided by the PSF algorithm. The discovery of
motifs is included in the aforementioned algorithm as a crucial
step for forecasting the occurrence of outliers and, then, providing
accurate estimates for such anomalous observations.

The value of two parameters had to be determined in the PSF
process: The number of clusters K and the length of the window
W. With regard to K, the new approach acts exactly the same as
what was proposed in the original PSF, that is, it applies three
well-known validity indices –Silhouette, Dunn and Davies–Boul-
din– and determines the optimal number of clusters by means of
a majority vote system.

On the other hand, the n � fold cross-validation is used to ob-
tain the optimal value of W. Twelve folds have been created in this
work (n = 12) for all the datasets, where each fold represents a
month. Therefore the training set consists of one year. The
12 � fold cross–validation is then evaluated. The forecasting errors
are calculated in every fold by varying the length of W. For each
window size W, the monthly errors are denoted by emonth(W) and
are calculated as follows:

emonthðWÞ ¼
1

#month

X
i2month

edayði;WÞ ð6Þ

for W = 1, . . . , Wmax and Wmax = 10, since no longer sequences were
found in daily time series. Then, the average errors are calculated
for each window size as follows,

�eðWÞ ¼ 1
n

X
month

emonthðWÞ ð7Þ

where n = 12 and month = {Jan, . . . ,Dec}.
The W⁄ selected is the one that minimizes the average error cor-

responding to the 12 folds (months) evaluated.

W� ¼ arg minf�eðWÞg with W ¼ 1; . . . ;Wmax ð8Þ

It is now –just after the training step and before the prediction pro-
cess– that the discovery of motifs plays a crucial role, as it attempts
at forecasting the occurrence of anomalous days in time series.

Specifically, the motifs to be found are those which generate a
prediction error greater than the average error in the cross–valida-
tion process. Therefore, a set of days i belonging to the training set
(TS) that satisfies edayði;W�Þ > �eðW�Þ is constructed. This set, CS or
candidates set, gathers all the candidate days to be preceded by a
sequence that will eventually be a motif. Formally,

CS ¼ fi 2 TS such that edayði;W�Þ > �eðW�Þg ð9Þ

Nevertheless, not all the sequences that precede these candidates
have the same probability to be eventually considered as outlier
precursors, since the associated errors range from values close to
the mean error (these candidate sequences should be eventually
discarded by the approach) to significantly high values. For this rea-
son, each candidate is co-labeled by using clustering techniques,
more specifically, the K-means algorithm. The decision on how
many clusters have to be created is always an open question and
many indices could be used. However, it is worthless to have a large
number of clusters and therefore, only three conceptual classes will
be created: A class that gathers days with low errors (Cl) or nearest
errors to the �eðW�Þ, a class containing medium errors (Cm) and, fi-
nally, a class devoted to identify high errors (Ch) or farthest errors
to the �eðW�Þ . Thus, for all days i 2 Cl, j 2 Cm and k 2 Ch the following
inequalities are fulfilled:

edayðk;W�Þ > edayðj;W�Þ > edayði;W�Þ > �eðW�Þ ð10Þ
Fig. 1 illustrates an imaginary error distribution in the TS, determin-
ing the candidates that will eventually form CS as the union of can-
didates in Cl, Cm and Ch. In other words, CS = Cl

S
Cm
S

Ch.
A priori reasoning reveals that those candidates belonging to Ch

must be more probable to be preceded by motifs preceding outliers
than the candidates in Cl or Cm. Results corresponding to each clus-
ter of data will be separately analyzed in Section 5.

The next step consists of computing the sequences of labels
occurring before the candidates in order to determine which se-
quences will be considered outlier precursors, since not all these
sequences will be motifs. Hence, the approach has to decide
whether the sequences preceding the candidates are motifs
responsible for outliers or not. In particular, the sequences that
only appear before the candidates will be considered motifs pre-
ceding an outlier occurrence. That is, if a sequence of labels preced-
ing a candidate is found prior to any other day that does not belong
to the CS, the sequence is discarded and not considered to be a mo-
tif. Thus, a set of motifs MS is defined by:

MS ¼ Si
W� such that i 2 CS and ESði;WÞ# CS

n o
ð11Þ

Note that MS can be also expressed as follows: MS = Ml
S

Mm
S

Mh,
where Ml, Mm and Mh are the discovered motifs associated to the se-
quences found in the classes Cl, Cm, and Ch respectively.

Fig. 4 depicts the process of discovering the sequences of labels
that represent the motifs preceding outliers. This figure shows an
illustrative example in which six clusters were created, K = 6
(labels are digits 1 to 6). Therefore, the time series appears discret-
ized, making only use of six different labels to be assigned one to
each day. The labels in bold refer to those days initially included
in CS, that is, those that obtained forecasting error greater than
the average. By contrast, the labels followed by a bullet are those
days that do not belong to CS but are preceded by a sequence equal
to another that precedes a candidate. Then, the three labels preced-
ing each day in CS (W⁄ = 3 in this example) are extracted. Finally,
the cases in which the sequences before the candidates also
appeared before any day not belonging to CS were discarded.
Otherwise, these sequences are considered motifs or pattern se-
quences preceding an especially unexpected value. For this partic-
ular example, note that only the sequence {1,5,4} would have been
considered as motif.

The goals are now: (i) to forecast the occurrence of an outlier
and (ii) provide accurate estimation for it. Thus, once MS is



constructed, the general scheme of forecasting is as follows. Origi-
nal PSF just extracted SW� and searched for it in the historical data.
But now, before its search, it has to be determined if this pattern
sequence matches any of the motifs forming MS. Given this situa-
tion, two cases may arise:

(1) SW� does not match any of the motifs in MS. The approach
determines that the day to be forecasted is not an outlier
and it would continue with normal PSF procedure. That is,
d̂iþ1ðW�Þ is calculated as PSF does from Eq. (4).

(2) SW� matches any of the motifs in MS. The approach deter-
mines that the day to be forecasted is an outlier. In this case
the challenge is to provide accurate estimations for these
observations, i.e. to provide accurate values for zi. To fulfill
this goal, a simple strategy is proposed: To average the value
of the outliers found by the proposed approach in the histor-
ical data. Formally, the set of outlying days from the training
set is defined by:
D

OS ¼ fi 2 TS such that Si
W� 2 MSg ð12Þ
Then, the forecast for the outlier is based on the a posteriori
detected outliers in the training set:
d̂iþ1ðW�Þ ¼ 1
#OS

X
i2OS

diþ1 ð13Þ
where #OS is the number of outliers detected by the approach
in the historical data (the number of elements in OS), and d̂i

the values of the time series for these outlying days that form
OS.

Fig. 2 illustrates the entire process of prediction when the dis-
covery of motifs is included in the PSF algorithm. Note that this
step has to be performed immediately after the clustering (creation
of the sequence of labels) and before the forecasting. In addition,
the steps corresponding to discovery of motifs and prediction are
further detailed in Fig. 3.

Finally, the pseudocode of the proposed methodology is pre-
sented in Fig. 5, and that of the discovery of motifs process in Fig. 6.
5. Results

This section presents the results obtained by the application of
the proposed methodology to six time series. The motifs discovery
process to six real-world time series is described in Section 5.1.
Then, a statistical analysis has been carried out to determine the
validity of the assumptions made when forecasting the occurrence
of outliers in the time series. This analysis can be found in Section
5.2. Finally, to compare the results obtained, Section 5.3 reports
average forecasting errors of the new methodology and other
techniques.
ata Clustering MOTIFS
DISCOVERY Prediction

Labeled data

Motifs

Insert
predicted sample

More
days?

Yes

End
No

Fig. 2. Illustration of the proposed methodology.
5.1. Motifs discovery in real-world time series

The discovery of motifs on real-world time series is now de-
scribed. In particular, six public electricity-related (three of prices
and three of demand) time series have been considered to show
that the proposed methodology properly works on different data-
sets. Thus, the new approach has been applied to the Spanish
(OMEL), New Yorker (NYISO) and Australian (ANEM) markets,
whose data are available on-line in Spanish Electricity Price Market
Operator (http://www.omel.es), The New York Independent Sys-
tem Operator (http://www.nyiso.com) and Australia’s National
Electricity Market (http://www.nemmco.com.au), respectively.

The forecasting process is applied to the year 2006 for the three
markets, with a historical data of one year and with a horizon of
prediction of one month. As twelve months are going to be evalu-
ated for each market, the methodology is going to be tested on 72
datasets. Given this situation, every time a month is forecasted the
training set changes. For instance, when January 2006 is forecasted,
the training set comprises the whole year of 2005. However, when
February 2006 is forecasted the historical data ranges from Febru-
ary 2005 to January 2006, and so on.

These changes in the training set involve changes in the config-
uration of PSF. First of all, both K and W have to be determined
according to the methodology presented in Section 4. Table 1 sum-
marizes the values of these parameters for the six markets in the
year 2006.

The results after the motifs extraction step for the three markets
are summarized in Tables 2–4. That is, a summary of all encountered
classes, sequences and motifs can be found in theses Tables for the
Spanish, New Yorker and Australian markets, respectively. However,
only electricity prices results of January 2006 for the Australian mar-
ket are now described as the explanation for the remaining eleven
months for each year and market is similar. Therefore, all the com-
ments about the results provided below refer to prices shown in
Table 4. First, the parameters to be set in the PSF are equal to:
(K,W) (3,6), according to Table 1. The CS can be now constructed.
For this purpose, the �eðWÞ (see Eq. (7)) has to be considered since the
candidates are those days belonging to the training set (January to
December 2005) that obtained an error greater than �eðWÞ. The value
of the mean error, calculated according to the methodology in
Section 4 is �eð6Þ ¼ 5:81%. Therefore, CS would be formed by
all days in 2005 with forecasting error greater than 5.81%.

Now the three classes are constructed by applying K-means,
with K = 3 as mentioned in Section 4. The three clusters are defined
as: Cl is the class that contains the candidates days with error from
5.81% to 7.13%, Cm the one that gathers the candidates with errors
ranging from 7.13% to 9.47% and Ch the class that contains the can-
didates with errors greater than 9.47%. The error distribution,
according to these three clusters, is shown in Fig. 7.

From the 365 days of 2005 that comprise the training set, 137 (see
Table 4, row 1: #Cl + #Cm + #Ch = 101 + 32 + 4 = 137) had an error
greater than 5.81% so the constructed CS contains 137 candidates
days. Once the candidates are selected, the number of different se-
quences that generated them are considered. From the candidates
in Cl, 5 different sequences were found (Sl = 5); from the candidates
in Cm, 3 (Sm = 3) and from the candidates in Ch, 2 (Sh = 2). This fact in-
volves that from all the KW = 729 possible sequences, only 10 caused
errors greater than the average.

Note that there were situations in which a particular sequence
appeared before different candidates that belong to different
classes. For these cases, only the sequence that appeared in the
class with higher associated error (Cl was devoted to include days
with lower errors, Cm to medium errors and Ch to higher ones) was
counted.

Finally, the number of motifs that identify outliers are deter-
mined. From the sequences Cl, only one appeared exclusively as
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Fig. 4. Illustrative example of motifs discovery.
an outlier precursor, Ml = 1. With reference to the sequences in Cm,
one out of three, Mm = 1. Last, both sequences in Ch were exclusive,
Mh = 2.

Fig. 8 is provided to determine the usefulness of dividing the CS
into three groups. These histograms show the motifs distribution
Fig. 5. A general scheme of th
along with Cl, Cm and Ch and, to be precise, the relation between dif-
ferent sequences and motifs for each class and market, expressed
as %. Thus, each bar is calculated by dividing the number of differ-
ent sequences that precede the candidates and the number of mo-
tifs that are finally selected. As it is possible to observe, the
probability that a sequence becomes a motif is directly related
with the error associated to the candidate to which it precedes.
For instance, the percentage of motifs for the ANEM’s electricity
price time series are 20.26% for the sequences in Cl, 29.82% for
the sequences in Cm and 52.94% for the sequences in Ch.

The motifs found in January 2006, represented as a numerical
sequence of labels, are shown in Tables 5 and 6 corresponding to
prices and demand, respectively. For instance, note that the first
motif found in ANEM’s prices is M1

l ¼ f1;3;2;2;3;1g. Each label
is represented by one of the K clusters generated during the train-
ing of the PSF (where K = 3 in this case) and identifies 24 h. As the
length of the window was set to W = 6, these six labels in fact rep-
resent 144 h.

Figs. 9 and 10 illustrate the most representative motifs found in
all the markets when forecasting January 2006. Actually, these mo-
tifs represent the time series values that will precede an outlier. As
each motif was represented by W consecutive labels (see Definition
6), these figures depict the values associated to every label, which
have been obtained by means of clustering techniques.
e proposed methodology.



Fig. 6. Pseudocode of the motifs discovery.

Table 1
Setting the PSF. OMEL refers to the Spanish market, NYISO to the New Yorker market and ANEM corresponds to the Australian market.

Month Prices Demand

OMEL NYISO ANEM OMEL NYISO ANEM

K W K W K W K W K W K W

January 4 5 5 4 3 6 7 3 4 3 6 4
February 4 5 5 3 3 6 7 4 3 5 6 5
March 4 5 5 4 3 6 7 3 4 4 4 3
April 4 5 5 4 4 6 6 4 4 5 4 4
May 4 5 6 3 4 6 5 4 4 4 6 4
June 6 4 5 3 3 6 6 3 4 5 5 5
July 5 5 6 4 3 5 6 4 3 5 6 4
August 6 4 6 3 4 6 5 4 4 3 5 4
September 6 4 5 3 3 6 7 3 5 4 6 5
October 6 4 5 4 3 6 5 4 5 4 5 4
November 6 4 5 4 3 6 5 3 4 4 6 4
December 5 5 5 3 3 5 6 3 5 3 4 6

Table 2
Motifs distribution for Spanish markets.

Month Prices Demand

#Cl(Sl)[Ml] #Cm(Sm)[Mm] #Ch(Sh)[Mh] #Cl(Sl)[Ml] #Cm(Sm)[Mm] #Ch(Sh)[Mh]

January 98(7)[1] 25(4)[3] 8(2)[2] 103(6)[2] 35(6)[2] 6(3)[3]
February 87(6)[0] 31(7)[2] 5(2)[2] 121(8)[1] 22(5)[3] 3(2)[1]
March 73(5)[2] 16(3)[1] 8(1)[1] 99(7)[1] 30(7)[4] 6(1)[0]
April 103(9)[1] 30(6)[1] 6(3)[2] 83(4)[0] 17(5)[2] 5(3)[3]
May 65(4)[0] 51(6)[0] 10(4)[2] 101(6)[2] 26(8)[3] 5(3)[3]
June 97(6)[0] 38(5)[2] 4(0)[0] 124(7)[3] 27(5)[1] 7(1)[1]
July 180(8)[2] 27(3)[1] 12(5)[3] 97(8)[2] 13(3)[0] 8(4)[3]
August 101(8)[3] 26(5)[0] 9(4)[2] 113(11)[4] 29(6)[3] 11(3)[2]
September 110(8)[1] 25(5)[3] 5(0)[0] 105(9)[2] 19(5)[4] 3(2)[2]
October 108(7)[1] 23(4)[2] 6(1)[0] 98(8)[3] 32(3)[2] 4(1)[1]
November 120(9)[1] 40(6)[0] 6(3)[1] 99(9)[2] 20(5)[3] 9(3)[3]
December 169(10)[2] 38(9)[3] 10(3)[1] 114(8)[2] 24(3)[2] 12(2)[0]
Regarding the electricity prices, note that for the Spanish mar-
ket, six motifs were found; six for New York, and four for the Aus-
tralian market. As for the electricity demand, the number of motifs
found were seven, five and four for the Spanish, New York and
Australian markets, respectively. In actual fact, the curves in these
figures represent the average evolution of the five (OMEL), four
(NYISO) and six (ANEM) days prior to an outlier forecast in prices
time series and the average evolution of the three (OMEL and NYI-
SO) and four (ANEM) days prior to an outlier forecast in demand
time series.



Table 3
Motifs distribution for New York markets.

Month Prices Demand

#Cl(Sl)[Ml] #Cm(Sm)[Mm] #Ch(Sh)[Mh] #Cl(Sl)[Ml] #Cm(Sm)[Mm] #Ch(Sh)[Mh]

January 101(8)[3] 34(3)[1] 12(2)[2] 96(9)[1] 28(3)[1] 14(4)[3]
February 92(11)[2] 36(4)[1] 14(3)[2] 88(9)[3] 14(2)[1] 7(2)[2]
March 89(7)[2] 45(5)[1] 11(2)[1] 101(9)[2] 33(2)[0] 9(3)[2]
April 110(13)[3] 21(4)[1] 9(5)[4] 93(8)[2] 29(3)[2] 11(4)[2]
May 121(7)[2] 31(2)[1] 6(3)[1] 114(9)[3] 30(4)[2] 13(6)[3]
June 142(5)[1] 32(0)[0] 7(0)[0] 103(7)[0] 26(3)[1] 10(4)[2]
July 92(10)[3] 41(5)[1] 18(4)[4] 86(5)[1] 29(4)[2] 8(3)[2]
August 84(7)[2] 39(6)[2] 9(6)[5] 76(7)[4] 14(2)[2] 4(1)[1]
September 107(7)[0] 40(4)[0] 10(1)[1] 84(8)[1] 21(4)[1] 8(3)[3]
October 141(9)[2] 28(3)[0] 4(0)[0] 95(6)[0] 32(4)[2] 9(3)[1]
November 99(12)[3] 32(8)[2] 15(4)[3] 115(8)[3] 38(6)[2] 15(6)[2]
December 87(8)[1] 44(3)[1] 8(0)[0] 109(8)[3] 29(4)[2] 12(4)[3]

Table 4
Motifs distribution for Australian markets.

Month Prices Demand

#Cl(Sl)[Ml] #Cm(Sm)[Mm] #Ch(Sh)[Mh] #Cl(Sl)[Ml] #Cm(Sm)[Mm] #Ch(Sh)[Mh]

January 101(5)[1] 32(3)[1] 4(2)[2] 131(7)[0] 46(7)[2] 5(3)[2]
February 165(5)[0] 25(6)[1] 9(1)[1] 115(6)[1] 56(7)[3] 6(3)[3]
March 133(8)[2] 13(2)[0] 3(0)[0] 92(6)[0] 72(9)[1] 7(3)[3]
April 190(13)[3] 8(2)[0] 11(4)[2] 102(7)[2] 64(5)[0] 5(4)[3]
May 187(17)[5] 13(4)[2] 6(3)[1] 123(7)[2] 41(3)[1] 11(4)[0]
June 169(12)[5] 22(5)[1] 3(3)[1] 183(16)[3] 33(3)[0] 4(4)[2]
July 172(22)[3] 9(0)[0] 2(2)[2] 117(9)[1] 40(5)[0] 8(5)[3]
August 142(20)[2] 34(3)[2] 6(4)[2] 139(11)[2] 41(4)[3] 7(3)[1]
September 102(18)[4] 20(8)[3] 12(2)[1] 110(8)[2] 27(3)[2] 9(3)[3]
October 81(13)[2] 53(13)[4] 9(2)[0] 142(12)[3] 42(8)[3] 5(1)[1]
November 112(9)[1] 43(7)[1] 14(5)[4] 137(12)[2] 38(7)[3] 7(3)[2]
December 121(11)[3] 39(4)[2] 13(6)[2] 134(10)[4] 29(5)[2] 8(4)[2]
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Fig. 11 shows ANEM’s electricity prices for July 2006. This
month is illustrated since it presents large outliers. As for this
month W = 5 (see Table 1), the number of labels considered for out-
lier occurrence forecasting is five. Also, the number of motifs found
in TS were five (see Table 4): M1

l ¼ f1;2;3;3;1g;M
2
l ¼ f2;2;

3;1;3g;M3
l ¼ f3;1;1;1;1g;M

4
h ¼ f2;1;3;3;1g and M5

h ¼ f2;1;1;
1;3g Thus, grey bars represent outliers a posteriori detected by
means of the robust statistical method presented in Gelper et al.
(2010), that is, days 3, 13, 18 and 22 July were the outliers identi-
fied. It can be appreciated that sequences M3

l ;M
4
h and M1

l are three
of the motifs found in TS that eventually preceded days 13, 18 and
22 July, respectively. Furthermore, 3rd July was preceded by the
motif M5

h . Only the last two labels of this motif (1,3) are depicted
in Fig. 11 because the first three labels (2,1,1) correspond to days
in June. Finally, note that one of the motifs found in TS, M2

l , did not
occur when forecasting July 2006.

5.2. Evaluation of outlier occurrence forecasting

Once all the MS have been constructed, the proposed method
predict a priori if the day to be forecasted will be an outlier. This
Section is devoted to statistically quantify the outlier occurrences
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Fig. 8. Motifs distribution in Cl, Cm and Ch.

Table 5
Motifs found in TS for the electricity price when
forecasting January 2006.

Market Motif

OMEL M1
l ¼ f1;1;3;4;4g

M2
m ¼ f3;4;4;1;3g

M3
m ¼ f3;4;4;2;1g

M4
m ¼ f2;3;4;4;1g

M5
h ¼ f1;1;1;2;3g

M6
h ¼ f3;2;3;3;4g

NYISO M1
l ¼ f1;3;5;4g

M2
l ¼ f2;2;3;1g

M3
l ¼ f5;1;1;3g

M4
m ¼ f3;4;2;5g

M5
h ¼ f3;2;4;1g

M6
h ¼ f3;1;5;1g

ANEM M1
l ¼ f1;3;2;2;3;1g

M2
m ¼ f2;1;3;3;3;1g

M3
h ¼ f3;2;1;1;2;3g

M4
h ¼ f3;3;3;1;1;2g

Table 6
Motifs found in TS for the electricity demand when
forecasting January 2006.

Market Motif

OMEL M1
l ¼ f6;4;4g

M2
l ¼ f7;1;7g

M3
m ¼ f5;5;4g

M4
m ¼ f4;7;5g

M5
h ¼ f4;4;7g

M6
h ¼ f6;5;6g

M7
h ¼ f7;7;2g

NYISO M1
l ¼ f2;3;3g

M2
m ¼ f4;3;4g

M3
h ¼ f1;3;2g

M4
h ¼ f3;4;1g

M5
h ¼ f2;2;3g

ANEM M1
m ¼ f6;5;3;4g

M2
m ¼ f2;6;3;4g

M3
h ¼ f2;3;1;4g

M4
h ¼ f4;6;6;5g
properly forecasted by the proposed methodology. Thus, the qual-
ity parameters used to evaluate the accuracy of the approach are
first introduced in Section 5.2.1 and, then, the conducted statistical
analysis is reported in Section 5.2.2.
5.2.1. Parameters of quality
The parameters used to assess the accuracy of the approach are

now introduced. A posteriori analysis has been carried out to
determine the existence of outliers in all examined series. In par-
ticular, the robust method proposed in Gelper et al. (2010) (hereaf-
ter called RHW for simplicity) to detect outliers in time series has
been considered. Hence, a forecast of an outlier occurrence is said
to be properly made by the proposed approach, if RHW also points
the observation as anomalous. Thus, a priori forecasting (the pro-
posed approach in this work) is compared to a posteriori detection
(the method proposed in Gelper et al. (2010)).

Note that the authors in Gelper et al. (2010) determined that
outliers are those data that do not fulfil any of the two bounds they
define:

UBt ¼ ŷt þ 2r̂ ð14Þ
LBt ¼ ŷt � 2r̂ ð15Þ

where UBt and LBt are the upper and lower bounds respectively, ŷt is
the fitted value, and r̂ is the standard deviation of the regression
residuals they obtain.

Hence, in subsequent equations, true positives or TP is the num-
ber outlier occurrences properly forecasted, that is, the number of
days preceded by a motif in MS that are outliers according to RHW;
true negatives or TN is the number of days that were not preceded
by a motif in MS and were not considered outlier by RHW either;
false positives or FP is the number of days preceded by a motif in
MS that were not considered outlier by RHW; and false negatives
or FN is the number days not considered outliers (not preceded
by any motif in MS) and eventually considered outliers by RHW.

According to these definitions, the sensitivity is the probability
that a motif discovered precedes a real outliers. Its formula is de-
fined as follows:

Sensitivity ¼ TP
TP þ FN

ð16Þ

Another relevant parameter is the specificity, or the ratio of se-
quences preceding the day to be forecasted properly discarded by
the approach. The mathematical expression is:

Specificity ¼ TN
TN þ FP

ð17Þ

The positive predictive value (PPV) is the probability that a fore-
casted outlier is indeed a real one. Its formula is:

PPV ¼ TP
TP þ FP

ð18Þ
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Fig. 9. Motifs found in January 2006 for electricity prices.
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Finally, the negative predictive value (NPV) is the probability that a
discarded sequence was not indeed a real motif preceding an out-
lier. Its formula is:

NPV ¼ TN
TN þ FN

ð19Þ
5.2.2. Quantifying the forecast of outlier occurrences
A statistical measure of the accuracy is provided in this Section.

The parameters used are the ones described in Section 5.2.1 and
summarized in Table 7. Note that all parameters refer to the whole
year of 2006 for the three markets, that is, the numbers gather the
twelve forecasted sets or months for both prices and demand. Only
the explanation for the prices in the year 2006 of the Australian
market is provided, since the reasoning for the remaining markets
is analogous.

During the forecasting process, there were 75 outliers properly
detected, that is, TP = 75. On the other hand, there were thirteen
occasions in which a motif appeared and did not precede a day
considered an outlier by RHW. Therefore, FP = 13. Furthermore,
there were seventeen more days which were outliers according
to RHW and were not preceded by a motif, that is, FN = 17. And
the remaining 260 days were not preceded by motifs and were
not outliers by RHW. Thus, TN=260 (75 + 13 + 17 + 260 = 365 fore-
casted days in 2006).

For instance, in the Fig. 11 (ANEM’s electricity prices in July
2006), four TP were found (days 3,13,18,22), that is, RHW
Table 7
Statistical analysis of the method.

Parameters Prices Demand Mean

OMEL NYISO ANEM OMEL NYISO ANEM

TP 73 65 75 67 71 58 68.17
TN 261 271 260 272 267 281 268.67
FP 18 14 13 14 9 12 13.33
FN 13 15 17 12 18 14 14.83
Sensitivity 84.88% 81.25% 81.52% 84.81% 79.78% 80.56% 82.13%
Specificity 93.55% 95.09% 95.24% 95.10% 96.74% 95.90% 95.27%
PPV 80.22% 82.28% 85.23% 82.72% 88.75% 82.86% 83.67%
NPV 95.26% 94.76% 93.86% 95.77% 93.68% 95.25% 94.76%
determined that these days were outliers, as well as the new ap-
proach did. On the contrary, no FP were found, since there were
no motifs followed by a non-outlier day (FP = 0). As for FN, RHW
determined that day 14 was an outlier, contrarily to what the
new approach determined, that it considered it a regular day as
this day not was preceded by any of the motifs found during the
training phase (FN = 1). Finally, the remaining 26 days are TN.

The results show great accuracy for all markets. Especially
remarkable are the values reached by the specificity. In particular,
it exceeds 95% in all markets (except for OMEL prices, in which it
reaches 93.55%), obtaining 95.27% on average. These values mean
that when the approach classifies the day to be predicted as outlier,
it does it with high reliability.

As for the sensitivity, all the markets reached values greater
than 80% (except for demand in NYISO that almost reached it:
79.78%), obtaining 82.13% on average. This fact implies that when
a motif is found before the day to be forecasted, it is highly prob-
able that such a day will be an outlier.

The PPV reached values similar to those of the sensitivity, in
particular, slightly greater (83.67% on average). Therefore, it can
be stated that when the proposed method determines that there
is an upcoming outlier, it is highly reliable.

Finally, NPV provides similar values for all the six series time,
reaching 94.76% on average, that is, the rate of real outliers not
found by the approach cannot be considered significant.
5.3. Time series forecasting in presence of outliers

This Section shows the prediction errors obtained by the pro-
posed approach. Moreover, the results obtained are compared to
those of the original PSF, in which the motifs discovery step was
not performed, and to those of the RHW robust statistical method
(Gelper et al., 2010). Further comparison can also be found in
Martínez-Álvarez et al. (in press), where comparisons between
the original PSF and other methods were reported.

Note that RHW only provides one sample-ahead estimations.
Instead, the new approach provides one day-ahead estimations,
i.e. 24 samples-ahead. In this sense, to compare both techniques
would not be fair as the latter has a larger horizon of prediction
and, therefore, a more difficult task to fulfil. However, as robust



statistical methods are devoted to forecast time series under the
presence of outliers, the results of RHW are provided in order to
compare to the proposed methodology.

To evaluate the accuracy of the forecasting, different criteria
may be taken into consideration. However, two parameters widely
used –the mean relative error (MRE) and its standard deviation
(rMRE)– are considered to evaluate the results of prediction.

Table 8 reports the results for the OMEL market. Compared to
the former PSF version, note that the new approach improves the
Table 9
Forecast for the NYISO time series.

Month Prices

RHW PSF PSF + motifs

MRE (%) rMRE MRE rMRE MRE rMRE

January 6.21 3.17 4.45 2.07 4.45 2.07
February 7.37 5.56 5.53 1.52 5.21 1.50
March 7.81 6.12 6.30 2.52 6.30 2.48
April 4.74 2.03 4.94 1.47 3.95 1.46
May 9.06 4.61 7.59 2.13 5.01 1.84
June 3.66 1.88 3.34 1.92 3.34 1.92
July 4.18 2.51 3.93 - 1.68 3.62 1.65
August 8.27 5.87 5.37 1.87 3.75 1.41
September 7.20 4.54 6.24 1.74 5.49 1.70
October 8.97 3.97 7.43 2.33 4.87 1.69
November 6.24 2.77 5.19 2.09 5.19 2.09
December 6.00 3.63 6.04 1.99 5.31 1.86
Average 6.64 3.89 5.53 1.94 4.71 1.81

Table 10
Forecast for the ANEM time series.

Month Prices

RHW PSF PSF + motifs

MRE (%) rMRE MRE (%) rMRE MRE (%) r

January 6.42 3.38 5.58 1.34 5.21 1
February 8.32 4.82 8.59 3.24 6.27 2
March 8.67 3.01 7.84 2.98 5.01 2
April 13.54 4.64 9.92 3.90 9.92 3
May 15.04 6.39 12.85 4.03 9.16 3
June 26.31 11.08 22.04 12.34 12.32 9
July 19.22 9.77 17.11 10.58 13.91 7
August 11.65 4.83 11.71 5.08 8.49 4
September 10.83 3.91 8.23 2.45 8.23 2
October 9.76 3.90 7.66 2.89 7.66 2
November 6.79 2.86 6.76 1.94 5.73 1
December 7.31 3.16 6.42 2.01 6.42 2
Average 11.99 5.15 10.39 4.40 8.19 3

Table 8
Forecast for the OMEL time series.

Month Prices

RHW PSF PSF + motifs

MRE (%) rMRE MRE (%) rMRE MRE (%) r

January 8.82 0.20 7.26 0.25 6.31 0.
February 7.67 0.28 4.93 0.19 4.28 0.
March 7.34 0.23 5.88 0.22 5.47 0.
April 4.08 0.14 3.62 0.18 3.62 0.
May 10.12 0.34 8.11 0.21 5.57 0.
June 4.46 0.24 3.76 0.24 3.11 0.
July 5.91 0.22 4.30 0.23 4.25 0.
August 5.03 0.28 5.37 0.34 4.62 0.
September 6.60 0.33 6.41 0.31 6.38 0.
October 7.14 0.39 7.89 0.29 6.02 0.
November 11.49 0.41 8.30 0.40 5.72 0.
December 9.71 0.37 8.02 0.36 5.19 0.
Average 7.36 0.29 6.15 0.27 5.05 0.
forecasting in all the datasets considered except in April for prices
and in January, June, July and October for demand. This fact is due
to the absence of motifs found when these months were forecasted
and, therefore, the prediction was exactly equal to the original PSF.
As for RHW, the proposed methodology outperforms its predic-
tions for every month, again, in terms of MRE and rMRE.

Tables 9 and 10 are analogous to Table 8 and report the results
for the New Yorker and Australian markets, respectively. It can be
observed that during certain months no motifs were found and the
Demand

RHW PSF PSF + motifs

MRE (%) rMRE MRE (%) rMRE MRE (%) rMRE

7.12 2.40 5.05 1.95 4.98 2.21
6.63 2.38 6.88 2.62 4.28 2.16
7.17 2.42 5.31 2.42 5.07 2.19
5.09 2.33 4.97 2.22 4.97 2.22
6.41 2.39 6.18 2.39 6.16 2.19
3.24 2.28 3.75 2.66 3.67 2.24
4.68 2.29 3.41 1.78 3.40 2.23
6.30 2.37 3.99 2.13 3.80 2.27
7.47 2.44 4.83 2.16 4.41 2.30
8.95 2.57 5.37 2.25 4.97 2.22
10.21 2.53 4.86 1.99 4.12 2.29
8.84 2.55 6.80 2.40 5.74 2.31
6.84 2.41 5.12 2.25 4.63 2.24

Demand

RHW PSF PSF + motifs

MRE MRE (%) rMRE MRE (%) rMRE MRE (%) rMRE

.31 5.53 4.28 4.74 3.54 3.88 3.31

.81 6.12 3.09 4.98 2.98 4.34 2.63

.34 6.47 6.82 5.02 5.27 4.12 4.99

.90 6.82 5.73 6.03 7.46 4.29 3.79

.17 5.01 3.44 4.17 2.72 4.17 2.72

.32 5.79 4.91 5.67 3.84 5.67 3.84

.33 5.26 5.83 4.91 5.84 4.05 5.02

.68 5.80 6.37 5.88 6.01 5.15 5.51

.45 6.63 3.62 3.99 2.74 3.99 2.74

.89 4.91 3.51 4.04 3.34 4.02 3.34

.61 5.33 5.74 6.12 5.90 4.87 3.92

.01 5.87 4.67 3.91 3.22 3.91 3.22

.65 5.80 4.83 4.96 4.41 4.37 3.75

Demand

RHW PSF PSF + motifs

MRE MRE (%) rMRE MRE (%) rMRE MRE (%) rMRE

21 4.02 2.23 3.12 1.86 3.12 1.86
16 4.89 3.07 4.21 2.26 4.09 2.12
19 4.87 3.82 5.07 4.17 3.03 3.25
18 5.71 2.74 4.18 1.28 3.86 1.19
19 5.60 1.87 5.90 2.33 2.61 1.62
24 4.23 2.36 2.89 1.81 2.89 1.81
23 4.87 2.40 2.34 1.19 2.34 1.19
27 6.91 2.21 3.61 2.17 2.93 1.76
30 5.37 2.91 3.15 1.55 3.12 1.54
22 4.56 2.99 2.89 3.40 2.89 3.40
29 5.12 3.08 4.72 2.39 3.27 1.43
31 7.94 3.43 6.21 3.82 4.36 2.51
23 5.34 2.76 4.02 2.35 3.21 1.97



results are equal to those of PSF. These months are: January, March,
June and November for NYISO prices; April for NYISO demand;
April, September, October and December for the ANEM prices;
and May, June, September and December for the ANEM demand.

Furthermore, the analysis of these tables leads to two main con-
siderations. First, the greater the average error is in both PSF and
RHW, the better the methodology works since outliers are usually
involved in high rates of error. This fact can be appreciated, for in-
stance, from May to July in ANEM prices, where RHW reported
MRE = 20.19% and PSF 17.33%, while the new methodology ob-
tained MRE = 11.80%, on average.

Second, the reduction of the rMRE is equally remarkable for all
the markets (from 0.27 to 0.23, from 1.94 to 1.81 and from 4.40
to 3.65 for the prices in the Spanish, New Yorker and Australian
markets, respectively and from 2.35 to 1.97 for the demand in
the Spanish market, from 2.25 to 2.24 for the demand in the
New Yorker one, and from 4.41 to 3.75 for the Australian demand
market) which leads to robust forecasts.
6. Conclusions

The improvement of an existing technique has been used in or-
der to, first, forecast the occurrence of outliers in time series and,
second, to provide accurate estimations for these outlying data.
The original approach –the PSF algorithm– was based on finding
similar patterns in time series. However, its application to any kind
of time series revealed that there were some samples that cannot
be properly forecasted.

In particular, a step devoted to discover motifs in sequences has
been included. The discovery of motifs has been carried out not
only for providing accurate predictions for these samples, but for
indicating that it is highly probable that an outlier occurs. The
method has been successfully tested on 72 sets of the Spanish, Aus-
tralian and New York electricity price and demand time series (36
of price and 36 of demand).

Future work is directed towards finding not only the days that
are going to present anomalous behavior, but also the days whose
prediction is going to be especially accurate. In addition, a relaxa-
tion for the rule that decides if a given sequence is a motif or not is
intended to be created with the aim of creating larger candidates
sets that might bring more information.
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