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Abstract

A general system of g-orthogonal polynomials is defined by means of its three-term recur-
rence relation. This system encompasses many of the known families of g-polynomials, among
them the g-analog of the classical orthogonal polynomials. The asymptotic density of zeros
of the system is shown to be a simple and compact expression of the parameters which char-
acterize the asymptotic behavior of the coefficients of the recurrence relation. This result is
applied to specific classes of polynomials known by the names g-Hahn, g-Kravchuk, g-Racah,
q-Askey & Wilson, Al Salam-Carlitz and the celebrated g-little and g-big Jacobi.

1 Introduction.

In the last decade an increasing interest on the so called g-orthogonal polynomials (or basic
orthogonal polynomials) is observed ( for a review see [1], [2] and [3]). The reason is not only
of purely intrinsic nature but also because of the so many applications in several areas of Math-
ematics ( e.g., continued fractions, eulerian series, theta functions, elliptic functions,...; see for
instance [4] and [5]) and Physics ( e.g., angular momentum [6] and [7] and its g-analog [8]-[11],
g-Shrodinger equation [12] and g-harmonic oscillators [13]-[19]). Moreover, it is well known the
connection between the representation theory of quantum algebras (Clebsch-Gordan coefficients,
3j and 6j symbols) and the g-orthogonal polynomials, (see [20], [21] (Vol. III), [22], [23], [24] ), and
the important role that these g-algebras play in physical applications (see for instance [26]-[31]
and references therein).

However, the distribution of zeros of these polynomials remains practically unknown to the
best of our information. The present paper continues, corrects and considerably extends the in-
vestigation of the asymptotic behavior of zeros of the g-polynomials initiated by one of us [32].
This is done by the consideration of a general system of g-polynomials which include most of the
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g-polynomials encountered in the literature and then, study of its distribution density of zeros as
well as the corresponding asymptotic limit.

The method of proof used is very straightforward. It is based on an explicit formula for the
moments-around-the-origin of the discrete density of zeros of a polynomial with a given degree in
terms of the coefficients of the three term recurrence relation [37], as described in Lemma 1 given
below. This method was previously employed to normal (non-q) polynomials where recurrence
coefficients are given by means of a rational function of the degree [38], as well as to correspond-
ing Jacobi matrices [39] encountered in quantum mechanical description of some physical systems.

The paper is structured as follows. Firstly, in section 2, one introduces a general set of g-
polynomials {P,(z),}2_, by means of its three-term recurrence relation. Section 3 contains the
main results which refer to the discrete density of zeros (i.e. the number of zeros per unit of
zero interval) of the polynomial P, (z),, n being a sufficiently large value, and to its asymptotical
limit (i.e., when n — oo). Both discrete and asymptotic densities of zeros are supposed to be
characterized by the knowledge of all their moments. These results are given in the form of four
theorems. Theorem 1 gives the behavior of the moments of the discrete density of zeros in terms
of the parameters defining the recurrence relation. The asymptotic density of zeros is given by
Theorems 2, 3 and 4 in a similar way.

Proofs and detailed discussion of these theorems are contained in Sections 4 and 5 respectively.
The utmost effort has been concentrated on searching for an appropiate asymptotic density of zeros
to obtain as much information as possible about the asymptotic distribution of zeros of the new
polynomials. Finally, Section 6 contains application of theorems 1, 2, 3 and 4 formulated in section
3 to several known families of g-polynomials.

2 The general system of g-orthogonal polynomials.

The general system of g-orthogonal polynomials {P,(z),})_, is defined by the recurrence
relation
Po(2) = (2 — an) Po—i1(2) — b Py—a(z)

(1)
P i(z)=0, Py(z)=1, n>1

with the coefficients a,, and b2_; given by

A
_a=\& g
nT o = _den
S (35 grmntni | geon
i q
m=0 \:=0
(2)
B km )
S (S gt ) gion
5 m=0 \i=0 _ (rum)2
bn_ B’ Im (m) 1 ‘ = (qulen)Q
Z Z’Yz ,nlmfz qsmn
m=0 \:=0
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where ¢ is an arbitrary positive real number bigger than 1. Further, the following general requer-
iments on the real parameters defining a,, and b2 will be assumed:

1. All members of the sequence {Bi(m); 0<i<hn} . {’yl(m); 0<i<Ily}B_, do not vanish
simultaneously. So we assure a, and b2 not to be infinite for all n.

2. The parameters {GZ(m); 0<i<kntB_,and {*yi(m); 0 <i < ly}B_, are such that b2 > 0 for
n > 1. Then Favard’s theorem assures the orthogonality of the polynomials {P,(z),}1_,.

3. The following inequalities are verified:

go > g > 0> gday g% > ¢t > L > gt

go > gl > o> ¢fB 0 > ¢ > > ¢

and
go > 91 > .- > gm; ho > h1 > ... > hy

(4)

ko >k > ... >kn; lo>0L >...>1,

Conditions (3) and (4) do not obviously imply any loss of generality. Here one should also
point out that the polynomials discussed in reference [32] are instances of the polynomials
(1)-(2) corresponding to the values g, = kp = by = €y = by = 8, = 0 for all m.

3 Main Results.

Before collecting the main results of this work, let us describe Lemma 1 which is the basic tool
to find them.

Lemma 1 Let {Pn(x)} be a system of polynomials Pyn(z) defined by the recurrence relation (1),
which is characterized by the secuences of numbers {a,} and {b,}. Let the quantities

b
po =N, = [ amox()ds, m=1,2. N (5)
a

m

be the non-normalized-to-unity spectral moments of the polynomials Py (z), i.e., the moments
around the origin of the discrete density of zeros py(x), defined by

N
pn(z) =D 0z —ny), (6)
i=1

{zn,, i =1,2,..., N} being the zeros of that polynomial. It is fulfilled that
N-t , ) r,
oo, T 2 T ;
M;(zN) = ZF(TllaTla -'-arj7T;'+1) Z ailbirlaiilbifl e bi+Jj71air]_'1v (7)
(m) =1

form = 1,2,..., N. The sumation Z runs over all partitions (r’l,rl,...,rg-ﬂ) of the number m

(m)
such that

J Jj—1
1. R+ 2R = m, where R and R' denote the sums R = Zri and by R' = ng, or
i=1 i=1

Jj—1 J
Zr;+22r¢:m (8)
i=1 i=1
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2. Ifrg =0, 1 <s<j, thenry =1, =0 for each k > s and

-1
3. 9= % orj = mT for m even or odd respectively.

The factorial coefficient F' are defined by

(rf +r —1)! zﬁ(riq—i-rg—i—ri—l)! (rp—1 +r, — 1!

F(ri,ry,r r_r r)=m
1971972y eees Tp—15Tp—1, I 7 )
P P rilr! (rici — )lrilel! (rp—1 — 1)try!

(9)

1=2

with the convention ro = r, = 1. For the evaluation of these coefficients, we must take into
account the following convenction

F(ry,ri,m9,roer, 1,0,0) = F(ry,ri,79,r2. 7 1)
In (7), t denotes the number of non-vanishing r; which are involved in each partition of m.

This Lemma was initially found in a context of Jacobi matrices [37]-[38]. Just to understand
the practical use of the Lemma, let us give the first three spectral moments

N
:ull = Zaiv
=1
N N-1
ph= ai +2 ) b, (10)
=1 =1
N N-1
py = Za? +3 Z b?(a; + ait1).
=1 =1

In the following, the main results of this work are collected in the form of four theorems. The
first of them refers to the discrete density of zeros (6) of the polynomials defined by (1)-(2) and the
other three concern with the asymptotic density of zeros, i.e., when the degree of the polynomial
tends towards infinity. Throughout the paper the symbol ~ means behaves as.

Theorem 1 Let Py(z),, very large N, be a polynomial defined by the expressions (1)-(4). The

moments {,u;(qN); m =1,2,...., N} of the non-normalized density of zeros pn(z) = Zf\;l dz—zN;)

of the polynomial Py (x), have the following behavior

1. If dy —eg = %(fo — 89) =0, three cases occur:

(a) Ifgg — hg > %(ko — lo). Then

I(N) oz(()o) " (g0—ho)m+1
'~ |~y N : (11)
Bo

(b) If go — ho = %(ko —1ly). Then

(N i ! 0‘5)0) : 0(()0) " L (ko—1 1
Mn(1 )~ ZF(TI,Tl,...,Tj+1) [W] [W] Nz (ko—lo)m+1, (12)
(m) Bo 0
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(c¢) If go — ho < 3(ko — lg). Then

1(N) 9(()0) %N%(ko—lo)m—kl
N N0 -

Yo
2. If dy — eq # 0 and/or fo — sy # 0, two cases occur:

(a) 0. Ifdy —eg <0 and fo —so <0 in such a way that Q1 #0. Then
R R
L NZF(’I‘Il,Tl,...,’r;-+1) [agﬂ)] [@] M ( el )
Ty o™ g0 0] A \1—a™ )

M
where 7O denotes the M derivative with respect to .

1. If dg —eg =0 and fo —so <0 and go —hg = ko —lo =0. Then

07"
Q
0~ SR 00 [ 25
(m) Bo
1. If dy —eg <0 and fo—so=0 and go — hg = ko — lo = 0. Then

R

()
W) > F(0,71,...,75,0) [%] N.
(m) Yo

(b) If dy —eo > 0 and/or fo — sp > 0, three different subcases may occur, namely:
i. do —eg > %(fo —80). Then

o) ago) m qm(NJrl)(dofeo) (do—ho)m
~ B[(]O) gm(do—eo) — 1 N .

i. If dg —eg = %(fo — 80). Then three diferent types still come up:
A. [fgg — hg > %(/ﬁ?g — lo), then

I(N)

oy, N (90—ho)m_

N Oé(()O) m (N +1)(do—eo)
,680) qm(dofeo) _ 1

B. [f go — ho = %(/ﬁ?g — lo), then

(N ! 1 Olg)O) " 9(()0) "
Mn(l ) ~ ZF(rl,m,---J’jH) [W] [W] %
= Y0
Qa+m(N+1-t)(do—eo)

q (90—ho)
% qm(do_eo) — Nm g0 0),

C. If go — ho < 2(ko — lo), then

0)1% _
M;%N) N [£‘| 2 qd(do eo)mN N%(koflo)m‘
,),(()0) gldo—eo)m _ 1
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iti. dy —eo < 5(fo — s0). Then
012 L(fo—
(N) l% ]2 gz fomso)mN N2 (fo—so)m. (21)

Hom W q%(fO*SO)m -1
The sumation Z and the parameter t are as defined in Lemma 1. Besides, the parameters

(m)

Qq, Qo and M are as follows:

0 = [(do — eo) — 5 (fo — so)} '+ (o — s0) 22)
J Jj—1

= (dg — 60) Z kr;cﬂ + 2(f0 — 80) Z krgy1 (23)
k=1 k=1

M =[(go — ho) — %(ko —lo)]R' + %(/ﬂo —lo) (24)

The proof of this theorem is shown in Section 4.

Theorem 2 Let Py(z), be a polynomial defined as in Theorem 1 with the aditional condition
(do — e0) = 3(fo — s0) = 0. (i.e. case 1)

Let p(z), pi(z) and p5(x) be the asymptotic (i.e. when N — oo) densities of zeros of the
polynomial Py (x), defined by

ple) = lim py(z),

N—oo
1 T
* —_ : _ -
pl(x) - ]\};Héo NpN <N(goh0)> ’ (25)
1 T
* —_ : _ -
p3(w) = J\}I—IE;O NPN <N%(k0—l0)>

and their corresponding moments are as follows:

i = lim gV,

N—o0
A
pm(1) = lim (26)
/(N)
i (2) = lim —2=2

N—oo N(ko—lo)F

form =0,1,2,... respectively. Here py(x) denotes the (discrete) density of zeros of the polynomial
Py (z)q. It turns out that
po, =00, m>0 (27)

and

1. If go — ho > (ko — ly). Then

(0)1m
u;u):[‘il , m>0 (28)
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2. If go — ho = (ko — lo). Then

!/ ! aEJO) ¥ 0((]0) "
i (2) = ZF(ﬁaTl, ---a7’j+1) [W] [W] ;, m=>0 (29)
(m) Bo 0
3. Ifgg —hy < %(ko — lo). Then
0(()0) 2
Yo

Here the coefficients F and the symbol of summation Z are as in Theorem 1.
(m)

Theorem 3 Let Py(z), be a polynomial defined as in Theorem 1 with the aditional condition
(do — e9) <0 and 3(fo — s0) < 0. (i.e. subcase 2a)

Let p(z) and pi(x) be the asymptotic densities of zeros of the polynomial Py (x), defined by

plr) = Jim px(e);  pila) = Jim —pw(a) (31)

and their corresponding moments are as follows:

plo= lim p/(0V); p (1) = lim Hm (32)

m
N—o

for m >0, respectively. It turns out that:

1. Ifdy —eqg <0 and fo — sp < 0 in such a way that Q; #0. Then

R R
. :ZF(r’l,rl,...,r;.H) [O[SO)] [ﬂl dM ( ¢ ) (33)
"oty TRt 0] [4P] AT \L-g™ )
and
po(1) =1, pp(1) =0, m>1 (34)

2. If dy —eg =0 and fo — so <0 and go — hog = ko —lop =0. Then

pr, =00, m>0 (35)
1 m=20
s (1) = NORES (36)
> F(r},0,..,0,75,) lLO] m>1
ﬂ( )
(m) 0
3. Ifdy —eg <0 and fo —sp =0 and go — hg = kg —lyp = 0. Then
ph, =00, m>0 (37)
1 m=20
pin (1) = FORES (38)
0
ZF(O,’H,O,...,’/’]‘,O) 7y m > 1.
(0)
(m) Yo
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Here the coefficients F and the symbol of summation Z and the parameters Qq, Qo and M are
(m)

as i Theorem 1.

Theorem 4 Let Py(z), be a polynomial defined as in Theorem 1 with the aditional condition
(do — e9) > 0 and/or £(fo — so) > 0. (i.e. subcase 2b)

Let p(x), pi*(z), p3*(z), p3*(z), p 1 (x), p3 ¥ () and p3 T (z) be the asymptotic densities of
zeros of the polynomial Py (x), given by

pla) = lim py(a), (39)
. Iq—(do—eo)N
P1 (l’) = hmoopN N (g0—ho) ’
—(do—eo)N
(N rq "
Py (@) = ]\;gnoopN ( N5 (ko—lo) > ’ (0)
ok li xqié(ﬂ)isoﬂv
p3*(z) = NEHOOPN N%(ko—lo) ’
—(do—ep—1)N
DR (m)q zq
pr(x) = Jim (mN),"™ ( N(go=ho) |~
—(do—ep—1)N
+4 _ (m)q g
pr (@) = lim PN ( NIt ) )
—2(fo—s0—2)N
TN (m)q rq 2
ps (1) = ]\;l—{noo (mN)qu ( N 3 (ko—lo) ) ’
and their corresponding moments are as follows:
r— I(N)
Hom Nl—I>noo Hm (42)
I(N)
o o Hm
N’m(l) - ]\;I_EHOO N(go—ho)q(do_eo)mN
I(N)
o - Hm
K (2) - ]\;I_I)Iloo N%(koflo) (do—eo)mN (43)
'u/ N)
pm (3) = ]\;gnoo N%(ko—lO)q%(fo—SO)mN
I(N)
Ty 1 (m)q m
oy, (1) - ]\;gnoo (mN)q N(go—ho)q(do—eo—l)mN
it (m)q )

2) = 1 = 44
lum ( ) NEEIOO (mN)q N%(ko—lo)q(dofeofl)m]v ( )
I(N)

++(3) = 1i (m)q fom
22 ( ) Ngnoo (’I’I’LN)q N%(ko*lo)q%(fO*SO*Z)mN
for m >0, respectively, and where symbol (n), denotes the g-basic number
q
" —1
(n)g = (45)
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= by formula (n), = g7 o]

related with the g-numbers [n]q = It turns out that

1.
q2
pr, =00, m>0 (46)
and
1. dy — ey > %(fo —80). Then
00 m =20
:U‘;;::(l) = 0[80) m m(do—eo) (47)
[ (U)] qm(dofeo) -1 m =1
0
Also,
1 m =20
L (1) = (48)

(@™ — Dy (1) m>1
2. If dy —eg = %(fo — 80). Then three diferent situation come up:

(a) If go —ho > (ko —lo). Then the moments pii (1) and pit (1) have the same values as
in the previous case., i.e., as formulas (47) and (48).

(b) If go — ho = 3(ko — lo), then

00 m =20
pi (1) = S r( » [a(()mr' [ggmr g2 Hm(1-0)(do o) 1 (49)
T15T1s - T501) | —or — — m >
(m) S W B VI B
Also,
1 m=20
p (1) = (50)

(c) If go — ho < %(ko —1ly), then

00 m =20
Hm (2) =9 rp0)7% . . (51)
A0 ] gldo—eom —1 =
Also,
1 m =10
pm ' (2) = (52)
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Also,
1 m =20
pm'(3) = (54)
(@™ = Dpyp(3) m=>1

Here the coefficients F' and the symbol of summation Z and the parameters 1, Qo and M
(m)

are as in Theorem 1.

It is important to make the following observation. To get as much information as possible about
the asymptotic distribution of zeros when the moments p!, of the conventional asymptotic density
of zeros p(z) = limy_,o pnv(z) diverge, it is often used in theorems 2, 3 and 4 a normalization
factor D, i.e., it is usually defined an asymptotic density of zeros of the form

f(z) = lim Cpn(Dz). (55)
N—o00
where the factors C and D are choosen so that the moments p, of f(z) given by
fim = lim CD™u/(N) (56)
N—o0

are finite [40]. This is the great advantage of the densities of f(z) — type. The scaling factor D
turns out to be a function of N and/or ¢"V. A detailed analysis of this procedure is done in Section
5.

4 Determining the discrete density of zeros.

Here Theorem 1 will be proved. Let us consider the polynomial Py(z),, N being a very large
number, defined by the expressions (1)-(4), i.e., that

Py(z) = (z — an)Pyn—1(2) — bj_ Pn—2(2), (57)

where ay and b%; are the values of a,, and b2 given by Eq.(2) for n = N. Firstly, let us find what
are the N-dominant terms in the expressions (2) for ay and b%_,. Replacing n by N in Eq. (2)
and taking into account that

A gm g0
Z (Z al(m)Ngm—z> qdmN -~ <Z aZ(O)NgO—z> qdoN -~ a(()O)NqudON,
1=0

m=0 \i=0
A’ h h, (58)
m 0
Z Zﬁi(m)th*Z qemN ~ ZBZ.(U)Nhofz qeoN -~ ﬁéO)NtheoN
m=0 \i=0 i=0
one easily obtains that
(0)
o _ _
ayn ~ ﬁ]\]go hoq(eo do)N (59)
0
and in a similar way one easily obtains that
90
by ~ g Vo oglhomso, (60)

Yo

The symbol ~ means, as alredy pointed out, behaves with N as. To get (58) the conditions (3)
and (4) have been used. Remark that, taking into account Egs. (59)-(60), Eq. (2) may be written
as

10
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ay = %n(go—ho)q(eo—do)n + O(ngo—ho—lq(eo—do)n)
0
o (61)
b% — %n(ko—lo)q(fo—%)n + O(nko—lo—lq(fo—so)n),
Yo

for n > 1. To calculate the discrete density of zeros py(z) of the polynomial Py (z),, one first

assumes it may be characterized by the knowledge of all its moments {,u;%N), m=0,1,2,.... N}
defined by (5).

Taking the values (61) of a, and b2 into Eq. (7), one obtains for un(m ) the following values:

(N ! ' Olg)) : 0(()0) "
- S]]

(m) Bo Y0
(62)
N—t [j—1
X Z H i+ k) (90=ho)r), 1 +(ko—lo)Tk41 (i + j)(!JO*ho)T}Hng-i-in
=1 | k=0
If we take in Eq. (62) the dominat term then it reduces as follows
MO PIOR K
NS Pt | S5][B5] 5 e (63
Bo Yo i=1
with the following notations
J Jj—1
R= Zn, R = Zr;
i=1 i=1
and )
Ql = (dg — GU)R + (fo - SU)R
J Jj—1
Oy = (dg — 60) Z k’l“;c+1 + 2(f0 — 80) Z ka+1 (64)
k=1 k=1

M = (go — ho)R' + (ko — lo)R

One should notice that, because of relation (8), R’ + 2R = m and consequentely the parameters
Q1 and M may be written in the form

= [(do — e0) — 5 (o — so) )R + 2 (fy — s0) (65)

M = [(go — ho) — —(ko —lp)]R" + + (ko — o), (66)

which are the expressions (22) and (24) given in the previous Section.

To go further one has to perform the i — summation in Eq. (63). In doing that two cases
appear when one analyzes the expression (65) of Q;:

1. do —eg = 5(fo —50) =0
2. do — ey # 0 and/or £ (fo — so) # 0
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Let us see how Eq. (63) gets simplified in each case.
Case 1: do — €y = %(fg - 80) =0.

In this case 21 = Q5 = 0 and since

Z i — )M+ N >>1
Eq. (63) reduces as follows
(N ! / a(()O) , 0(()0) ) M+1
TERED AT [T] [T] A o0
(m) 0 Y0

To simplify further this expression, one examines Eq. (66) of M. Tt is easy to find three different
subcases corresponding to gg — hg > (ko lo), go — ho = (ko —1lp) and go — hy < (ko lo),
respectively. Let us study what happens for each subcase.

1. (a) go—ho > 3(ko — lp). Notice that

M = [fg0 = ha) = (ko — )] R + (ko)

~~

positive

Then the dominant term is obtained when R’ = m and R = 0, i.e. for the partition
(m,0,0,...,0). Therefore M = (g9 — hp)m and expression (67) reduces as follows

(0)

m
] N (go—ho)m+1
By

ZFmOO )[

Since F'(m,0,0,...,0) = 1 acording to (9), it is clear that this relation is the expression
(11) of Theorem 1.

(b) go — ho = 3(ko —lp). Then M = Z(ky —ly) and (67) takes the form

017 01"
N) / / o D) 1 (ko —1o)+1
~ E F(rl,rl,...,rj,er) B(O) 7(0) N2 .
0 0

This expression coincides with (12) given in Theorem 1.
(c) go — ho < 3(ko —lo). Notice that

M = [{go — ho) — 3 (ko — o)) B+ (ko — Ip)

negative

Then the dominant term is obtained when 2R = m and R’ = 0,i.e., for the partition
(0,m,0,...,0). Therefore M = (ko — lo) and

N 9(()0) % Lipo 1 1
) (Z‘;F(o,m,o,o,...,()) [W] N3 (ko—to)+1
m

Yo
which is the expression (13) given in Theorem 1, since F'(0,m,0,0,...,0) = 1.
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Case 2: dy — eg # 0 and/or —( fo—s0) #0.

Here one is obliged to perform the i — summation of (63). One has
N—t ' ) N—t dM
i
i=1

WL
9 lonZdQM

M N-—t
1 d iy

(ln (Ing)M dQM Z 7

1 dM [ — g (N-t+1)
(Ing)M dQM 1— ¢

Depending on whether ¢!

another, Indeed,

is smaller or bigger than unity, this summation has a N-behaviour or

¢ if ¢ <1
_qﬂl(N7t+1) if qu > 1
Then N
—t M Q
: 1 d g
M 1 : (921
ittt ~ ifgt <1 (69)
zg{ (Ing)M dQM ll — qul
and
N—t o qﬂl(thJrl) u o
i—=1

I(N)

Therefore, from (68) it is clear that to further reduce the expression (63) of the quantities um, ' one
has necessarily to distinguish the following two subcases: ¢ < 1 (i.e. ©; < 0) for all partitions
of m and ¢ > 1 (i.e. ©; > 0) for at least one partition of m. Taking into account (65), these
two subcases occur provided that

1. (a) dy—ep<0and fop—s9g<0
(b) d0—60=0andf0—30<0
()d0—60<0andf0—80:0

2. dy —ep >0and/or fop —s9 >0

o

I(N)

respectively. Let us see how the moments pm, ’ given by (63) simplify in these two cases separately.

(a) Subcase (2a):

i. dg —eg < 0 and fp — sg < 0 in such a way that €y # 0. The replacement of
i-summation given by (69) in (63) leads to

R R

3 Pt o) [0 (ot )

m —Q M 0 0 M — o |’
4 7(na) s y ] A \1—q

which is the expression (14) of Theorem 1.

13
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ii. dg —ep =0 and fo —sp <0 and g9 — hg = ko — lg = 0. Since

M = [(go — ho) — %(ko —lo)]R' + %(ko —1p) =0,

then N N
—t —t _ u(N=t)
. . 1 q 1
M i) Q Q
Mgt = qzl:ql[il_qgl ]
=1 =1

where Q) = (fo —so)R (see (64) ). For N >> 1 it is clear from the last expression
that the i-summation is a decreasing and convex upward function, which has a
maximum when ©; = 0, i.e. when R =0 and R’ = m and it is equal to N. This
corresponds to all partitions (r{,0,...,0,75 ;). Notice that (see (64) )

J Jj—1
Oy = (do — e0) D kripr +2(fo —50) D kryr = 0.
T k=l k=1 5

Then (63) reduces as follows

UM
N ~ ST F(r],0,...,0,7 ) l%] N.
(m) Fo

which coincides with expression (15) of Theorem 1.
ili. dyg —eg < 0 and f[)—S[) :0andg0—hg =ko—1Ip =0. Here 1 = (dU—BU)RI <0.
Then, as in the previous case, we have the conditions

Q1 =0, Q5=0, i—summation =N.

and (63) reduces as expression (16) of Theorem 1.
Subcase(2b): dy — ey > 0 and/or fo — so > 0. Here from (70) and (63) one gets

0‘(()0) " 9(()0) Rq92+(1_t)91 i1 N AT M
PO gy ¢ N (71)
0

-0

M;%N) ~ ZF(rlla'rla---arjar;Jrl) [
(m) Yo

To go further in the analysis of the N—dependence of M%N) one has to analize the

expression (65) which defines ;. A simple study allows us to distinguish the following
three situations
i. dy —eg > %(fo — 80)
1i. dg — €y = %
iii. dy — ep < %(fo — so0)
Now we shall examine the reduction of (71) in these situations.

i. dy —eo > 3(fo — so). From (65) and (71) one easily finds that the dominant term
in the (m)-summation correspond to that for which R’ = m, because

Q1 = [(do — eo)

~

- %(fo — So)lR' + %(fo — 50).

positive

14
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ii.

Then R = 0, Q@ = m(dy — ep), M = (go — ho), the corresponding partition is
(m,0,...,0) and then Q2 =0 an ¢t = 0. Therefore

N (g0—ho)m_

a(()o) ] m (N +1)(do—eo)
8y

Since F'(m,0,0,...,0) = 1 acording to (9) this relation is the expression (17) of
Theorem 1.

dg — ey = %(fg - 80). Here one has Ql = %(fo — SU) = (do - Bo)m, that is fixed
number for all partitions of m. Then, in the expression (71) one is obliged to
study the parameter M given by (66) to know the N—dominant term of the (m)-
summation. The analysis of expression (66) leads to separate the following three
possibilities:

A. go — ho > (kg — l[))

B. go — ho = 5(ko —lo)

C. go — ho < (ko — lp)

For the case gy — hg > %(kg —lp) the dominant term is the one corresponding to
the condition when N™ is maximum. It occurs when R’ = m, R = 0 because

M;"EZN) ~ ZF(m,07 07 70) l qm(dO*eo) — ]_
(m)

|—= D=

M = [(go — ho) — 5(ko —Io)] B + "2 (o —Ip)

-~

positive

It corresponds to the partition (m,0,...,0), for which F(m,0,0,...,0) =1, t = 0,
Q9 =0, M = (go — ho)m. Then, Eq. (71) reduces as

i)

N (90—ho)m

)

N ago) m ¢ (N+1)(do—eo)
,6[(]0) qm(do—eo) -1

which coincides with Eq. (18) of Theorem 1.

For the case go — h[) = %(kg — l[)) it turns out that M = (gg — ho)m, Ql = (dg — 60)
and expression (71) easily transforms into (19) of Theorem 1.

For the case gy — hy < %(kg —lp) we have, as before, 1 = (dy — eg)m and the
dominant term is the one corresponding to the partition (0,m, 0, ...,0). Tt is because

M = [(go — ho)

~

1 m
- §(k0 —1o)] R + 5(/% —lp).

~~

negative

Then, the maximum of N occurs for R =0, R = . Therefore t = 1, Qo = 0,
M = L(ko —lp) and (71) reduces as

0(0) 2 q(dO*CO)mN 1 _
/'1/;7(7,N) ~ F(O,m,O,...,O) l%] WNQU‘?O lo)m,
Yo

which is the expression (20) of Theorem 1 since F(0,m,0,...,0) = 1.

iii. dy —eo < 3(fo — so). Since

M = [(g0 — ho) 5 (ko — )] B+ (ko Iy,

-

negative
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then the dominant term in the (m)-summation of the expression (71) is the one
corresponding to the partition (0,m,0,...,0). Therefore R' = 0, R = %, t = 1,
Qy =0, M = 1(ko — lp) and

0(0) el L(fo—so)mN
M;(lN) ~ F(0,m,0,...,0) [%] Z(Zf - N%(fofso)m’
Y0 qzoe 1

which coincides with (21) since F(0,m,0,...,0) = 1.
This completely proves the Theorem 1.

As a conclusion to this section we provide the scheme with all different posibilities obtained
in this section.

Scheme: The caracterization of general g-polynomials by its spectral properties.

(a) go — ho > 3 (ko — lo)

dy — eg =
L. l(()fo EUSO) (b) go — ho = 5 (ko — lo)
2 (¢) go — ho < (ko — o)
( ( . d0—60<0
(Z){f0—80<0 Ql;’éo
d0—60§0 .. d0—60:0 . . . -
(a’) fO_SOSO (“){fO_SO<0 go hU—kU ZO—O
do—eg <0
do—e();éo (ZZZ){fE_SEZO g(]_h'OZk;O_lO:0
" fo—s0F#0 )
( (2) do — eg > %(fg — Sg)
do—eg >0 A) gg—ho>%(l€0—l0)
(b)  and/or (i) do —eo = 5(fo — s0) ' B) go — ho = 5(ko — lo)
fo—350>0 C) go — ho < 5(ko — lo)
\ | (i11) do — eo < 3(fo — s0)

5 Searching for a normalized density of zeros.

In this Section the asymptotic distribution of zeros of the polynomial Py(z), defined by Egs.
(1)-(4) will be discussed. In particular Theorems 2-4 will be proved. The starting point will be
Theorem 1.

From Theorem 1, one observes that the moments M%N)
zeros py(z) depends on N as follows:

of the (non-normalized) density of

Nom+1 in case 1,
Constant  in subcase 2(a)i, (72)
N in subcases 2(a)ii-2(a)iii,

Nom quN

in case 2b,
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where the constants ¢ and b are known and distinct for each case. Obviously we would like to have

a normalized density of zeros p}"™(z). The usual way to have it is to impose that the moment

of order zero be equal unity, what permits to write

r) = on (o), (73)

norm(

PN

whose moments p/ Sj ) will be related to those of pn(z) by

- 1

W = o, om0, (74)
N

Then, from (72) and (74) it is clear that the N-dependence of the moments of the normalized to

unity density of zeros is given by

N in case 1,
N1 in subcase 2(a)i, (75)
Constant in subcases 2(a)ii-2(a)iii,
Nom=lgbmN in cage 2b,
As said before, we are interested in the asymptotic density of zeros. If this is defined by
o) = lim pu(a), (76)

N—00
then taking into account that M%N) have a N-dependence of the form (72), its moments ! given
by
i = lim pu(Y)
will be infinity in case 1, subcases 2(a)ii and 2(a)iii and in case 2b; and constant given by (14)
in subcase 2(a)i. Therefore, the expressions (27), (33), (35) and (37) of theorems 2, 3 and 4,

respectively, have been proved.

If one wants to have some information about the asymptotic distribution of zeros in case 1,
subcases 2(a)ii and 2(a)iii and in case 2b, one needs to introduce a normalization factor and/or
a scaling factor into the density py(z) in the sense disscused in Eq. (55) and (56). Let us first
think of a scaled density. For the case 1 there is no scaling factor D which leads to an asymptotic
density of zeros whose moments have non-zero, finite values unless the scaling factor be of the
form D = N9 but this is not useful since it would oblige to define a different scaled asymptotic
density function for each moment. Contrary to this, for the case 2b one can consider scaling factor
D = N—%¢ %N and define the discrete density of zeros given by

kk — z
i (@) = v (e
and the asymptotic density of zeros given by

o™ (@) = lim py (qu—N) (77)

N—o0

whowe moments p¥ are acording to (56), as follows

I(N)
i = N Nam (78)

17
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From (72) and (78), it is clear that all the quantities u* have finite values. It is only missing to
take the parameters a and b for the different subcases of 2b.

For the subcases 2(b)i, 2(b)iiA and 2(b)iiB it turns out that a = gyg — hg and b = dy — ep.
Then, as in expression (77), one can define the asymptotic density function pi*(z) in the form

- : zq (o~ coN
pi’(z) = A}gnOOPN NG o) ) (79)
whose moments (1) given by
I(N)
ps(1) = lim S (80)

N—oo N(go—ho)mq(do—eo)mN’

have, according to (17) and (18), the values (for m > 1)

(0)1™ m(do—ep)
*k _ a[] q
pm (1) = [BSO)] gm(do—eo) — 1 (81)
in the subcases 2(b)i and 2(b)iiA, and, according to (19), the values

077 19077 (Qatm(1-t)(do—eo)

le% 9 q 2 0 0
pom (1) = D F(r, 71, T4 l—o ] [—0 ] - (82)

" (m) LT L0 et —1

in the subcase 2(b)iiB. Remark that the expressions (81) and (82) are identical to (47) and (49)
of Theorem 4, respectively. Similary, for the subcases 2(b)iiC it turns out that a = 3 (ko — o)
and b = dy — eg. Then, as in expression (77), one defines the asymptotic density function p3*(z)
by (40), whose moments p¥(2) given by (43) have, according to (20), the values given by (51).
Finally, for the subcase 2(b)iii one has the density p3*(z) defined by (40), whose moments p;¥(3),
given by (43), have according to (21), the values given by (53). For the entire case 2b it happens

that, according to (78) and since ,u:)(N) =N,

po = po (1) = pp (2) = py*(3) = oo,

as in Theorem 4 is also pointed out.

Let us now searshed for a normalized to unity asymptotic density of zeros. The simplest way
is to define it as

1
= L norm = 1
pi(z) = lim p"™(z) = lim ——py (), (83)

where the Eq. (73) has been used. Its moments given by

1
o) =1, pi (1) = lim iV, m > 1, (84)

18
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have, taking into account (75), the following values
po(1) =1
( oo m>1 in cases 1 and 2b
0 m>1 subcase 2(a)i
O (85)
/ _ « .
P (1) = < %F(r'l,o, s 0,77 1) [@ m > 1 subcase 2(a)ii
O
> F(0,71,0,...,75,0) [% m >1 subcase 2(a)iii
\ (m) 70 -

Then expressions (34)-(38) of Theorem 3 has been demonstrated. So, Theorem 3 has entirely
proved.

For the case 1 and subcase 2b one would like to have information more useful than that
expressed by (85), keeping the normalization to unity of the density p;(x) given by (83). Therefore
one has to compress the spectrum of zeros by introducing a scaling factor. In the case 1 it is very
easy to find that factor by looking at the expression (75): it is D = N~ Then one defines from
(75) and (83) the density function

(o) = Jim 8™ (7)) =t on (75 (36)
whose moments are according to (56) and (84) as
I(N)
pt=1, ut = ]\;i_r)nm%, m > 1. (87)

From (72) and (87) it is obvious that the quantities u;, have finite values. One has only to take
the values of a in the different subcases of the case 1. For the subcase 11, a = gy — hg; then here
it is convenient to define, according to (86), the following asymptotic density of zeros

fo) = T 1 x
P1(5‘7)—N§100NPN Ndo—ho |’

whose moments are, according to (87) and (11), as follows

. . o’ 1"
B

which is the expression (28) of Theorem 2.

For the subcases 12 and 13, it turns out that @ = (kg — lp), which defines the following
asymptotic density of zeros

@) = lim = z
P8 = N NPV \ N ko—10) ) 7

whose moments have, according to (87) and (12), the values (uj(2) = 1)

R R

n(2)=> F(ri,r N i > 1

Hm - 1> 1,...,7“7_'_1) (0) (0) , M=
(m) Bo Yo

19
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for the subcase 12, and, according to (87) and (13), the values

9(0) 2
p(2) =1; ph2) === , m>1,
m (0)
Y0

for the subcase 13. Remarks that the last two expressions coincide with the expressions (29) and
(30) of Theorem 2, respectively. Then this Theorem has been entirely proved.

For the subcase 2b the scaled normalization to unity asymptotic density function of the form
(86) would also have all its moments of order other than zero equal to infinite. No other scaling
factor would be able to make finite these moments unless D = N _a"'#qu , but this factor is
of usefulness for reasons already discussed. Therefore one is obliged to change the normalization
factor in this subcase. Here the discrete density of zeros pk (z) is normalized so that its moments
are defined by

N ¢" -1 yn
o ):m%(@ ), m>0,
i.e., that
+ (m)q
p(2) = ——Lpn(z) (88)
N (mN)q

when (m), and (mN), are g-numbers defined by Eq.(45). This normalization factor has the
following relevant property: It tends to N~ ! if m — 0 and ¢ — 1. In particular, this implies that
+(N
Mo( )= L.
Furthermore, for the case 2b under consideration it turns out that the N —dependence of ,u;;(N) is
as Nomgb=1)mN = thig dependence suggest to analize the asymptotic spectrum of zeros by means
of the asymptotic density function defined by

) — T z
P () = Jim py (Naq(“w), (89)

whose moments p,b+ are given by

+(N) m
bt = Jim : (g ) o

N o0 Namq(bfl)mN T Nosoo (qu _ 1)Namq(b71)mN' (90)

Taking into account this expression together with the values (17)-(21) of ,u;%N) given in the Theorem

1, one observes that for the subcases 2(b)i, 2(b)iiA and 2(b)iiB the parameter a and b take the
values
a=go—ho, b=do—eo

and the appropiate asymptotic density of zeros is, according to (88)-(89), the function p*(z)
given by (41) in Theorem 4.

For the subcase 2(b)iiC it turns out that
1
azi(ko—lo), b:dg—eo.

Then, the appropiate asymptotic density of zeros for this subcase is, according to (88)-(89), the
function p3 *(x) given by (41) in Theorem 4.

20
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Finally for the case 2(b)iii a = (ko —lo), b = 5(fo— so) and the appropiate asymptotic density
of zeros is, according to (88)-(89), the function pj ™ (z) given by (41) in Theorem 4.

Now the Eq. (90) and the values (17)-(21) for ,u;(qN) gives in a straightforward manner the
moments ;7 (1), pht(2) and p,h*(3) ot the asymptotic density functions pi (), p3 ™ (z) and
p3 T (z). Indeed, the values of these quantities are given by the Eqgs. (48) for the subcases 2(b)i,
2(b)iiA, (50) for the subcase 2(b)iiB, (52) for the subcase 2(b)iiC and (54) for the subcase 2(b)iii,
respectively. This entirely proves Theorems 2-4. [ ]

6 Applications.

In this Section we will use the theorems obtained in the two previous sections to investigate
the spectral properties of several known families of orthogonal g-polynomials. Let us make the
observation that for a finite polynomial sequence (e.g. Hahn, Racah and Kravchuk polynomials),
i.e., when the degree n of the polynomial is bounded by a fixed parameter N (not to be confused
with the same letter previously used as generic degree of polynomials), it is assumed that N is
sufficiently large and 1 << n < N so that Eq. (61) be fulfilled.

The g-Hahn polynomials h%?(¢~%, N).

The q-Hahn polynomials 2% (g%, N) play a fundamental role in the Representation Theory of
the g-Algebras SU,(2) and SU,(1,1) (see [20], [22], [21]). They also appear in numerous physical
applications since e.g. the Clebsh-Gordan Coefficients of the g-Algebras SU,(2) and SU,(1,1) are
proportional to them. The theory and applications of the g-Hahn and classical Hahn polynomials
have some close parallels. So, e.g. g-Hahn and classical Hahn polynomials appears in the analysis
of functions on the lattice of subspaces of a finite vector space and the lattice of subsets of a finite
set, respectively. These polynomials verify the recurrence relation [3] (page 59)

BB (G N) = [ = (1= Apet — Coe IS (0, N) + Bt b2 (075, N), (91)
where B, = A,_1C,, and the A and C parameters are
(1—ag*) (1-aBg*m) (1—g V)
(1—aﬁq1+2”) (1_algq2+2n) ’

"(1—q") (1= B¢") (¢ — aBg ")
(1—afe) (1-afq+?) '

A, =

Cn = —

Let us also point out that
Kni1An = Kn (92)

where K, is the leading coefficient of the polynomial. The comparison of Eqs. (91) and (1) gives
that

num __(0) 3n _ /6( +/6) N+1 3n den :5(0) 4n —05252 N 4n

an = Qg g O, 0o 4

and
(bzum)Q — 960)q7n — 014,33(]_Nq7n, (b;ilen)Q — ’)’(()O)QSn — O‘4454(]871_

Then, g, = by = km =1, =0 for all m =0,1,..N and
d0:37 60247 fU:77 3028-

This is the case dy — ey < 0 and fy — sp < 0, i.e., case 2(a)i. Therefore, Eqs. (33) and (34) of
Theorem 3 give us the moments

21
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_ j r j—1 1 +/6) R [0 R 1
= SO ) g 2k e T2 2 b [q( } { } i 93
K % ( 1,71 J g-l—l) 3 qN(q—i-q*l) q7,1 ( )

for the asymptotic density of zeros p(z) defined by Eq. (31), and

1 m=0

i (1) = (94)
0 m>1

for the corresponding asymptotic quantity p1(z) given by Eq. (31).

g-Kravchuk polynomials k2 (¢~*, N).

The matrix elements of the representations T of the Uy(sl2) quantum algebra are proportional
to the g-Kravchuk polynomials (see [21], Vol. III, page 64). According to [3] (page 76) and taking
into account Eq. (92) the three term recurrence relation of these polynomials can be expressed as

kh(g ", N)=[¢ " = (1= Ap_1 = Cp1)]ky_1(q ", N) + Bnoiky_5(q ", N), (95)
where Bn,1 == Anflonfl, and

(1+pg) (1—q 5*)
(1+pg®") (1 +pgit2n)’

pg~ THH (1= g7) (14pg<tn)
(1+pg®") (L+pg 1*27)

n =

Cn =~

The comparison with (1) gives that

0 0
azum — 018 )q3n :pq(qu o 1)q3n’ a;ilen — /3(() )q4n :p2qu4n‘
and
(bzum)Q _ oéo)qﬁn — p3q—2q6n, (b:llen)Q _ ,YSU)an — q—3p4qu8n‘

Then, g, = by = km = 1, =0 for allm =0,1,..N and
d0:37 60247 fU:67 3028-

This is the case dy —eg = —1 < 0 and fy — sp = —2 < 0, i.e., case 2(a)i. Therefore, Eq. (34) of
Theorem 3 gives us the values

1 m=0
P (1) = (96)
0 m>1
for the moments of the asymptotic density of zeros p;(z). Furthermore, since Q; = %(fo —580) =
—m, Q= —(X)_ krhy — 430 krpyr) and M = 0, Eq. (33) of Theorem 3 gives us

N Rori_nNy1R

—a, [9pg” —1 q 1

P = Y F(r1,m1, s 700)a 92[ ( = )] [ ] T m=0 (97)
= pq p | q"-

for the moments of the spectral quantity p(z) defined by Eq. (31).
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g-Racah polynomials R, (u(z),a, 3,7,6). p(x) = ¢~ %+ vd¢®*'.

It is well known the important role that the 6j symbols play in the quantum angular momentum
theory (see [6]). It is known that the g-analog of the Racah coefficients (6j symbols) for the g-
algebra U,(sly) are proportional to the g-Racah polynomials (see [21], Vol. III, page 70). From
the three term recurrence relation of these polynomials [3] (page 53), as well as Eq. (92), we can
rewrite [3] Eq.(3.15.3) in the form

:U‘(‘,E)RH*I(H’(I)a «, /37 s 5) = RH(N’(I)v «, /67 Y, 5)+
(98)

+[1 + 'stq - (]- - Anfl - Cnfl)]Rnfl(ﬂ’(I)a aaﬂa’% 5) + ananf2(ﬂ’(I)a aaﬂa’)’a 5)7

where Bn_1 = An_lon_l, and

(L—ag™™) (1—apq'™) (1-Biq ™) (1-vq"")
(1—aBq*?") (1-apfq*) ’

o _a(=¢") (=ag) 1 =B¢") (y=aBg")
! (1—aB¢®™) (1—apfq*?n) '

Ap =

The comparison with (1) gives that
amtm — —oz(()o)q?’" = qgaf(a+vy+ af + B6 + aBd + ay + &y + By0)q*",

azrilen — —B(()O)q4n — a2/32q4n.

and
(bzum)2 _ 960)q8n _ qa4ﬁ457q8n, (bgen)Q — (()O)q8n — a4/34q8n.

Then, g, = by = ki =1, =0 for all m =0,1,..N and
d0=3, 60=4, f0=8, 8028.

This is the case dy —eg = —1 < 0 and fy—sp = 0, i.e., case 2(a)iii. Therefore, Eq (16) of Theorem
3 yield the moments

1 m =0
!/
1) =
,um( ) ZF(O,Tl,O,...,Tj,O) [q57]R m > 1
(m)

for the asymptotic densities of zeros pi(z) defined by Eq. (31).

q-Askey & Wilson polynomials p,(z,a,b,c,d).
According to [3] (page 51) and Eq. (92), the three term recurrence relation for the g-Askey &

Wilson polynomials can be rewritten as

xpn—l(xa a, b7 ¢, d) = pn(xa a, b7 ¢, d) + %[a + ail - (An—l + Cn—l)]pn—l(ma a, b7 &) d)+
(100)
+Bn71pnf2(Ia a, ba c, d)a

where Bn_1 = An_lon_l, and

A — (1—abedg™ ') (1—abg™) (1 —acq®) (1 —adq)
" a(l—abcdg®) (1—abcdq=1127) ’
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a(l—bcqg ™) (1—bdg='"*") (1 —cdg='*™) (1 —q¢")

C —
" (1—abedq=2t2m) (1 —abedqg=112n)

The comparison with (1) gives

amum = —ago)q?’” = qabcd(abe + abd + acd 4 bed + q(a + b + ¢ + d))¢>",
aden — —,6(0) in __ ) 2b2 2d2 dn
den — gt = 2422 d? g

and
(bzum)Q — 9[(]0)(]871 — a4b4c4d4q8", (b:llen)Q — éo)qnn — a4b4c4d4q8".

Then, g, = by = ki =1, =0 for all m =0,1,..N and
d0:37 60247 fU:87 3028-

This is the case dy—ep = —1 < 0 and fy—sg = 0, i.e., case 2(a)iii. Therefore, Eq. (38) of Theorem
3 gives us the moments

1 m=20

(1) = (101)

> F(0,r1,0,...,75,0) m > 1.
(m)
for the asymptotic density of zeros pi(x) defined by Eq. (31).

Al Salam and Carlitz polynomials u#(z) and v"(z).

In dealing with the g-harmonic oscillator, Askey and Suslov [16] have introduced the g-polynomials

—n

up () = p"q

- n(n—1)
2

U (x).

where U, #(z) are the so called Al Salam and Carlitz polynomials. These polynomials satisfy the
recurrence relation [16]

zub o (x) = ul(x) + (1= p)g" tupy () + pg” 2 (1 = ¢ Vup, (), (102)

which is of the type (1) with the coefficients

agum — _ago)qn — (1 _ M)q—lqn’ azrilen — 1,
and
(e = 90¢%m = g~ g, (b8)? = Vg = 1.

Then, g, = by = km =1, =0 for all m =0,1,..N and
d():]_, 60:0, f0:2, SUZO.

This is the case dy —ep = 1 and fy — so = 2, i.e., case 2(b)iiB. Therefore, Egs. (49) and (50) of
Theorem 4 give us the moments

00 m =10

pom (1) = , 2 (103)
ZF(’F’l,Tl, ...,r;-H) 11— ,u]R ,uR q — ™ > 1

(m) "
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and
1 m =10

po (1) = (104)

R »
Y F (e ) L= pfg® o m> 1
(m)
where Qy = 7 krl +457 " krpq —mt corresponding to the asymptotic quantities pj* (x
k=1""k+4+1 k=1 + 1
and p{ T (z), respectively.

It has been encountered [15] that another class of Al Salam and Carlitz polinomials, to be de-
noted by v¥(x), is related also to the g-oscillator. So, it seems natural to search for its distribution
of zeros. These polynomials satisfy the relation [15]

avpy oy (x) = vk(x) + (¢ + p)g " 2oy () +pg " (g = Doy (). (105)

Therefore, dy = —1, ey =0, fo = —1, sp = 0. This corresponds to the case 2(a)i. Then, Eq. (34)
of Theorem 3 gives us the moments

1 m=0
pom (1) = (106)
0 m>1
for the asymptotic density p(z). Furthermore, since Q1 = —1(R' +m), Qs = —(Zizl kry ., —

2 ch;ll kriy1) and M =0, Eq. (33) of Theorem 3 gives

’ ! / Q| —1 K R "
Mm=ZF(T1,T1,---,7’j+1)q [q (Q+M)] 12 W)l

T (107)
(m) 7

1
for the moments of the normalized —to—ﬁ spectral quantity p;(z) defined by Eq. (31).

The little g-Jacobi polynomials p,(z,a,b).

The little g-Jacobi polynomials p, (z, a, b) play a fundamental role (see e.g. [20]) in the Represen-
tation Theory of the g-Algebra U, (sl2) because they are the matrix elements of the representations
T' (see [21], Vol. TI1, page 51). They satisfy the three term recurrence relation [3] (page 59)

pn(l‘, a, b) = [l’ + An—l + Cn_l]pn_l(f, a, b) + Bn_lpn_Q(f, a, b)7 (108)
where A and C parameters are given by

B q" (1_aq1+n) (1_abq1+n)
~ (1—abg'*t2m) (1 —abg?t2n)’

ag” (1-4") (1-bg")
(1—abg®m) (1 —abqg't?n)’

and B, = A,,_1C),. This relation is of the type (1) with the coefficients

A

Cp =

qmum ago)q?m _ —ab(l + a)q?m, a7dlen _ B(()U)q4n _ a4b4q4n‘

and . .
(bnum)2 — 9(() )qﬁn — 03b2q6n, (bgen)2 — (() )q8n — qa4b4q8n.

25



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS

Then, g, = by = km = 1, =0 for allm =0,1,..N and
do =3, eo =4, fo =06, sp=8.

This is the case dy —eg = —1 < 0 and fo — sp = —2 < 0, i.e., case 2(a)i. Therefore, Eq. (34) of
Theorem 3 gives us the moments

1 m=0
P (1) = (109)
0 m>1
for the asymptotic density of zeros p(z). Furthermore, since 0 = %(fo —50) = —m, Qo =
(i krhy — 43202 krppr) and M =0, Eq. (33) of Theorem 3 gives us
u;n=ZF(r'1,r1,...,r;-+1)q_Qz [1—;—& "’ [;—;]Rm. (110)

(m)
which are the moments of asymptotic spectral quantity p(x).

The big g-Jacobi polynomials P,(z,a,b, c).
The big g-Jacobi polynomials P, (z, a, b, ¢) are defined in [3] (page 57). By use of the parameters
(1—ag"™) (1 —abg'*™) (1 —cqg'™™)
(1—abq1+2”) (1—abq2+2”) ’

acg* (1—g") (1—bg") (1 —<LL)
(1—abg®") (1 —abq't?m) ’
we can rewrite its three term recurrence relation [3] (page 59) in the form

Pn(xa a, ba C) = [$ +1-— Anfl - Cnfl]Pnfl(xa a, ba C) + Bn71Pn72($7aa ba C)a (111)

A, =

Cn = —

where B, = A,,_1C),. The comparison with (1) gives

QmMum — a(()U)q?m _ —qab(b+ 1)(a + C)q?m’ aden — B[(]U)qéln _ _a2b2q4n

n

and
(bzum)Z — 9[(]0)(]771 — a4b30qq7n, (bien)Z — ’)’((]0)(]6“ — a4b4q71q8n_
Then, g, = by = ki =1, =0 for all m =0,1,..N and
d0:37 60247 fU:77 3028-

This is the case dy — ey < 0 and fy — sp < 0, i.e., case 2(a)i. Therefore, Egs. (33) and (34) of
Theorem 3 give us the moments

:u;n = ZF(’I"II,’I‘l,...,’f’]‘,T‘;-+1)q7 ?C:l kr;c+172 i;llkx
(m)
(112)
y [(b+1)(a+c)r’ HR 1
ab b] ¢ R—qgm
for the asymptotic density of zeros p(z) defined by Eq. (31), and
1 m=0
(1) = (113)
0 m>1

for the corresponding asymptotic quantity py(z) given by Eq. (31).
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The g-Dual Hahn polynomials in the lattice z(s) = [s],[s + 1],

In this section we provide the asymptotic behavior of the moments of zeros of the g-Dual Hahn
polynomials Wi (z(s),a,b),. This polynomials are connected with the Clebsh-Gordan of the g-

Algebras SU,(2) and SU,(1,1) [24]. Using the above formulas we find the following asymptotic

values of the moments ,u;(qN) (m>1)

;U*I(N) Zm]f_'[l (7“1‘71 + ’I“; +r; — ]_)l q5m—3R q2(c+a—b)m qu(N—t)
m (m) (Tifl — 1)'7’1'7“;' [q—Qc _ 1]m*2R (q - q*1)2m q4m 1 5

=1

Using the normalized density of zeros
m
iy o g =1 ~7IN
1400 = i o (o).
then, the corresponding moments are given by the expression for m > 1

po (1) =1

+1 _ _
k() = th (rioitrjtri— ! ¢ gt m gm 1
m e (riet — Dtrilrfl [g—2c — 1™ 728 (¢ — g )" —1
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