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THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 2q-polynomials encountered in the literature and then, study of its distribution density of zeros aswell as the corresponding asymptotic limit.The method of proof used is very straightforward. It is based on an explicit formula for themoments-around-the-origin of the discrete density of zeros of a polynomial with a given degree interms of the coe�cients of the three term recurrence relation [37], as described in Lemma 1 givenbelow. This method was previously employed to normal (non-q) polynomials where recurrencecoe�cients are given by means of a rational function of the degree [38], as well as to correspond-ing Jacobi matrices [39] encountered in quantum mechanical description of some physical systems.The paper is structured as follows. Firstly, in section 2, one introduces a general set of q-polynomials fPn(x)qgNn=0 by means of its three-term recurrence relation. Section 3 contains themain results which refer to the discrete density of zeros (i.e. the number of zeros per unit ofzero interval) of the polynomial Pn(x)q, n being a su�ciently large value, and to its asymptoticallimit (i.e., when n ! 1). Both discrete and asymptotic densities of zeros are supposed to becharacterized by the knowledge of all their moments. These results are given in the form of fourtheorems. Theorem 1 gives the behavior of the moments of the discrete density of zeros in termsof the parameters de�ning the recurrence relation. The asymptotic density of zeros is given byTheorems 2, 3 and 4 in a similar way.Proofs and detailed discussion of these theorems are contained in Sections 4 and 5 respectively.The utmost e�ort has been concentrated on searching for an appropiate asymptotic density of zerosto obtain as much information as possible about the asymptotic distribution of zeros of the newpolynomials. Finally, Section 6 contains application of theorems 1, 2, 3 and 4 formulated in section3 to several known families of q-polynomials.2 The general system of q-orthogonal polynomials.The general system of q-orthogonal polynomials fPn(x)qgNn=0 is de�ned by the recurrencerelation Pn(x) = (x� an)Pn�1(x)� b2n�1Pn�2(x)P�1(x) = 0; P0(x) = 1; n � 1 (1)with the coe�cients an and b2n�1 given byan = AXm=0 gmXi=0 �(m)i ngm�i! qdmnA0Xm=00@hmXi=0 �(m)i nhm�i1A qemn � anumnadenn
b2n = BXm=00@ kmXi=0 �(m)i nkm�i1A qfmnB0Xm=00@ lmXi=0 
(m)i nlm�i1A qsmn � (bnumn )2(bdenn )2 (2)



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 3where q is an arbitrary positive real number bigger than 1. Further, the following general requer-iments on the real parameters de�ning an and b2n will be assumed:1. All members of the sequence f�(m)i ; 0 � i � hmgA0m=0, f
(m)i ; 0 � i � lmgB0m=0 do not vanishsimultaneously. So we assure an and b2n not to be in�nite for all n.2. The parameters f�(m)i ; 0 � i � kmgBm=0 and f
(m)i ; 0 � i � lmgB0m=0 are such that b2n > 0 forn � 1. Then Favard's theorem assures the orthogonality of the polynomials fPn(x)qgNn=0.3. The following inequalities are veri�ed:qd0 > qd1 > : : : > qdA ; qe0 > qe1 > : : : > qeA0qf0 > qf1 > : : : > qfB ; qs0 > qs1 > : : : > qsB0 (3)and g0 > g1 > : : : > gm; h0 > h1 > : : : > hmk0 > k1 > : : : > km; l0 > l1 > : : : > lm (4)Conditions (3) and (4) do not obviously imply any loss of generality. Here one should alsopoint out that the polynomials discussed in reference [32] are instances of the polynomials(1)-(2) corresponding to the values gm = km = hm = em = lm = sm = 0 for all m.3 Main Results.Before collecting the main results of this work, let us describe Lemma 1 which is the basic toolto �nd them.Lemma 1 Let fPN (x)g be a system of polynomials PN (x) de�ned by the recurrence relation (1),which is characterized by the secuences of numbers fang and fbng. Let the quantities�0 = N; �0(N)m = Z ba xm�N (x) dx; m = 1; 2; :::; N (5)be the non-normalized-to-unity spectral moments of the polynomials PN (x), i.e., the momentsaround the origin of the discrete density of zeros �N (x), de�ned by�N (x) = NXi=1 �(x� xN;i); (6)fxN;i; i = 1; 2; :::; Ng being the zeros of that polynomial. It is ful�lled that�0(N)m =X(m)F (r01; r1; :::; rj ; r0j+1)N�tXi=1 ar01i b2r1i ar02i+1b2r2i+1 : : : b2rji+j�1ar0j+1i+j ; (7)for m = 1; 2; :::; N . The sumation X(m) runs over all partitions (r01; r1; :::; r0j+1) of the number msuch that1. R0 + 2R = m, where R and R0 denote the sums R = jXi=1 ri and by R0 = j�1Xi=1 r0i, orj�1Xi=1 r0i + 2 jXi=1 ri = m (8)



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 42. If rs = 0; 1 < s < j, then rk = r0k = 0 for each k > s and3. j = m2 or j = m� 12 for m even or odd respectively.The factorial coe�cient F are de�ned byF (r01; r1; r02; :::; r0p�1; rp�1; r0p) = m(r01 + r1 � 1)!r01!r1! 24p�1Yi=2 (ri�1 + r0i + ri � 1)!(ri�1 � 1)! ri! r0i! 35 (rp�1 + r0p � 1)!(rp�1 � 1)! r0p! ; (9)with the convention r0 = rp = 1. For the evaluation of these coe�cients, we must take intoaccount the following convenctionF (r01; r1; r02; r2:::; r0p�1; 0; 0) = F (r01; r1; r02; r2:::; r0p�1)In (7), t denotes the number of non-vanishing ri which are involved in each partition of m.This Lemma was initially found in a context of Jacobi matrices [37]-[38]. Just to understandthe practical use of the Lemma, let us give the �rst three spectral moments�01 = NXi=1 ai;�02 = NXi=1 a2i + 2N�1Xi=1 b2i ;�03 = NXi=1 a3i + 3N�1Xi=1 b2i (ai + ai+1): (10)
In the following, the main results of this work are collected in the form of four theorems. The�rst of them refers to the discrete density of zeros (6) of the polynomials de�ned by (1)-(2) and theother three concern with the asymptotic density of zeros, i.e., when the degree of the polynomialtends towards in�nity. Throughout the paper the symbol � means behaves as.Theorem 1 Let PN (x)q, very large N , be a polynomial de�ned by the expressions (1)-(4). Themoments f�0(N)m ;m = 1; 2; :::; Ng of the non-normalized density of zeros �N (x) =PNi=1 �(x�xN;i)of the polynomial PN (x)q have the following behavior1. If d0 � e0 = 12(f0 � s0) = 0, three cases occur:(a) If g0 � h0 > 12(k0 � l0). Then�0(N)m � "�(0)0�(0)0 #mN (g0�h0)m+1: (11)(b) If g0 � h0 = 12(k0 � l0). Then�0(N)m �X(m)F (r01; r1; :::; r0j+1) "�(0)0�(0)0 #R0 " �(0)0
(0)0 #RN 12 (k0�l0)m+1: (12)



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 5(c) If g0 � h0 < 12(k0 � l0). Then�0(N)m � " �(0)0
(0)0 #m2 N 12 (k0�l0)m+1: (13)2. If d0 � e0 6= 0 and/or f0 � s0 6= 0, two cases occur:(a) i. If d0 � e0 < 0 and f0 � s0 < 0 in such a way that 
1 6= 0. Then�0(N)m �X(m) F (r01; r1; :::; r0j+1)q�
2(ln q)M "�(0)0�(0)0 #R0 " �(0)0
(0)0 #R dMd
M1  q
11� q
1! ; (14)where dMd
M1 denotes the M derivative with respect to 
1.ii. If d0 � e0 = 0 and f0 � s0 < 0 and g0 � h0 = k0 � l0 = 0. Then�0(N)m �X(m)F (r01; 0; :::; 0; r0j+1) "�(0)0�(0)0 #R0 N: (15)iii. If d0 � e0 < 0 and f0 � s0 = 0 and g0 � h0 = k0 � l0 = 0. Then�0(N)m �X(m) F (0; r1; :::; rj ; 0) " �(0)0
(0)0 #RN: (16)(b) If d0 � e0 > 0 and/or f0 � s0 > 0, three di�erent subcases may occur, namely:i. d0 � e0 > 12(f0 � s0). Then�0(N)m � "�(0)0�(0)0 #m qm(N+1)(d0�e0)qm(d0�e0) � 1 N (g0�h0)m: (17)ii. If d0 � e0 = 12(f0 � s0). Then three diferent types still come up:A. If g0 � h0 > 12 (k0 � l0), then�0(N)m � "�(0)0�(0)0 #m qm(N+1)(d0�e0)qm(d0�e0) � 1 N (g0�h0)m: (18)B. If g0 � h0 = 12 (k0 � l0), then�0(N)m � X(m) F (r01; r1; :::; r0j+1) "�(0)0�(0)0 #R0 " �(0)0
(0)0 #R��q
2+m(N+1�t)(d0�e0)qm(d0�e0) � 1 Nm(g0�h0): (19)C. If g0 � h0 < 12 (k0 � l0), then�0(N)m � " �(0)0
(0)0 #m2 q(d0�e0)mNq(d0�e0)m � 1N 12 (k0�l0)m: (20)



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 6iii. d0 � e0 < 12(f0 � s0). Then�0(N)m � " �(0)0
(0)0 #m2 q 12 (f0�s0)mNq 12 (f0�s0)m � 1N 12 (f0�s0)m: (21)The sumation X(m) and the parameter t are as de�ned in Lemma 1. Besides, the parameters
1, 
2 and M are as follows:
1 = [(d0 � e0)� 12(f0 � s0)]R0 + m2 (f0 � s0) (22)
2 = (d0 � e0) jXk=1kr0k+1 + 2(f0 � s0) j�1Xk=1 krk+1 (23)M = [(g0 � h0)� 12(k0 � l0)]R0 + m2 (k0 � l0) (24)The proof of this theorem is shown in Section 4.Theorem 2 Let PN (x)q be a polynomial de�ned as in Theorem 1 with the aditional condition(d0 � e0) = 12(f0 � s0) = 0. (i.e. case 1)Let �(x), ��1(x) and ��2(x) be the asymptotic (i.e. when N ! 1) densities of zeros of thepolynomial PN (x)q de�ned by �(x) = limN!1�N (x);��1(x) = limN!1 1N �N � xN (g0�h0)� ;��2(x) = limN!1 1N �N � xN 12 (k0�l0)� (25)
and their corresponding moments are as follows:�0m = limN!1�0(N)m ;��m(1) = limN!1 �0(N)mN (g0�h0)m ;��m(2) = limN!1 �0(N)mN (k0�l0)m2 (26)for m = 0; 1; 2; ::: respectively. Here �N (x) denotes the (discrete) density of zeros of the polynomialPN (x)q. It turns out that �0m =1; m � 0 (27)and1. If g0 � h0 > 12(k0 � l0). Then ��m(1) = "�(0)0�(0)0 #m ; m � 0 (28)



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 72. If g0 � h0 = 12(k0 � l0). Then��m(2) =X(m)F (r01; r1; :::; r0j+1) "�(0)0�(0)0 #R0 " �(0)0
(0)0 #R ; m � 0 (29)3. If g0 � h0 < 12(k0 � l0). Then ��m(2) = " �(0)0
(0)0 #m2 ; m � 0: (30)Here the coe�cients F and the symbol of summation X(m) are as in Theorem 1.Theorem 3 Let PN (x)q be a polynomial de�ned as in Theorem 1 with the aditional condition(d0 � e0) � 0 and 12(f0 � s0) � 0. (i.e. subcase 2a)Let �(x) and �1(x) be the asymptotic densities of zeros of the polynomial PN (x)q de�ned by�(x) = limN!1 �N (x); �1(x) = limN!1 1N �N (x) (31)and their corresponding moments are as follows:�0m = limN!1�0(N)m ; �0m(1) = limN!1 �0(N)mN (32)for m � 0, respectively. It turns out that:1. If d0 � e0 < 0 and f0 � s0 < 0 in such a way that 
1 6= 0. Then�0m =X(m) F (r01; r1; :::; r0j+1)q�
2(ln q)M "�(0)0�(0)0 #R0 " �(0)0
(0)0 #R dMd
M1  q
11� q
1! ; (33)and �00(1) = 1; �0m(1) = 0; m � 1: (34)2. If d0 � e0 = 0 and f0 � s0 < 0 and g0 � h0 = k0 � l0 = 0. Then�0m =1; m � 0 (35)
�0m(1) = 8>>>>><>>>>>: 1 m = 0X(m) F (r01; 0; :::; 0; r0j+1) "�(0)0�(0)0 #R0 m � 1: (36)3. If d0 � e0 < 0 and f0 � s0 = 0 and g0 � h0 = k0 � l0 = 0. Then�0m =1; m � 0 (37)�0m(1) = 8>>>><>>>>: 1 m = 0X(m)F (0; r1; 0; :::; rj ; 0) " �(0)0
(0)0 #R m � 1: (38)



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 8Here the coe�cients F and the symbol of summation X(m) and the parameters 
1, 
2 and M areas in Theorem 1.Theorem 4 Let PN (x)q be a polynomial de�ned as in Theorem 1 with the aditional condition(d0 � e0) > 0 and/or 12 (f0 � s0) > 0. (i.e. subcase 2b)Let �(x), ���1 (x), ���2 (x), ���3 (x), �++1 (x), �++2 (x) and �++3 (x) be the asymptotic densities ofzeros of the polynomial PN (x)q given by�(x) = limN!1�N (x); (39)���1 (x) = limN!1�N  xq�(d0�e0)NN (g0�h0) ! ;���2 (x) = limN!1�N  xq�(d0�e0)NN 12 (k0�l0) ! ;���3 (x) = limN!1�N  xq� 12 (f0�s0)NN 12 (k0�l0) ! ; (40)
�++1 (x) = limN!1 (m)q(mN)q �N  xq�(d0�e0�1)NN (g0�h0) ! ;�++2 (x) = limN!1 (m)q(mN)q �N  xq�(d0�e0�1)NN 12 (k0�l0) ! ;�++3 (x) = limN!1 (m)q(mN)q �N  xq� 12 (f0�s0�2)NN 12 (k0�l0) ! ; (41)and their corresponding moments are as follows:�0m = limN!1�0(N)m (42)���m (1) = limN!1 �0(N)mN (g0�h0)q(d0�e0)mN���m (2) = limN!1 �0(N)mN 12 (k0�l0)q(d0�e0)mN���m (3) = limN!1 �0(N)mN 12 (k0�l0)q 12 (f0�s0)mN (43)
�++m (1) = limN!1 (m)q(mN)q �0(N)mN (g0�h0)q(d0�e0�1)mN�++m (2) = limN!1 (m)q(mN)q �0(N)mN 12 (k0�l0)q(d0�e0�1)mN�++m (3) = limN!1 (m)q(mN)q �0(N)mN 12 (k0�l0)q 12 (f0�s0�2)mN (44)for m � 0, respectively, and where symbol (n)q denotes the q-basic number(n)q = qn � 1q � 1 ; (45)



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 9related with the q-numbers [n]q = qn � q�nq � q�1 by formula (n)q = q n�12 [n]q 12 . It turns out that�0m =1; m � 0 (46)and1. d0 � e0 > 12(f0 � s0). Then���m (1) = 8>>>><>>>>: 1 m = 0"�(0)0�(0)0 #m qm(d0�e0)qm(d0�e0) � 1 m � 1: (47)Also, �++m (1) = 8><>: 1 m = 0(qm � 1)���m (1) m � 1 (48)2. If d0 � e0 = 12(f0 � s0). Then three diferent situation come up:(a) If g0� h0 > 12 (k0� l0). Then the moments ���m (1) and �++m (1) have the same values asin the previous case., i.e., as formulas (47) and (48).(b) If g0 � h0 = 12(k0 � l0), then���m (1) = 8>>>>><>>>>>: 1 m = 0X(m) F (r01; r1; :::; r0j+1) "�(0)0�(0)0 #R0 " �(0)0
(0)0 #R q
2+m(1�t)(d0�e0)qm(d0�e0) � 1 m � 1 (49)Also, �++m (1) = 8><>: 1 m = 0(qm � 1)���m (1) m � 1: (50)(c) If g0 � h0 < 12(k0 � l0), then���m (2) = 8>>>><>>>>: 1 m = 0" �(0)0
(0)0 #m2 1q(d0�e0)m � 1 m � 1 (51)Also, �++m (2) = 8><>: 1 m = 0(qm � 1)���m (2) m � 1 (52)3. d0 � e0 < 12(f0 � s0). Then���m (3) = 8>>>><>>>>: 1 m = 0" �(0)0
(0)0 #m2 1q 12 (f0�s0)m � 1 m � 1 (53)



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 10Also, �++m (3) = 8><>: 1 m = 0(qm � 1)���m (3) m � 1 (54)Here the coe�cients F and the symbol of summation X(m) and the parameters 
1, 
2 and Mare as in Theorem 1.It is important to make the following observation. To get as much information as possible aboutthe asymptotic distribution of zeros when the moments �0m of the conventional asymptotic densityof zeros �(x) = limN!1 �N (x) diverge, it is often used in theorems 2, 3 and 4 a normalizationfactor D, i.e., it is usually de�ned an asymptotic density of zeros of the formf(x) = limN!1C�N (Dx): (55)where the factors C and D are choosen so that the moments �m of f(x) given by�m = limN!1CDm�0(N)m (56)are �nite [40]. This is the great advantage of the densities of f(x) � type. The scaling factor Dturns out to be a function of N and/or qN . A detailed analysis of this procedure is done in Section5.4 Determining the discrete density of zeros.Here Theorem 1 will be proved. Let us consider the polynomial PN (x)q, N being a very largenumber, de�ned by the expressions (1)-(4), i.e., thatPN (x) = (x� aN )PN�1(x)� b2N�1PN�2(x); (57)where aN and b2N are the values of an and b2n given by Eq.(2) for n = N . Firstly, let us �nd whatare the N-dominant terms in the expressions (2) for aN and b2N�1. Replacing n by N in Eq. (2)and taking into account thatAXm=0 gmXi=0 �(m)i Ngm�i! qdmN �  g0Xi=0 �(0)i Ng0�i! qd0N � �(0)0 Ng0qd0N ;A0Xm=00@hmXi=0 �(m)i Nhm�i1A qemN � 0@ h0Xi=0 �(0)i Nh0�i1A qe0N � �(0)0 Nh0qe0N (58)one easily obtains that aN � �(0)0�(0)0 Ng0�h0q(e0�d0)N (59)and in a similar way one easily obtains thatb2N � �(0)0
(0)0 Nk0�l0q(f0�s0)N : (60)The symbol � means, as alredy pointed out, behaves with N as. To get (58) the conditions (3)and (4) have been used. Remark that, taking into account Eqs. (59)-(60), Eq. (2) may be writtenas



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 11an = �(0)0�(0)0 n(g0�h0)q(e0�d0)n +O(ng0�h0�1q(e0�d0)n)b2n = �(0)0
(0)0 n(k0�l0)q(f0�s0)n +O(nk0�l0�1q(f0�s0)n); (61)for n � 1. To calculate the discrete density of zeros �N (x) of the polynomial PN (x)q, one �rstassumes it may be characterized by the knowledge of all its moments f�0(N)m ; m = 0; 1; 2; :::; Ngde�ned by (5).Taking the values (61) of an and b2n into Eq. (7), one obtains for �0(N)m the following values:�0(N)m � X(m)F (r01; r1; :::; rj ; r0j+1) "�(0)0�(0)0 #R0 " �(0)0
(0)0 #R��N�tXi=1 24j�1Yk=0(i+ k)(g0�h0)r0k+1+(k0�l0)rk+135 (i+ j)(g0�h0)r0j+1q
2+i
1 (62)If we take in Eq. (62) the dominat term then it reduces as follows�0(N)m �X(m) F (r01; r1; :::; rj ; r0j+1) "�(0)0�(0)0 #R0 " �(0)0
(0)0 #R q
2 N�tXi=1 iMqi
1 (63)with the following notations R = jXi=1 ri; R0 = j�1Xi=1 r0iand 
1 = (d0 � e0)R0 + (f0 � s0)R
2 = (d0 � e0) jXk=1kr0k+1 + 2(f0 � s0) j�1Xk=1 krk+1M = (g0 � h0)R0 + (k0 � l0)R (64)One should notice that, because of relation (8), R0 + 2R = m and consequentely the parameters
1 and M may be written in the form
1 = [(d0 � e0)� 12(f0 � s0)]R0 + m2 (f0 � s0); (65)M = [(g0 � h0)� 12(k0 � l0)]R0 + m2 (k0 � l0); (66)which are the expressions (22) and (24) given in the previous Section.To go further one has to perform the i � summation in Eq. (63). In doing that two casesappear when one analyzes the expression (65) of 
1:1. d0 � e0 = 12(f0 � s0) = 02. d0 � e0 6= 0 and/or 12(f0 � s0) 6= 0



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 12Let us see how Eq. (63) gets simpli�ed in each case.Case 1: d0 � e0 = 12(f0 � s0) = 0.In this case 
1 = 
2 = 0 and sinceN�tXi=1 iM � (N � t)M+1; N >> 1Eq. (63) reduces as follows�0(N)m �X(m) F (r01; r1; :::; rj ; r0j+1) "�(0)0�(0)0 #R0 " �(0)0
(0)0 #RNM+1: (67)To simplify further this expression, one examines Eq. (66) of M . It is easy to �nd three di�erentsubcases corresponding to g0 � h0 > 12(k0 � l0), g0 � h0 = 12(k0 � l0) and g0 � h0 < 12(k0 � l0),respectively. Let us study what happens for each subcase.1. (a) g0 � h0 > 12 (k0 � l0). Notice thatM = [(g0 � h0)� 12(k0 � l0)]| {z }positive R0 + m2 (k0 � l0)Then the dominant term is obtained when R0 = m and R = 0, i.e. for the partition(m; 0; 0; :::; 0). Therefore M = (g0 � h0)m and expression (67) reduces as follows�0(N)m �X(m) F (m; 0; 0; :::; 0) "�(0)0�(0)0 #mN (g0�h0)m+1:Since F (m; 0; 0; :::; 0) = 1 acording to (9), it is clear that this relation is the expression(11) of Theorem 1.(b) g0 � h0 = 12 (k0 � l0). Then M = m2 (k0 � l0) and (67) takes the form�0(N)m �X(m) F (r01; r1; :::; rj ; r0j+1) "�(0)0�(0)0 #R0 " �(0)0
(0)0 #RN m2 (k0�l0)+1:This expression coincides with (12) given in Theorem 1.(c) g0 � h0 < 12 (k0 � l0). Notice thatM = [(g0 � h0)� 12(k0 � l0)]| {z }negative R0 + m2 (k0 � l0)Then the dominant term is obtained when 2R = m and R0 = 0,i.e., for the partition(0;m; 0; :::; 0). Therefore M = 12(k0 � l0) and�0(N)m �X(m) F (0;m; 0; 0; :::; 0) " �(0)0
(0)0 #m2 N 12 (k0�l0)+1;which is the expression (13) given in Theorem 1, since F (0;m; 0; 0; :::; 0) = 1.



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 13Case 2: d0 � e0 6= 0 and/or 12(f0 � s0) 6= 0.Here one is obliged to perform the i� summation of (63). One hasN�tXi=1 iMqi
1 = 1(ln q)M N�tXi=1 dMd
M1 qi
1= 1(ln q)M dMd
M1 N�tXi=1 qi
1= 1(ln q)M dMd
M1 "q
1 � q
1(N�t+1)1� q
1 # :Depending on whether q
1 is smaller or bigger than unity, this summation has a N -behaviour oranother, Indeed, q
1 � q
1(N�t+1) � 8><>: q
1 if q
1 < 1�q
1(N�t+1) if q
1 > 1 (68)Then N�tXi=1 iMqi
1 � 1(ln q)M dMd
M1 " q
11� q
1 # if q
1 < 1 (69)and N�tXi=1 iMqi
1 � "q
1(N�t+1)q
1 � 1 NM# if q
1 > 1 (70)Therefore, from (68) it is clear that to further reduce the expression (63) of the quantities �0(N)m onehas necessarily to distinguish the following two subcases: q
1 < 1 (i.e. 
1 < 0) for all partitionsof m and q
1 > 1 (i.e. 
1 > 0) for at least one partition of m. Taking into account (65), thesetwo subcases occur provided that1. (a) d0 � e0 < 0 and f0 � s0 < 0(b) d0 � e0 = 0 and f0 � s0 < 0(c) d0 � e0 < 0 and f0 � s0 = 02. d0 � e0 > 0 and/or f0 � s0 > 0respectively. Let us see how the moments �0(N)m given by (63) simplify in these two cases separately.(a) Subcase (2a):i. d0 � e0 < 0 and f0 � s0 < 0 in such a way that 
1 6= 0. The replacement ofi-summation given by (69) in (63) leads to�0(N)m �X(m) F (r01; r1; :::; r0j+1)q�
2(ln q)M "�(0)0�(0)0 #R0 " �(0)0
(0)0 #R dMd
M1  q
11� q
1! ;which is the expression (14) of Theorem 1.



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 14ii. d0 � e0 = 0 and f0 � s0 < 0 and g0 � h0 = k0 � l0 = 0. SinceM = [(g0 � h0)� 12(k0 � l0)]R0 + m2 (k0 � l0) = 0;then N�tXi=1 iMqi
1 = N�tXi=1 qi
1 = q
1 "1� q
1(N�t)1� q
1 # ;where 
1 = (f0 � s0)R (see (64) ). For N >> 1 it is clear from the last expressionthat the i-summation is a decreasing and convex upward function, which has amaximum when 
1 = 0, i.e. when R = 0 and R0 = m and it is equal to N . Thiscorresponds to all partitions (r01; 0; :::; 0; r0j+1). Notice that (see (64) )
2 = (d0 � e0)| {z }=0 jXk=1 kr0k+1 + 2(f0 � s0) j�1Xk=1 k rk+1| {z }=0 = 0:Then (63) reduces as follows�0(N)m �X(m)F (r01; 0; :::; 0; r0j+1) "�(0)0�(0)0 #R0 N:which coincides with expression (15) of Theorem 1.iii. d0 � e0 < 0 and f0 � s0 = 0 and g0 � h0 = k0 � l0 = 0. Here 
1 = (d0 � e0)R0 � 0.Then, as in the previous case, we have the conditions
1 = 0; 
2 = 0; i� summation = N :and (63) reduces as expression (16) of Theorem 1.(b) Subcase(2b): d0 � e0 > 0 and/or f0 � s0 > 0. Here from (70) and (63) one gets�0(N)m �X(m) F (r01; r1; :::; rj ; r0j+1) "�(0)0�(0)0 #R0 " �(0)0
(0)0 #R q
2+(1�t)
1qi
1 � 1 qi
1NNM (71)To go further in the analysis of the N�dependence of �0(N)m one has to analize theexpression (65) which de�nes 
1. A simple study allows us to distinguish the followingthree situationsi. d0 � e0 > 12(f0 � s0)ii. d0 � e0 = 12(f0 � s0)iii. d0 � e0 < 12(f0 � s0)Now we shall examine the reduction of (71) in these situations.i. d0 � e0 > 12(f0 � s0). From (65) and (71) one easily �nds that the dominant termin the (m)-summation correspond to that for which R0 = m, because
1 = [(d0 � e0)� 12(f0 � s0)]| {z }positive R0 + m2 (f0 � s0):



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 15Then R = 0, 
1 = m(d0 � e0), M = (g0 � h0), the corresponding partition is(m; 0; :::; 0) and then 
2 = 0 an t = 0. Therefore�0(N)m �X(m) F (m; 0; 0; :::; 0) "�(0)0�(0)0 #m qm(N+1)(d0�e0)qm(d0�e0) � 1 N (g0�h0)m:Since F (m; 0; 0; :::; 0) = 1 acording to (9) this relation is the expression (17) ofTheorem 1.ii. d0 � e0 = 12(f0 � s0). Here one has 
1 = m2 (f0 � s0) = (d0 � e0)m, that is �xednumber for all partitions of m. Then, in the expression (71) one is obliged tostudy the parameter M given by (66) to know the N�dominant term of the (m)-summation. The analysis of expression (66) leads to separate the following threepossibilities:A. g0 � h0 > 12(k0 � l0)B. g0 � h0 = 12(k0 � l0)C. g0 � h0 < 12(k0 � l0)For the case g0 � h0 > 12 (k0 � l0) the dominant term is the one corresponding tothe condition when NM is maximum. It occurs when R0 = m, R = 0 becauseM = [(g0 � h0)� 12(k0 � l0)]| {z }positive R0 + m2 (k0 � l0)It corresponds to the partition (m; 0; :::; 0), for which F (m; 0; 0; :::; 0) = 1, t = 0,
2 = 0, M = (g0 � h0)m. Then, Eq. (71) reduces as�0(N)m � "�(0)0�(0)0 #m qm(N+1)(d0�e0)qm(d0�e0) � 1 N (g0�h0)m;which coincides with Eq. (18) of Theorem 1.For the case g0�h0 = 12(k0� l0) it turns out that M = (g0�h0)m, 
1 = (d0� e0)and expression (71) easily transforms into (19) of Theorem 1.For the case g0 � h0 < 12(k0 � l0) we have, as before, 
1 = (d0 � e0)m and thedominant term is the one corresponding to the partition (0;m; 0; :::; 0). It is becauseM = [(g0 � h0)� 12(k0 � l0)]| {z }negative R0 + m2 (k0 � l0):Then, the maximum of NM occurs for R0 = 0, R = m2 . Therefore t = 1, 
2 = 0,M = 12(k0 � l0) and (71) reduces as�0(N)m � F (0;m; 0; :::; 0) " �(0)0
(0)0 #m2 q(d0�e0)mNq(d0�e0)m � 1N 12 (k0�l0)m;which is the expression (20) of Theorem 1 since F (0;m; 0; :::; 0) = 1.iii. d0 � e0 < 12(f0 � s0). SinceM = [(g0 � h0)� 12(k0 � l0)]| {z }negative R0 + m2 (k0 � l0);



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 16then the dominant term in the (m)-summation of the expression (71) is the onecorresponding to the partition (0;m; 0; :::; 0). Therefore R0 = 0, R = m2 , t = 1,
2 = 0, M = 12(k0 � l0) and�0(N)m � F (0;m; 0; :::; 0) " �(0)0
(0)0 #m2 q 12 (f0�s0)mNq 12 (f0�s0)m � 1N 12 (f0�s0)m;which coincides with (21) since F (0;m; 0; :::; 0) = 1.This completely proves the Theorem 1.As a conclusion to this section we provide the scheme with all di�erent posibilities obtainedin this section.Scheme: The caracterization of general q-polynomials by its spectral properties.1: d0 � e0 =12(f0 � s0) 8><>: (a) g0 � h0 > 12 (k0 � l0)(b) g0 � h0 = 12 (k0 � l0)(c) g0 � h0 < 12(k0 � l0)
2: d0 � e0 6= 0f0 � s0 6= 0

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(a) d0 � e0 � 0f0 � s0 � 0
8>>>>>>>>>>>>><>>>>>>>>>>>>>:

(i)( d0 � e0 < 0f0 � s0 < 0 
1 6= 0(ii)( d0 � e0 = 0f0 � s0 < 0 g0 � h0 = k0 � l0 = 0(iii)( d0 � e0 < 0f0 � s0 = 0 g0 � h0 = k0 � l0 = 0
(b) d0 � e0 > 0and=orf0 � s0 > 0

8>>>>>>>>>><>>>>>>>>>>:
(i) d0 � e0 > 12(f0 � s0)(ii) d0 � e0 = 12(f0 � s0)8><>: A) g0 � h0 > 12(k0 � l0)B) g0 � h0 = 12(k0 � l0)C) g0 � h0 < 12(k0 � l0)(iii) d0 � e0 < 12(f0 � s0)5 Searching for a normalized density of zeros.In this Section the asymptotic distribution of zeros of the polynomial PN (x)q de�ned by Eqs.(1)-(4) will be discussed. In particular Theorems 2-4 will be proved. The starting point will beTheorem 1.From Theorem 1, one observes that the moments �0(N)m of the (non-normalized) density ofzeros �N (x) depends on N as follows:Nam+1 in case 1;Constant in subcase 2(a)i;N in subcases 2(a)ii-2(a)iii;NamqbmN in case 2b; (72)



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 17where the constants a and b are known and distinct for each case. Obviously we would like to havea normalized density of zeros �normN (x). The usual way to have it is to impose that the momentof order zero be equal unity, what permits to write�normN (x) = 1N �N (x); (73)whose moments ~�0(N)m will be related to those of �N (x) by~�0(N)m = 1N �0(N)m ; m � 0: (74)Then, from (72) and (74) it is clear that the N -dependence of the moments of the normalized tounity density of zeros is given byNam in case 1;N�1 in subcase 2(a)i;Constant in subcases 2(a)ii-2(a)iii;Nam�1qbmN in case 2b; (75)As said before, we are interested in the asymptotic density of zeros. If this is de�ned by�(x) = limN!1�N (x); (76)then taking into account that �0(N)m have a N -dependence of the form (72), its moments �0m givenby �0m = limN!1�0(N)mwill be in�nity in case 1, subcases 2(a)ii and 2(a)iii and in case 2b; and constant given by (14)in subcase 2(a)i. Therefore, the expressions (27), (33), (35) and (37) of theorems 2, 3 and 4,respectively, have been proved.If one wants to have some information about the asymptotic distribution of zeros in case 1,subcases 2(a)ii and 2(a)iii and in case 2b, one needs to introduce a normalization factor and/ora scaling factor into the density �N (x) in the sense disscused in Eq. (55) and (56). Let us �rstthink of a scaled density. For the case 1 there is no scaling factor D which leads to an asymptoticdensity of zeros whose moments have non-zero, �nite values unless the scaling factor be of theform D = N�a� 1m but this is not useful since it would oblige to de�ne a di�erent scaled asymptoticdensity function for each moment. Contrary to this, for the case 2b one can consider scaling factorD = N�aq�bN and de�ne the discrete density of zeros given by���N (x) = �N � xqbNNa�and the asymptotic density of zeros given by���(x) = limN!1�N � xqbNNa� (77)whowe moments ���m are acording to (56), as follows���m = limN!1 �0(N)mqmbNNam : (78)



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 18From (72) and (78), it is clear that all the quantities ���m have �nite values. It is only missing totake the parameters a and b for the di�erent subcases of 2b.For the subcases 2(b)i, 2(b)iiA and 2(b)iiB it turns out that a = g0 � h0 and b = d0 � e0.Then, as in expression (77), one can de�ne the asymptotic density function ���1 (x) in the form���1 (x) = limN!1�N  xq�(d0�e0)NN (g0�h0) ! ; (79)whose moments ���m (1) given by���m (1) = limN!1 �0(N)mN (g0�h0)mq(d0�e0)mN ; (80)have, according to (17) and (18), the values (for m � 1)���m (1) = "�(0)0�(0)0 #m qm(d0�e0)qm(d0�e0) � 1 (81)in the subcases 2(b)i and 2(b)iiA, and, according to (19), the values���m (1) =X(m) F (r01; r1; :::; r0j+1) "�(0)0�(0)0 #R0 " �(0)0
(0)0 #R q
2+m(1�t)(d0�e0)qm(d0�e0) � 1 (82)in the subcase 2(b)iiB. Remark that the expressions (81) and (82) are identical to (47) and (49)of Theorem 4, respectively. Similary, for the subcases 2(b)iiC it turns out that a = 12(k0 � l0)and b = d0 � e0. Then, as in expression (77), one de�nes the asymptotic density function ���2 (x)by (40), whose moments ���m (2) given by (43) have, according to (20), the values given by (51).Finally, for the subcase 2(b)iii one has the density ���3 (x) de�ned by (40), whose moments ���m (3),given by (43), have according to (21), the values given by (53). For the entire case 2b it happensthat, according to (78) and since �0(N)0 = N ,���0 = ���0 (1) = ���0 (2) = ���0 (3) =1;as in Theorem 4 is also pointed out.Let us now searshed for a normalized to unity asymptotic density of zeros. The simplest wayis to de�ne it as �1(x) = limN!1 �normN (x) = limN!1 1N �N (x); (83)where the Eq. (73) has been used. Its moments given by�00(1) = 1; �0m(1) = limN!1 1N�0(N)m ; m � 1; (84)



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 19have, taking into account (75), the following values�00(1) = 1
�0m(1) =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
1 m � 1 in cases 1 and 2b0 m � 1 subcase 2(a)iX(m) F (r01; 0; :::; 0; r0j+1) "�(0)0�(0)0 #R0 m � 1 subcase 2(a)iiX(m) F (0; r1; 0; :::; rj ; 0) " �(0)0
(0)0 #R m � 1 subcase 2(a)iii (85)

Then expressions (34)-(38) of Theorem 3 has been demonstrated. So, Theorem 3 has entirelyproved.For the case 1 and subcase 2b one would like to have information more useful than thatexpressed by (85), keeping the normalization to unity of the density �1(x) given by (83). Thereforeone has to compress the spectrum of zeros by introducing a scaling factor. In the case 1 it is veryeasy to �nd that factor by looking at the expression (75): it is D = N�a. Then one de�nes from(75) and (83) the density function��(x) = limN!1�normN � xNa� = limN!1 1N �N � xNa� (86)whose moments are according to (56) and (84) as��0 = 1; ��m = limN!1 �0(N)mNam+1 ; m � 1: (87)From (72) and (87) it is obvious that the quantities ��m have �nite values. One has only to takethe values of a in the di�erent subcases of the case 1. For the subcase 11, a = g0 � h0; then hereit is convenient to de�ne, according to (86), the following asymptotic density of zeros��1(x) = limN!1 1N �N � xNg0�h0� ;whose moments are, according to (87) and (11), as follows��0(1) = 1; ��m(1) = "�(0)0�(0)0 #m ; m � 1;which is the expression (28) of Theorem 2.For the subcases 12 and 13, it turns out that a = 12(k0 � l0), which de�nes the followingasymptotic density of zeros ��2(x) = limN!1 1N �N � xN 12 (k0�l0)� ;whose moments have, according to (87) and (12), the values (��0(2) = 1)��m(2) =X(m) F (r01; r1; :::; r0j+1) "�(0)0�(0)0 #R0 " �(0)0
(0)0 #R ; m � 1



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 20for the subcase 12, and, according to (87) and (13), the values��0(2) = 1; ��m(2) = " �(0)0
(0)0 #m2 ; m � 1;for the subcase 13. Remarks that the last two expressions coincide with the expressions (29) and(30) of Theorem 2, respectively. Then this Theorem has been entirely proved.For the subcase 2b the scaled normalization to unity asymptotic density function of the form(86) would also have all its moments of order other than zero equal to in�nite. No other scalingfactor would be able to make �nite these moments unless D = N�a+ 1m qmN , but this factor isof usefulness for reasons already discussed. Therefore one is obliged to change the normalizationfactor in this subcase. Here the discrete density of zeros �+N (x) is normalized so that its momentsare de�ned by �+(N)m = qm � 1qmN � 1�0(N)m ; m � 0;i.e., that �+N (x) = (m)q(mN)q �N (x) (88)when (m)q and (mN)q are q-numbers de�ned by Eq.(45). This normalization factor has thefollowing relevant property: It tends to N�1 if m! 0 and q ! 1. In particular, this implies that�+(N)0 = 1:Furthermore, for the case 2b under consideration it turns out that the N�dependence of �+(N)m isas Namq(b�1)mN . this dependence suggest to analize the asymptotic spectrum of zeros by meansof the asymptotic density function de�ned by�++(x) = limN!1�N � xNaq(b�1)N � ; (89)whose moments �++m are given by�++m = limN!1 �+(N)mNamq(b�1)mN = limN!1 (qm � 1)�0(N)m(qmN � 1)Namq(b�1)mN : (90)Taking into account this expression together with the values (17)-(21) of �0(N)m given in the Theorem1, one observes that for the subcases 2(b)i, 2(b)iiA and 2(b)iiB the parameter a and b take thevalues a = g0 � h0; b = d0 � e0and the appropiate asymptotic density of zeros is, according to (88)-(89), the function �++1 (x)given by (41) in Theorem 4.For the subcase 2(b)iiC it turns out thata = 12(k0 � l0); b = d0 � e0:Then, the appropiate asymptotic density of zeros for this subcase is, according to (88)-(89), thefunction �++2 (x) given by (41) in Theorem 4.



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 21Finally for the case 2(b)iii a = 12(k0� l0), b = 12(f0�s0) and the appropiate asymptotic densityof zeros is, according to (88)-(89), the function �++3 (x) given by (41) in Theorem 4.Now the Eq. (90) and the values (17)-(21) for �0(N)m gives in a straightforward manner themoments �++m (1), �++m (2) and �++m (3) ot the asymptotic density functions �++1 (x), �++2 (x) and�++3 (x). Indeed, the values of these quantities are given by the Eqs. (48) for the subcases 2(b)i,2(b)iiA, (50) for the subcase 2(b)iiB, (52) for the subcase 2(b)iiC and (54) for the subcase 2(b)iii,respectively. This entirely proves Theorems 2-4.6 Applications.In this Section we will use the theorems obtained in the two previous sections to investigatethe spectral properties of several known families of orthogonal q-polynomials. Let us make theobservation that for a �nite polynomial sequence (e.g. Hahn, Racah and Kravchuk polynomials),i.e., when the degree n of the polynomial is bounded by a �xed parameter N (not to be confusedwith the same letter previously used as generic degree of polynomials), it is assumed that N issu�ciently large and 1 << n � N so that Eq. (61) be ful�lled.The q-Hahn polynomials h�;�n (q�x; N).The q-Hahn polynomials h�;�n (q�x; N) play a fundamental role in the Representation Theory ofthe q-Algebras SUq(2) and SUq(1; 1) (see [20], [22], [21]). They also appear in numerous physicalapplications since e.g. the Clebsh-Gordan Coe�cients of the q-Algebras SUq(2) and SUq(1; 1) areproportional to them. The theory and applications of the q-Hahn and classical Hahn polynomialshave some close parallels. So, e.g. q-Hahn and classical Hahn polynomials appears in the analysisof functions on the lattice of subspaces of a �nite vector space and the lattice of subsets of a �niteset, respectively. These polynomials verify the recurrence relation [3] (page 59)h�;�n (q�x; N) = [q�x � (1�An�1 � Cn�1)]h�;�n�1(q�x; N) +Bn�1h�;�n�2(q�x; N); (91)where Bn = An�1Cn, and the A and C parameters areAn = �1� � q1+n� �1� �� q1+n� �1� q�N+n�(1� �� q1+2n) (1� �� q2+2n) ;Cn = �� qn (1� qn) (1� � qn) �q�N � �� q1+n�(1� �� q2n) (1� �� q1+2n) :Let us also point out that �n+1An = �n (92)where �n is the leading coe�cient of the polynomial. The comparison of Eqs. (91) and (1) givesthat anumn = �(0)0 q3n = �2�(1 + �)qN+1q3n; adenn = �(0)0 q4n = �2�2qNq4n:and (bnumn )2 = �(0)0 q7n = �4�3q�Nq7n; (bdenn )2 = 
(0)0 q8n = �4�4q8n:Then, gm = hm = km = lm = 0 for all m = 0; 1; ::N andd0 = 3; e0 = 4; f0 = 7; s0 = 8:This is the case d0 � e0 < 0 and f0 � s0 < 0, i.e., case 2(a)i. Therefore, Eqs. (33) and (34) ofTheorem 3 give us the moments
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�0m =X(m)F (r01; r1; :::; rj ; r0j+1)q�Pjk=1 kr0k+1�2Pj�1k=1 k �q(1 + �)� �R0 � �qN (q + q�1)�R 1qm2 �1 (93)for the asymptotic density of zeros �(x) de�ned by Eq. (31), and�0m(1) = 8><>: 1 m = 00 m � 1 (94)for the corresponding asymptotic quantity �1(x) given by Eq. (31).q-Kravchuk polynomials kpn(q�x; N).The matrix elements of the representations T l of the Uq(sl2) quantum algebra are proportionalto the q-Kravchuk polynomials (see [21], Vol. III, page 64). According to [3] (page 76) and takinginto account Eq. (92) the three term recurrence relation of these polynomials can be expressed askpn(q�x; N) = [q�x � (1�An�1 � Cn�1)]kpn�1(q�x; N) +Bn�1kpn�2(q�x; N); (95)where Bn�1 = An�1Cn�1, and An = (1 + p qn) �1� q�K+n�(1 + p q2n) (1 + p q1+2n) ;Cn = �p q�1�K+2n (1� qn) �1 + p qK+n�(1 + p q2n) (1 + p q�1+2n) :The comparison with (1) gives thatanumn = �(0)0 q3n = pq(pqN � 1)q3n; adenn = �(0)0 q4n = p2qNq4n:and (bnumn )2 = �(0)0 q6n = p3q�2q6n; (bdenn )2 = 
(0)0 q8n = q�3p4qNq8n:Then, gm = hm = km = lm = 0 for all m = 0; 1; ::N andd0 = 3; e0 = 4; f0 = 6; s0 = 8:This is the case d0 � e0 = �1 < 0 and f0 � s0 = �2 < 0, i.e., case 2(a)i. Therefore, Eq. (34) ofTheorem 3 gives us the values �0m(1) = 8><>: 1 m = 00 m � 1 (96)for the moments of the asymptotic density of zeros �1(x). Furthermore, since 
1 = 12(f0 � s0) =�m, 
2 = �(Pjk=1 kr0k+1 � 4Pj�1k=1 krk+1) and M = 0, Eq. (33) of Theorem 3 gives us�0m =X(m)F (r01; r1; :::; r0j+1)q�
2 "q(pqN � 1)pqN #R0 "q1�Np #R 1qm � 1 ; m � 0; (97)for the moments of the spectral quantity �(x) de�ned by Eq. (31).
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; �). �(x) = q�x + 
�qx+1.It is well known the important role that the 6j symbols play in the quantum angular momentumtheory (see [6]). It is known that the q-analog of the Racah coe�cients (6j symbols) for the q-algebra Uq(sl2) are proportional to the q-Racah polynomials (see [21], Vol. III, page 70). Fromthe three term recurrence relation of these polynomials [3] (page 53), as well as Eq. (92), we canrewrite [3] Eq.(3.15.3) in the form�(x)Rn�1(�(x); �; �; 
; �) = Rn(�(x); �; �; 
; �)++[1 + 
�q � (1�An�1 � Cn�1)]Rn�1(�(x); �; �; 
; �) +Bn�1Rn�2(�(x); �; �; 
; �); (98)where Bn�1 = An�1Cn�1, andAn = �1� � q1+n� �1� �� q1+n� �1� � � q1+n� �1� 
 q1+n�(1� �� q1+2n) (1� �� q2+2n) ;Cn = q (1� qn) (� � � qn) (1� � qn) (
 � �� qn)(1� �� q2n) (1� �� q1+2n) :The comparison with (1) gives thatanumn = ��(0)0 q3n = q��(�+ 
 + �� + �� + ��� + �
 + �
 + �
�)q3n;adenn = ��(0)0 q4n = �2�2q4n:and (bnumn )2 = �(0)0 q8n = q�4�4�
q8n; (bdenn )2 = 
(0)0 q8n = �4�4q8n:Then, gm = hm = km = lm = 0 for all m = 0; 1; ::N andd0 = 3; e0 = 4; f0 = 8; s0 = 8:This is the case d0�e0 = �1 < 0 and f0�s0 = 0, i.e., case 2(a)iii. Therefore, Eq (16) of Theorem3 yield the moments �0m(1) = 8>>><>>>: 1 m = 0X(m) F (0; r1; 0; :::; rj ; 0) [q�
]R m � 1 (99)for the asymptotic densities of zeros �1(x) de�ned by Eq. (31).q-Askey & Wilson polynomials pn(x; a; b; c; d).According to [3] (page 51) and Eq. (92), the three term recurrence relation for the q-Askey &Wilson polynomials can be rewritten asxpn�1(x; a; b; c; d) = pn(x; a; b; c; d) + 12 [a+ a�1 � (An�1 + Cn�1)]pn�1(x; a; b; c; d)++Bn�1pn�2(x; a; b; c; d); (100)where Bn�1 = An�1Cn�1, andAn = �1� a b c d q�1+n� (1� a b qn) (1� a c qn) (1� a d qn)a (1� a b c d q2 n) (1� a b c d q�1+2 n) ;



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 24Cn = a �1� b c q�1+n� �1� b d q�1+n� �1� c d q�1+n� (1� qn)(1� a b c d q�2+2 n) (1� a b c d q�1+2 n) :The comparison with (1) givesanumn = ��(0)0 q3n = qabcd(abc+ abd+ acd+ bcd+ q(a+ b+ c+ d))q3n;adenn = ��(0)0 q4n = 2a2b2c2d2q4n:and (bnumn )2 = �(0)0 q8n = a4b4c4d4q8n; (bdenn )2 = 
(0)0 qnn = a4b4c4d4q8n:Then, gm = hm = km = lm = 0 for all m = 0; 1; ::N andd0 = 3; e0 = 4; f0 = 8; s0 = 8:This is the case d0�e0 = �1 < 0 and f0�s0 = 0, i.e., case 2(a)iii. Therefore, Eq. (38) of Theorem3 gives us the moments �0m(1) = 8>>><>>>: 1 m = 0X(m) F (0; r1; 0; :::; rj ; 0) m � 1: (101)for the asymptotic density of zeros �1(x) de�ned by Eq. (31).Al Salam and Carlitz polynomials u�n(x) and v�n(x).In dealing with the q-harmonic oscillator, Askey and Suslov [16] have introduced the q-polynomialsu�n(x) = ��nq�n(n�1)2 U (��)n (x):where U��n (x) are the so called Al Salam and Carlitz polynomials. These polynomials satisfy therecurrence relation [16]xu�n�1(x) = u�n(x) + (1� �)qn�1u�n�1(x) + �qn�2(1� qn�1)u�n�2(x); (102)which is of the type (1) with the coe�cientsanumn = ��(0)0 qn = (1� �)q�1qn; adenn = 1;and (bnumn )2 = �(0)0 q2n = �q�1q2n; (bdenn )2 = 
(0)0 qs0n = 1:Then, gm = hm = km = lm = 0 for all m = 0; 1; ::N andd0 = 1; e0 = 0; f0 = 2; s0 = 0:This is the case d0 � e0 = 1 and f0 � s0 = 2, i.e., case 2(b)iiB. Therefore, Eqs. (49) and (50) ofTheorem 4 give us the moments���m (1) = 8>>>><>>>>: 1 m = 0X(m) F (r01; r1; :::; r0j+1) [1� �]R0 �R q
2qm � 1 m � 1 (103)



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 25and �++m (1) = 8>>><>>>: 1 m = 0X(m) F (r01; r1; :::; r0j+1) [1� �]R0 �Rq
2 m � 1 (104)(where 
2 =Pjk=1 kr0k+1+4Pj�1k=1 krk+1�mt) corresponding to the asymptotic quantities ���1 (x)and �++1 (x), respectively.It has been encountered [15] that another class of Al Salam and Carlitz polinomials, to be de-noted by v�n(x), is related also to the q-oscillator. So, it seems natural to search for its distributionof zeros. These polynomials satisfy the relation [15]xv�n�1(x) = v�n(x) + (q + �)q�n�2v�n�1(x) + �q�n�3(q�n�1 � 1)v�n�2(x): (105)Therefore, d0 = �1; e0 = 0; f0 = �1; s0 = 0. This corresponds to the case 2(a)i. Then, Eq. (34)of Theorem 3 gives us the moments �0m(1) = 8><>: 1 m = 00 m � 1: (106)for the asymptotic density �(x). Furthermore, since 
1 = �12(R0 +m), 
2 = �(Pjk=1 kr0k+1 �2Pj�1k=1 krk+1) and M = 0, Eq. (33) of Theorem 3 gives�0m =X(m) F (r01; r1; :::; r0j+1)q�
2 hq�1(q + �)iR0 �R q�mq 12 (R0+m) � 1 (107)for the moments of the normalized -to- 1N spectral quantity �1(x) de�ned by Eq. (31).The little q-Jacobi polynomials pn(x; a; b).The little q-Jacobi polynomials pn(x; a; b) play a fundamental role (see e.g. [20]) in the Represen-tation Theory of the q-Algebra Uq(sl2) because they are the matrix elements of the representationsT l (see [21], Vol. III, page 51). They satisfy the three term recurrence relation [3] (page 59)pn(x; a; b) = [x+An�1 + Cn�1]pn�1(x; a; b) +Bn�1pn�2(x; a; b); (108)where A and C parameters are given byAn = qn �1� a q1+n� �1� a b q1+n�(1� a b q1+2n) (1� a b q2+2n) ;Cn = a qn (1� qn) (1� b qn)(1� a b q2 n) (1� a b q1+2 n) ;and Bn = An�1Cn. This relation is of the type (1) with the coe�cientsanumn = �(0)0 q3n = �ab(1 + a)q3n; adenn = �(0)0 q4n = a4b4q4n:and (bnumn )2 = �(0)0 q6n = a3b2q6n; (bdenn )2 = 
(0)0 q8n = qa4b4q8n:



THE DISTRIBUTION OF ZEROS OF GENERAL Q-POLYNOMIALS 26Then, gm = hm = km = lm = 0 for all m = 0; 1; ::N andd0 = 3; e0 = 4; f0 = 6; s0 = 8:This is the case d0 � e0 = �1 < 0 and f0 � s0 = �2 < 0, i.e., case 2(a)i. Therefore, Eq. (34) ofTheorem 3 gives us the moments �0m(1) = 8><>: 1 m = 00 m � 1 (109)for the asymptotic density of zeros �(x). Furthermore, since 
1 = 12(f0 � s0) = �m, 
2 =�(Pjk=1 kr0k+1 � 4Pj�1k=1 krk+1) and M = 0, Eq. (33) of Theorem 3 gives us�0m =X(m)F (r01; r1; :::; r0j+1)q�
2 �1 + aa �R0 ��1aq �R 1(qm � 1)bm : (110)which are the moments of asymptotic spectral quantity �(x).The big q-Jacobi polynomials Pn(x; a; b; c).The big q-Jacobi polynomials Pn(x; a; b; c) are de�ned in [3] (page 57). By use of the parametersAn = �1� a q1+n� �1� a b q1+n� �1� c q1+n�(1� a b q1+2n) (1� a b q2+2n) ;Cn = �a c q1+n (1� qn) (1� b qn) �1� a b qnc �(1� a b q2n) (1� a b q1+2n) ;we can rewrite its three term recurrence relation [3] (page 59) in the formPn(x; a; b; c) = [x+ 1�An�1 � Cn�1]Pn�1(x; a; b; c) +Bn�1Pn�2(x; a; b; c); (111)where Bn = An�1Cn. The comparison with (1) givesanumn = �(0)0 q3n = �qab(b+ 1)(a + c)q3n; adenn = �(0)0 q4n = �a2b2q4nand (bnumn )2 = �(0)0 q7n = a4b3cqq7n; (bdenn )2 = 
(0)0 q6n = a4b4q�1q8n:Then, gm = hm = km = lm = 0 for all m = 0; 1; ::N andd0 = 3; e0 = 4; f0 = 7; s0 = 8:This is the case d0 � e0 < 0 and f0 � s0 < 0, i.e., case 2(a)i. Therefore, Eqs. (33) and (34) ofTheorem 3 give us the moments�0m =X(m)F (r01; r1; :::; rj ; r0j+1)q�Pjk=1 kr0k+1�2Pj�1k=1 k�� �(b+ 1)(a+ c)ab �R0 �cb�R 1q�R � q�m ; (112)for the asymptotic density of zeros �(x) de�ned by Eq. (31), and�0m(1) = 8><>: 1 m = 00 m � 1 (113)for the corresponding asymptotic quantity �1(x) given by Eq. (31).
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