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We report computer simulations of an excess electron in various structural motifs of polyethylene
at room temperature, including lamellar and interfacial regions between amorphous and lamellae, as
well as nanometre-sized voids. Electronic properties such as density of states, mobility edges, and
mobilities are computed on the different phases using a block Lanczos algorithm. Our results suggest
that the electronic density of states for a heterogeneous material can be approximated by summing
the single phase density of states weighted by their corresponding volume fractions. Additionally,
a quantitative connection between the localized states of the excess electron and the local atomic
structure is presented. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4869831]

I. INTRODUCTION

Electron trapping (carrier localisation) processes are
of fundamental interest in the chemistry and physics of a
wide range of technologies, for example, in photocatalysis,1

photovoltaics,2, 3 organic thin film transistors (OTFTs), light-
emitting diodes (OLEDs),4 and electrical insulation.5 More
generally, such trapping can profoundly influence electron
transfer processes that are fundamental to energy transfer in
nature.6 Of particular interest, and our focus here, is the na-
ture of trap states in polymeric materials.7 Polyethylene (PE)
is the simplest organic insulator, playing a very important role
in a number of power applications such as high-tension cable
insulation.8 Despite a vast literature concerned with the ex-
perimental characterization of its electrical properties, very
little is known about the details of the electrical behaviour of
this material, and others like it, at the molecular level. An un-
derstanding of the mechanisms of charge trapping and trans-
port in these insulators and how such processes are affected
by local physical structures and chemical impurities could
lead to the development of new materials. Such new materials
could, for example, reduce energy loss in transmission over
long distances and/or allow higher voltages to be used facil-
itating the development of smart grids and safe green energy
transmission.

In recent years some progress has been made in under-
standing the fundamentals of charge trapping and transport in
polyethylene using molecular modelling techniques. In previ-
ous work we identified physical (conformational) and chem-
ical (impurities) traps in model alkane waxes thought to ap-
proximate the local structure of amorphous polyethylene and
characterized them using ab initio methods.9 The resulting

a)Authors to whom correspondence should be addressed. Electronic
addresses: dcubero@us.es and n.quirke@imperial.ac.uk

density of states was employed in a Monte Carlo simulation
to predict the current-voltage characteristics of a model of
polyethylene.10 A more complete treatment of conformational
trapping using a fast Fourier transform block Lanczos diago-
nalization algorithm allowed us to study the electronic states
and mobility of excess electrons in a model of amorphous
polyethylene using a novel pseudo potential for electron–PE
interactions developed by fitting to conduction band energy
data for fluid alkanes.

From our previous simulations,11 while the electronic
states in fluid methane are extended throughout the whole fi-
nite size simulation sample, in amorphous PE there is a tran-
sition between localized and delocalized states around the
vacuum level providing an estimate of the mobility edge in
amorphous PE. The localized states in our amorphous PE
model extended down to −0.33 eV below the vacuum level.

This suggested that voids and amorphous regions trapped
between crystalline phases could constitute very deep traps.
For example, an electron at the bottom of the crystalline con-
duction band (at 0.65 eV) would see a state in a void (at the
vacuum level, V = 0.00 eV) as a trap of depth −0.65 eV and
an amorphous region as containing traps as deep as −(0.65
+ 0.33) eV. Of course if amorphous phases percolated the
PE sample then the trap depth would be the difference be-
tween the ground state and the mobility edge, in previous
work ∼0.33 eV, resulting in a finite mobility at room tem-
perature.

Thus, the behaviour of PE will depend very sensitively on
the local structure of the material and how such structures are
distributed. Nonadiabatic simulations of an excess electron in
amorphous PE at room temperature showed the spontaneous
formation of localized small polaron states in which the elec-
tron was confined in a spherically shaped region with a typical
dimension of 0.5 nm. We computed the self-trapping energy
to be ∼−0.06 eV, with a lifetime on the time scale of a few

0021-9606/2014/140(15)/154902/11/$30.00 © 2014 AIP Publishing LLC140, 154902-1
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tens of picoseconds. The smallness of the self-trapping en-
ergy suggested an adiabatic hopping mechanism assisted by
phonons, as observed in the simulations. The contribution to
the mobility due to hopping between these self-trapped states
may well be of same order of magnitude as the mobility due
to excited electrons above the mobility edge.11

The discussion above has illustrated the importance of
electron transport through extended states in amorphous re-
gions to an understanding of electron transport in PE as
well as the role of conformational disorder in the trapping
of electrons. In this paper we extend our study to include
models of other structural phases of PE including lamella
as well as the interfacial regions of PE between amorphous
and lamella (rather than bulk orthorhombic crystal) regions
and nanometre-sized voids. These interfacial and void struc-
tural motifs are thought to play an important role in dielec-
tric breakdown. Note however that although nanometre sized
holes (average radius, rh = 0.343 nm) are present,12 amount-
ing to 13.2% of the total volume at 300 K in low density
polyethylene (LDPE) from positron lifetime studies,13 the lit-
erature usually considers μm sized voids as initiators of me-
chanical and electrical breakdown.14 Through our simulations
we identify charge-trapping regions in interfacial structures
and look for correlations with local density. We wish to go
beyond a simple characterisation of the trapping as Ander-
son localisation5 to identify, where possible, the microscopic
features that cause the electron to localise in a particular re-
gion or regions. At present a clear connection between a lo-
calisation site and the local atomic structure only exists for
inorganic materials.4 This microscopic structural understand-
ing may permit the design of new synthesis and processing
methods that can produce more resilient and reliable insulat-
ing materials. In what follows we refer to polyethylene phases
(amorphous, lamella, etc.), these should be understood to rep-
resent the regions of metastable polyethylene morphologies
found in the real material. The volume fraction of each phase
present in real materials (high density polyethylene, low den-
sity polyethylene, and others) depends on the processing
history.

The paper is organized as follows: Section II presents
an overview of the methodologies we employ in these stud-
ies including sample preparation, some tests of the reliability
of the model interactions, as well as details of our methods
to compute and characterize the electronic states. Section III
presents our results for how our calculated electronic proper-
ties (densities of states, mobility edges, electronic mobilities,
etc.) depend on the different PE phase, and PE interface nano
morphologies. We also present results that explore the corre-
lation between electronic structure and local free volume in
an attempt to learn how such properties might be engineered
to enhance material properties. Our findings are discussed and
conclusions presented in Sec. IV.

II. METHODOLOGY

A. Polyethylene phases

In this section we review the different types of nanoscale
structures and interfaces that are relevant to modelling realis-

tic, technologically important PE materials. We detail our ap-
proach to sample preparation for our simulation studies in the
supplementary material.15 The model nano structures we con-
sider include pure lamella, amorphous, and crystalline phases,
as well as interfaces such as lamella-amorphous and “holes”
or void spaces that are introduced into the pure phases.

A detailed account of the dominant morphologies of
melt-crystallized polyethylene is given in Ref. 16. Inter-chain
interactions lead to formation of stable folded lamellae struc-
tures. Large-scale mesoscopic spherulite structures form from
packing of lamellae. The spherulite structure is the most
prevalent morphology in the melt-crystallized polyethylene,
which is the common method of producing PE films. The
size of the spherulites generally depends on the details of
the under-cooling process employed during crystallization.17

The diameter of the single spherulite varies considerably from
sizes less than 10 μm to nearly 100 μm depending on a va-
riety of factors such as heat treatment, nucleating agent, and
molecular weight.

An individual spherulite is composed of radiating lamel-
lae structures that are formed at the molecular level by folded
chains. The interfacial regions between these lamellae struc-
tures typically involve layers of amorphous-like material lo-
cated between the folded surfaces of the lamellae. In this pa-
per we use simulation methods to explore the variation of
single electron properties for different typical homogenous
and heterogenous micro structures in PE with the goal of un-
derstanding how such structures influence the bulk insulating
properties of these materials.

The PE simulations reported here assume that the struc-
ture of the material does not relax in the presence of the in-
jected excess charge and that for the purposes of exploring the
single electron states, the underlying heterogeneous structure
of PE is critical. Thus, our simulations are performed using
models of crystalline, lamella and amorphous PE structures
their interfacial regions, and nanovoids. Representative struc-
tures employed in our simulations are presented in Fig. 1. As
suggested above, any given real bulk sample may have amor-
phous, lamella, void and crystalline regions of various sizes
depending on material processing details, molar mass differ-
ences, and a host of other conditions.16, 18, 19

B. Simulation model

All our MD simulations of the different phases of PE em-
ployed a united atom model force field developed by Siep-
mann et al.20 This force field has been used with success to
predict the vapour-liquid equilibrium of long n-alkanes. Con-
stant NPT (at 1 atm and 300 K) simulations each of duration at
least 10 ns and detailed in the supplementary material,15 gave
stable structures for the different model phases. The com-
puted densities from these simulations are reported in Table I
and compare well with the known experimental densities
for PE, for example, the pure crystalline phase has density
1.01 g/cm3, Ref. 21, and high density PE is reported in the
range 0.94–0.97 g/cm3.

Our procedure to generate representative amorphous PE
samples is detailed in the supplementary material15 and
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FIG. 1. This figure shows simulations cells different phases of polyethylene.
(a) amorphous phase; (b) crystalline phase; (c) lamellae phase; (d) lamellae-
amorphous (interfacial parallel); (e) lamellae-amorphous (interfacial perpen-
dicular). Individual polymer chains are each coloured differently for clarity.

TABLE I. Densities of simulated phases.

Phase (300 K) Density (g/cm−3)

Crystalline 1.028
Lamellae 0.958
Interfacial-perpendicular 0.934
Interfacial parallel 0.922
Amorphous 0.860

involved ramping the temperature of an initially prepared
lamellae sample up and down between 300 K and 500 K
at constant pressure over 20 ns. This lamella structure is
in agreement with the morphology recently observed using
torsional-tapping-atomic-force microscopy.22 A broad melt-
ing curve was observed centred around 390 K, in reason-
able agreement with the experimental reported melting tem-
perature (398 K) observed in lamellae phases of blends of
branched and linear PE.14 Super-cooling from this melt at
constant pressure gave our representative amorphous samples
(see Fig. 2). The supplementary material15 also reports vari-
ous structural properties of the different phases and demon-
strates good agreement between our computed static structure
factor and experimental results.

Polyethylene contains a significant fraction (13.2% by
volume, 300 K, LDPE) of nanometre sized holes.12 In or-
der to explore their influence on the electron density of states
in PE we have produced nanometre sized voids in our simu-
lated amorphous phase by expanding a test particle. The de-
tails of these calculations are presented in the supplementary
material.15 In addition to providing representative configura-
tions for our studies of the effects of holes on the density of
states in PE, thermodynamic integration of calculated free en-
ergies yields an estimate of the surface tension of amorphous
PE of 36 mN/M that agrees well with experimental results
35.7 mN/M for unbranched PE23 at 20 ◦C giving us further
confidence that our simulation model gives reliable predic-
tions for the bulk properties and structure of phases of PE.

C. Calculation and characterisation
of electronic states

We have used a block Lanczos diagonalisation
algorithm24 to compute the excess electronic states of
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FIG. 2. Computed densities of states for various PE structural motifs: (a) amorphous (circles), lamellae (pluses), and crystalline (squares and stars) samples;
(b) amorphous, lamellar, and interfacial samples. The crosses and the triangles depict to the density of states of lamellae-amorphous perpendicular and the
lamellae-amorphous parallel interfacial samples, respectively. The solid lines show the pure phase quadratic fits detailed in the text. The dashed line in (b)
shows the DoS obtained by weighting the lamella and amorphous DoS by their volume fraction in the interfacial phase (75%, 25%). The dashed lines (with
triangles) in (a) show the lamellar DoS obtained by weighting the crystalline-amorphous DoS by the estimated volume fractions (87%, 13%) (triangles up)
and (70%, 30%) (triangles down), see the text. All densities of states are computed as averages over 15 independent configurations of the phase, except for the
interfacial states where 20 independent configurations were used. We estimate the statistical error as ±0.05 eV. The zero of energy corresponds to the vacuum
level.11
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the static configurations of different model PE material
motifs generated using the molecular dynamics simulations
outlined above. This approach calculates the excess electronic
state wave functions and energies using a semi empirical
pseudo potential model to describe the excess electron-
molecule interactions.11 We assume that the concentration
of excess electrons is very low, so that correlations between
them can be safely ignored. Details of these calculations
are outlined in the supplementary material.15 The excess
electronic state energies computed for ensembles of rep-
resentative configurations of the different PE phases are
accumulated in histograms giving densities of states (DoS)
per unit energy, in each spin direction, per unit volume, g(E),
for the different phases. These DoS results can be employed
to compute various excess electronic properties such as the
mobility, μ, in the different phases using, e.g., the following
result obtained from the Kubo-Greenwood formula:

μ =πe¯3�β

m2

∫
K2(�,E)g2(E)e−βEdE∫

g(E)e−βEdE
. (1)

Here, � is the system volume, β = 1/kBT, and ¯2K2

= |(px)ij |2av = 1
N2

�

∑
i,j

|〈ψi |px |ψj 〉|2 is the mean square mo-

mentum matrix element between pairs of different states with
similar energy, averaged over all states in the energy interval
� around E. These momentum matrix elements provide our
criterion11 for determining above what energy (the so-called
mobility edge, Ec) the excess electron states become extended
and begin to make non-vanishing contributions to the mo-
bility. Below the mobility edge the excess electronic states
are localized and the momentum matrix elements connect-
ing such localized states vanish so K2 = 0. Extended states
with energies E > Ec, on the other hand, generally have mean
square momenta that are at inversely proportional to the vol-
ume, i.e., K2 ∝ 1/�, resulting in non-zero mobility values that
are independent of volume according to Eq. (1). The criterion
we use to identify extended states11 makes use of the realiza-
tion that for such states the surface flux term

�ij
x (xB) = − i¯

2

∫
x=xB

dydz

(
ψ∗

i

∂ψj

∂x
− ψj

∂ψ∗
i

∂x

)
(2)

dominates the magnitude of the momentum matrix element
〈ψ i|px|ψ j〉 compared to the volume contribution. For local-
ized states �

ij
x (xB) is small compared to the momentum ma-

trix element and it is strongly dependent on the position
of the boundary, xB. Once we reach states with sufficiently
high energy so that �

ij
x (xB) dominates the magnitude of the

momentum matrix elements and it becomes independent of
xB we have identified states with energies at or above the
mobility edge, Ec. Details of the general implementation of
this approach can be found in Ref. 11.

As will be demonstrated in the results section and ob-
served in our earlier work,11 for the single electron PE sys-
tems considered here, the typical range of state energies are
a few tenths of an electron volt and at room temperature kBT
= 0.026 eV. Under these circumstances the exponentials in
the integrals in the numerator and denominator of Eq. (1) de-
cay very rapidly. Consequently, the integral in the numerator
is dominated by the small range of energies around Ec, i.e., Ec

≤ E ≤ Ec + � (where K2 first becomes non-zero), while the
denominator integral is dominated by a similar small range of
energies around E0 (where g(E) first becomes non-zero). With
these approximations it is easy to show11 that the mobility has
the form

μ = μ0 exp[−β(Ec − E0)], (3)

where the activation energy, EA = Ec − E0, is just the gap
between the mobility edge and the ground state energy. Eval-
uating the approximate integrals in the numerator and denom-
inator and taking the limit as � → 0 we obtain the following
explicit form for the pre-factor within the approximations out-
lined above,

μ0 = πe¯3�β3

2m2
K2(�,Ec)g(Ec)(Ec − E0)2, (4)

i.e., the pre-factor depends on the DoS at the ground-state
energy (assumed to vary quadratically as detailed below), its
value at the mobility edge, and the average electron momen-
tum at the mobility edge.11

III. RESULTS

A. Characteristic DoS for different structural motifs

Single electron DoS for various pure phases of PE are
presented in Fig. 2. Starting with the crystalline phase at
T = 1 K on the right hand, high energy, side of Fig. 2(a), the
DoS generally shift progressively to lower energy as the PE
density decreases and/or disorder increases. For the low tem-
perature perfect crystal all states are extended and the energy
of the lowest state, E0, and the energy of the lowest extended,
or conducting state, Ec (the mobility edge) coincide and E0

= Ec = +0.6 eV corresponding to the bottom of the conduc-
tion band, consistent with our earlier calculations.11 Increas-
ing the temperature to T = 300 K shifts the crystalline phase
DoS down in energy so that the lowest energy state now has
E0 ≈ +0.18 eV and creates a set of localised states below
the mobility edge at Ec = +0.46 eV as indicated by the ver-
tical line separating localized and delocalized states as deter-
mined by our criterion based on Eq. (2). This value is in ex-
cellent agreement with the value of +0.5 ± 0.1 eV usually
quoted for the bottom of the conduction band in low density
PE from low-energy electron transmission and secondary-
electron emission experiments on long chain alkanes at room
temperature.25 Note however that we have shown that the con-
duction states are different in crystalline PE and long chain
alkanes as in crystalline PE the conduction state is inter-chain
while in the long chain alkane it is interlayer,11 so it is not
clear that the energy of the bottom of the conduction band
in crystalline (or lamella) PE is known from experiment. The
low energy initial rise of the DoS for the crystalline phase at
room temperature can be fitted to the quadratic form gcrys(E)
= 14.6(E − E0)2 eV−1 × 1021 cm−3, with E0 = +0.18 eV, and
the difference in energy between states at the mobility edge
and the localised ground state energy, the activation energy
for transport, is E

crys

A (T = 300 K) = (Ec − E0) ≈ +0.28 eV.
This is somewhat larger than the ≈0.1 eV found for elec-
trons trapped at 300 K in trans-gauche crystal defects by Serra

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

150.214.230.47 On: Wed, 03 Jun 2015 14:56:33



154902-5 Wang et al. J. Chem. Phys. 140, 154902 (2014)

et al.26 using Car-Parrinello techniques, however the present
system is much larger (2100 CH2 units compared to 56) so it
can in principle accommodate a wider range of thermal disor-
der. Further, these Car-Parrinello calculations allow the crys-
talline PE configuration to relax in the presence of the ex-
cess electron where as our studies ignore this relaxation. A
contribution to this difference could also come from the ap-
proximate BLYP functional employed in the Car-Parrinello
calculations which we expect to be less reliable than the semi-
empirical pseudo potential we use in our calculations which is
fitted to reproduce the density dependence of the ground state
energy in a variety of liquid alkanes.

The introduction of folded chains in the lamellae phase
at T = 300 K causes an even more significant shift of the DoS
down in energy by a further ≈0.5 eV relative to the 300 K
crystal phase, making the lamella ground state E0 = −0.3 eV
at this temperature, with the mobility edge at Ec = +0.09 eV.
So the activation energy for transport is Elam

A (T = 300K)
= (Ec − E0) ≈ +0.39 eV and the low energy tail of the DoS
can be fitted by a significantly more shallow rising quadratic
form, glam(E) = 5.4(E − E0)2 eV−1 × 1021cm−3. Lower-
ing the PE density to that of the pure amorphous phase at
T = 300 K further shifts the DoS to lower energy so that
the ground state is now at E0 = −0.37 eV, and the low en-
ergy tail of the DoS has the form gam(E) = 15(E − E0)2 eV−1

× 1021cm−3, with the mobility edge at Ec = −0.1 eV,
making the activation energy for transport in the room
temperature amorphous phase Eam

A (T = 300K) = (Ec − E0)
≈ +0.27 eV. These quadratic fits of the DoS are used in the
mobility calculations reported in Sec. III B, and as such only
cover the energy interval from the ground-state to the mobility
edge.

The results presented in Fig. 2 suggest a rule of thumb
that apparently applies quite generally for the excess electron
states in these different PE phases. Once the DoS reaches a
critical value above about 1 eV−1 × 1021 cm−3 we see the on-
set of extended states as signaled by our delocalization cri-
terion in Eq. (2) and the establishment of a mobility edge.
This observation is consistent with the significantly larger
activation energy, EA, for excess electron transport in the
lamellar phase of PE compared to that for the crystal or amor-
phous phases reported above. This occurs because the cur-
vature of the initial quadratic rise of the DoS is about three
times greater for the crystal and amorphous phases compared
to the much slower rise in the DoS for the lamellar phase
as is clearly apparent in Fig. 2. As a result, in the lamellar
phase, we do not reach the extended states till an activation
energy of Elam

A = +0.39 eV, i.e., more than 40% larger than
the typical activation energies found in the crystal and amor-
phous phases (Ecrys/am

A ≈ 0.27−0.28 eV). As we will see in
Sec. III B, these differences in the variation of the DoS with
energy have a profound influence on the excess electron mo-
bility in the different phases of PE.

It might be thought that the interfacial DoS would be in-
termediate between the lamellar and amorphous phases, with
the ground state close to that of the pure amorphous phase
(where it has its lowest value). Instead, however, we find
that the lowest energies are slightly lower than those found
the amorphous phase. On the other hand, the DoS at higher

energies follows approximately that obtained by weighting
the lamellar and amorphous DoS by their volume fraction in
the interfacial phase (75%, 25%), especially the interfacial-
perpendicular setup, see the dashed line in Fig. 2(b). A larger
fraction of amorphous phase is needed, however, for a better
fit in the interfacial-parallel case, which is not unreasonable
given the amount of lamellar distortion shown in Fig. 1(d).

To summarize, in this section we have found that the
overall position of the DoS in energy for PE is predominately
influenced by the atomic density with the ground state energy
decreasing as the solvent density decreases (see Table I). The
shape of the DoS, however, shows a significant dependence on
the nature of the local structure of the particular phase of PE.
In Sec. III B we will explore how the variation in the shape
of the DoS has a profound influence on the excess electron
mobility of the different PE phases so that the mobility is not
at all a simple function of PE density.

B. Dependence of excess electron mobility
on local PE structure

The electrical conductivity of each phase can be calcu-
lated from the DoS using the Kubo-Greenwood formula as
outlined in Sec. II.11 For our single electron PE systems at
room temperature, the activation energies for transport in the
various phases reported above, and summarized in Table II be-
low, are all significantly larger than the thermal energy (kBT
= 0.02585 eV), i.e., EA = (Ec − E0) � kBT. Under these cir-
cumstances, as outlined in Sec. II,11 the mobility can be com-
puted using the simplified expressions in Eqs. (3) and (4).

In Table II we list the ground state, mobility edge, and ac-
tivation energies as well as the mobilities of each phase, com-
puted using the quadratic fits reported in Sec. III A. Note that
the pseudo-potential energy resolution produces an uncer-
tainty in the mobility of about one order of magnitude, due to
the exponential dependence of the mobility on the activation
energy. Nevertheless, we expect these values to be meaning-
ful for comparison purposes between phases. Remarkably, the
excess electron mobilities in the crystalline and amorphous
phases at room temperature are very similar. However, in the
lamellar phase, despite displaying the largest pre-exponential
factor, μ0, due to the significantly larger activation energy re-
quired to take an electron from the ground-state to states at
the mobility edge in the lamellar phase, the computed elec-
tron mobility in this phase is some 40 times smaller than the
electron mobilities calculated for the room temperature amor-
phous or crystalline phases.

The results presented in Figures 3–5 give a microscopic
structural understanding of the origin of this significantly

TABLE II. Electron ground state, (E0), mobility edge, (Ec), and activation
energies, (EA), mobility pre-exponential factors, (μ0), and mobilities, (μ), at
room temperature (kBT = 0.02585 eV).

Phase (300 K) E0 (eV) Ec (eV) EA (eV) μ0 (cm2/V s) μ (cm2/V s)

Crystal 0.18 0.46 0.28 394 0.0080
Lamella − 0.3 0.09 0.39 534 0.0002
Amorphous − 0.37 − 0.1 0.27 223 0.0070
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FIG. 3. (a) Colour contour plot of local atomic density in a slab from a lamellar phase simulation box that contains the lowest few energy states. Panels (b) and
(c) show color contour plots of the electron density for the ground and excited state, respectively, in this lamellar phase slab. These low lying trap states form at
the simulated interface between adjacent lamella.

reduced mobility of the lamellar phase compared to that in
the crystal or amorphous phases. In our simulation model of
a typical configuration of the lamellar phase (Fig. 3(a)) we
see an extended region of significantly reduced atomic density
between the higher density lamellar layers. From the electron
density contour plots in Figs. 3(b) and 3(c) it is clear that the
lowest energy states are trapped in this inter-lamellar region
that runs transverse to the orientation of the molecules in the
lamellar regions. For this configuration the inter-lamellar re-
gion lies in the x-y plane and is 1–1.5 nm in thickness in the
z-direction, stretching from around z = 2.0 to z = 3.5 nm in
these figures. Figure 4 presents results for the same lamel-
lar configuration as in Fig. 3 except that it focuses on the
lowest energy state in this configuration that is delocalized
over the length scale of the lamellar simulation as determined
by the criterion associated with Eq. (2). In Fig. 4(c) we see
that the first extended state at the mobility edge is elongated
along the x-direction. Figures 4(a) and 4(b) present color con-
tour maps of the atomic density and the excess electronic
pseudo-potential projected onto the slab containing this first
extended electronic state. The striations of high atomic den-
sity and electron-molecule repulsion associated with the lay-

ers of polymer and the ragged channel formed at the interface
along which this state extends are evident.

According to the discussion of Sec. III A the mobility
is determined primarily by thermal excitation from the low
energy states localized in the inter-lamellar region to the ex-
tended states at the mobility edge that are apparently also
confined to the inter-lamellar channel. For our estimates of
mobility to be reliable we assume that such typical channel-
like inter-lamellar structures that support these lowest energy
extended states are macroscopic in size, i.e., these channel
structures percolate along the length of the macroscopic in-
terface and electrons that enter such inter-lamellar structures
with sufficient energy (above the mobility edge) will undergo
macroscopic transport here.

Comparing the atomic density contour plots in the lamel-
lar regions of Figs. 3(a) or 4(a) with those for the crys-
talline phase displayed, for example, in Figs. 5(a) and 6(a)
we see that the dense lamellar regions show strong local or-
dering, similar to the layered oriented polymer chain struc-
ture observed in the room temperature crystalline phase. Con-
sequently, considering the DoS plots in Fig. 2(a), there is a
significant energy barrier of almost 0.75 eV to take electrons

FIG. 4. Same lamellar configuration and information as in Fig. 3 but now showing details of the slab in which the first extended state (state 11) is observed.
These extended states also form at the simulated interface between adjacent lamella.
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FIG. 5. (a) Color contour plot showing local atomic density in a slab from a room temperature crystal phase simulation box that contains the lowest energy
state. (b) Pseudo potential energy contour plot for this slab. (c) Contour plot of ground state electron density in this room temperature crystal phase slab.

from the lowest energy states supported by the inter-lamellar
region (at around −0.3 eV), and inject them into the conduct-
ing states of the crystal-like lamellar regions that are typically
near energies of about +0.45 eV (assuming that the lamella
have similar electronic properties to the crystal). The acti-
vated mobility of the lamellar structured material thus arises
from exciting localized states that are trapped within the inter-
lamellar region, to extended states, e.g., Fig. 4(c), that are also
confined to these inter-lamellar regions. Thus, our calcula-
tions suggest that excess electrons in lamellar structured PE at
typical thermal energies are confined to states that occupy the
inter-lamellar regions. If we approximate the inter-lamellar
region by the same volume of the amorphous phase and the
intra-lamellar region by the room temperature crystal, we can
predict the lamellar DoS as shown in Figure 2(a). As the crys-
tal DoS does not start until energies well above the mobility
edge of the lamella phase, the lamella DoS is given only by the
amorphous DoS multiplied by the amorphous volume fraction
in the inter-lamella phase. The triangles in Fig. 2(a) show the
predictions with two different estimations. Before equilibra-
tion, the length of the intra-lamellar region is easily measured
from the length of the all-trans chains as 5.01 nm. Dividing
this length by the size of the NPT-equilibrated simulation box

in the direction of the chains leads to an estimation of the
crystalline-amorphous volume fraction of (87%,13%), which
is shown with triangles-up in Fig. 2(a). Like in the interfacial
DoS prediction, this method underestimates the real amount
of disorder present in the configuration, a fact that is also con-
firmed by simple inspection of Figs. 3(a) and 4(a). A sim-
ple approximate estimation of (70%, 30%) for the crystalline-
amorphous volume fraction based on these representations
produces the triangle-down data shown in Fig. 2(a).

Figures 5 and 6 present the wave function, local atomic
density and excess electron pseudo potential for the ground
and first extended state of a typical room temperature crys-
talline PE configuration. The energy required to promote elec-
trons from the localized low energy states in the crystal,
where thermal disorder along the chains give rise to poten-
tial energy barriers that “pinch off” the low energy localized
wave functions (see, e.g., Fig. 5(c)), to extended, conducting
states of the room temperature crystalline configurations (e.g.,
Fig. 6(c)) is typically EA ≈ 0.3 eV in this higher density mani-
fold of states. This is to be compared with excitation between
localized and extended states in the confined inter-lamellar
region with its more sparse manifold of low energy states
where EA ≈ 0.4 eV. These structural differences thus result

FIG. 6. Same quantities as in Fig. 5 computed for the same configuration except here results are displayed for the first extended state for this configuration as
determined by criterion associated with Eq. (2).
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FIG. 7. (a) Colour contour plot showing local pseudo potential energy in a slab from a room temperature amorphous phase simulation box that contains the
lowest few energy states. Panels (b) and (c) show the contour plot of the ground and first excited state electron density in this amorphous phase slab.

in the considerable difference in electron mobility we have
observed between the heterogeneous lamellar phase and the
homogenous phases.

Interestingly, in the amorphous, lowest density phase
(see Fig. 7) we see a similar pattern of states to that of the
room temperature crystal involving low energy states local-
ized in different regions, transitioning to higher energy ex-
tended states (see Fig. 8) in which the electron density perco-
lates throughout the porous-like three dimensional homoge-
nous amorphous structure. The activation energy for transport
in the crystal and amorphous phases is thus similar, while the
nanostructured heterogeneity at the inter-lamellar boundaries
in the lamellar phase gives a more dilute manifold of states
in this confined region that leads to the larger activation ener-
gies responsible for the dramatic reduction in excess electron
mobility in the lamellar phases compared to the homogenous
crystalline or amorphous phases.

C. Localization and local properties of polyethylene

We now turn to the relationship between the local proper-
ties of polyethylene and the localization region of the electron.
Currently there is no way of predicting where an electron will

localize except by solving the Schrodinger equation. How-
ever several authors have noted an association with regions
of lower atomic density and our simulations show that, for
example, ground state electrons localize preferentially in re-
gions of polyethylene with a local density (calculated at each
grid point in a cubic volume of side 0.5 nm centred on the ex-
cess electron grid points as the number of atoms with centres
in the cube) ∼25% lower than the mean density for the non-
crystalline phases. Localisation lengths vary but are ∼0.5 nm
in the low energy regions and we know from positron annihi-
lation experiments that a significant fraction of the free vol-
ume of polyethylene is made up of cavities with radii smaller
than 0.5 nm.

We have measured the free volume distribution in
the homogeneous phases by identifying first local cavities
in the material, and then assigning them a cavity radius. Using
the excess-electron grid lattice, we located cavities by look-
ing for grid points at local minima of the atomic density. The
cavity radius was computed by averaging over the distance
from the grid point to the carbons, which are closer than the
position given by the first peak of the radial distribution func-
tion. Due to the cavity radius definition and PE microscopic
structure (the carbon-carbon bond distance is 0.15 nm), the

FIG. 8. Same amorphous configuration as in Fig. 7 only now focusing on a region around the first extended excited state. Colour contour plots showing (a)
local atomic density, (b) local pseudo potential energy, and (c) probability density of the first extended state in this amorphous phase slab.
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FIG. 9. Number cavity density f (r) as a function of the average cavity radius
for amorphous (diamonds), lamellae (triangles up), and crystalline (triangle
down) at room temperature. The solid lines indicate the Gaussian fits that
are used for the data shown in Fig. 12. Note these distributions are similar
to but not directly comparable with those estimated from positron lifetime
spectroscopy.13

smallest cavity possible involves two carbons, resulting in an
average cavity radius of about 0.2 nm, the minimum radius
detected with this method.

Figure 9 shows the calculated number of cavities per unit
of volume and unit of radius in amorphous, lamellar, and crys-
talline samples at room temperature. The data have been av-
eraged over 15 configurations in each phase. A larger number
of cavities of larger radius are found in the phases with the
greater disorder, as expected.

Since the lowest energy levels of the excess electron are
usually found in regions displaying low values of the local
atomic density, it is tempting to associate each localized state
with a cavity. Figure 10 shows the resulting localised energy
function for each phase. Cavities were assigned by finding
the nearest to the center of mass of the localized state. It can
be seen in the figure that the data for the unperturbed phases
matches naturally with the energies associated with artificial
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FIG. 10. Energies of the localized states as a function of the average cavity
radius in amorphous (diamond), lamellae (triangle up), and crystalline (trian-
gle down) phases at room temperature. The solid line is a linear fit to a poly-
nomial of degree 4, being piecewise defined through the three bulk phases.
The crosses correspond to the ground-state energies of the electronic states
sitting at artificial cavities.

cavities. These large artificial and spherical cavities were gen-
erated in the simulations by introducing an extra particle with
a Gaussian repulsive interaction with the PE carbons which is
removed from the simulation once the cavity has formed.

Given the energy as a function of the cavity radius, the
next step is to calculate the electronic density of states from
the measured cavity density f (r). Associating a localized state
of energy E with a single cavity of radius r leads to a pre-
diction of the DoS given by g(E) = f (r)dr/dE. However, as-
suming a 1:1 relationship between a cavity and an electronic
localized state yields a clear overestimation of the density of
states: From a factor of 2 or 3 in the amorphous and lamella
phases, to an order of magnitude larger in the crystalline
phase. In other words, there are fewer states than cavities.
The reason for this can be easily understood by looking at
Fig. 11, where the localization length, L = (〈r2〉 − 〈r〉2)

1
2 , is

plotted as a function of the cavity radius. This length is about a
quarter of the real wave-function extent in space. To see this,
let us assume that the wave function has the same form as
the ground-state of an electron in a spherical infinite square
well of radius rL. Then, the localization length would be
L = 0.53rL. We consider rL = 2L as a good estimation of
the electronic radius in our simulations. Indeed, the probabil-
ity that the electron is inside a sphere, centered at the centre of
mass of the localized state, with radius r = L is usually about
70% in our simulations, whereas most of the remaining prob-
ability (up to a total of about 96%) is in the region between
r = L and r = 2L.

In all cases, the electronic radius rL = 2L is much larger
than the cavity radius r. Rather than just penetrating inside the
cavity surface, each electronic state is usually sitting at more
than one cavity, invalidating the assumed 1:1 correspondence
between cavities and localized states. However, for a given lo-
calization length the associated cavities were of similar sizes.

We can use this observation to provide a correction to
the predicted density of states from the cavity distribution.
For each localized state of radius rL centered at a cavity of
radius r0, there will be a number of extra cavities in the region
r0 < r < rL. Let us denote as N the number of those extra
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FIG. 11. Localization length, L = (〈r2〉 − 〈r〉2)
1
2 , as a function of the aver-

age cavity radius for the same phases as in Fig. 10. The solid line is a linear
fit of the data excluding the artificial cavities, used for the estimation of the
number of extra cavities according to Eq. (5).
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cavities with radii large enough that localized states can be
associated with them, i.e., cavities with radii larger than rc,
the cavity radius associated with the mobility edge Ec. We are
interested on the total number of extra cavities which are over-
counted per cavity in the prediction of the number of localized
states. A simple estimation is given by the formula

N = 4π

3

(
rL

3 − r3) ∞∫
rc

f (r)dr, (5)

where rL = ∫ ∞
rc

rL(r)f (r)dr/
∫ ∞
rc

f (r)dr and r

= ∫ ∞
rc

rf (r)dr/
∫ ∞
rc

f (r)dr are averages over the cavity
distribution. The estimated density of states can then be
corrected by dividing by the average number of cavities asso-
ciated with each state, i.e., dividing the predicted density of
states by 1 + N . Using the linear fits indicated by solid lines
in Figs. 9–11, we obtained N = 0.93, 1.4, and 28.4 in the
amorphous, lamellar, and crystalline samples, respectively.
The average localization lengths in each Cartesian direction
show a clear anisotropy in the crystalline samples. With the
axes chosen with the z-axis running parallel to the PE chains
in this phase, we obtained Lx = 0.29 nm, Ly = 0.40 nm,
and Lz = 0.51 nm. However, the resulting correction,
N = 33.6 is similar to the value obtained assuming an
isotropic symmetry. The calculation involves replacing the
spherical electronic volume in Eq. (5) by its Cartesian coun-
terpart, 4πr3

L/3 → 8LxLyLz/0.363 (the factor 0.36 comes
from the infinite square well model in Cartesian coordinates).

The resulting curves are shown in Fig. 12. Very good
agreement is found between the direct count and the predic-
tion from the density of states, even in the crystalline case,
where the geometry is not isotropic. This is surprising, given
the amount of scatter in the linear fit of Fig. 11 and the ap-
proximate nature of Eq. (5).

IV. DISCUSSION AND CONCLUSION

Our simulations of the behaviour of an excess electron
in the various structural motifs of polyethylene show that at

room temperature the electron finds a rapidly rising density
of states with a mobility edge separating localised from delo-
calised states. As more disorder is introduced into the struc-
ture (say from crystal to amorphous), the ground state moves
from +0.18 eV to −0.37 eV, with a proportionate reduction
in the energy of the mobility edge. The density of states of
the interfacial phases (lamellae-amorphous perpendicular and
the lamellae-amorphous parallel) can be predicted by taking
the DoS of each bulk phase and multiplying by the volume
fraction of each phase present. Moreover, the lamella phase
DoS, below the mobility edge, can itself by approximated by
multiplying the inter-lamella volume fraction by the amor-
phous density of states so that a knowledge of the just the
crystalline and amorphous density of states is sufficient to re-
produce the DoS of all the interfacial phases. This suggests
that the density of states for a heterogeneous material can be
approximated by summing the single phase DoS weighted by
their volume fractions in the material.

Another striking result is the low mobility of the elec-
tron in the lamella phase compared to the bulk amorphous
and crystalline regions, which we can understand physically
as arising from confining the relevant electron states to a small
inter lamella region of the total volume. Although not calcu-
lated here, we would expect a similar low mobility for the
other interfacial phases.

Furthermore, by associating the localized electron states
with one or more sub nanometer cavities in polyethylene we
are able to predict the density of states in a given motif, cre-
ating for the first time a quantitative link between the local
properties of the polymeric material and the localized states
of an excess electron.

Finally, let us note that the simulations reported here ig-
nore polaronic effects,11 i.e., the distortion of the molecu-
lar configuration due to the presence of the excess electron.
This does not affect our mobility calculations, since they are
based on conduction though extended states, where the elec-
tron propagates fast enough so that the distortion of the (slow)
molecules can be neglected and the delocalization of the elec-
tron in these states results in weak distorting forces on the
nuclear framework. This is not the case for localized states, as
shown in Ref. 11 for an excess electron in bulk amorphous PE,
where the ground-state energy and localization length were
observed to decrease by a small amount (of roughly about
0.1 eV and 0.2 nm, respectively) as the electron self-traps it-
self. This is not relevant, however, to the description of the
(mainly excited) states available to excess electrons before
they actually occupy them, and their relationship with the lo-
cal properties of the polymeric material. But it remains to be
seen how polaronic effects affect the dynamics of the electron
at the interfaces. This is the subject of on-going investigation.
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