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Abstract. In this paper, we consider a stochastic lattice differential equation with diffusive nearest
neighbor interaction, a dissipative nonlinear reaction term, and a multiplicative white noise at each
node. We prove the existence of a compact global random attractor which pulled back attracts
tempered random bounded sets.

1. Introduction

This paper is devoted to the long term behavior of the following stochastic lattice differential
equation

(1.1)
dui(t)

dt
= ν(ui−1 − 2ui + ui+1)− λui − fi(ui) + gi +

N∑

j=1

cjui ◦ dwj(t)
dt

, i ∈ Z,

where u = (ui)i∈Z ∈ `2, Z denotes the integer set, ν and λ are positive constants, fi is a smooth
function satisfying a dissipative condition, g = (gi)i∈Z ∈ `2, cj ∈ R, for j = 1, ..., N, and wj are
mutually independent Brownian motions, where ◦ denotes the Stratonovich sense in the stochastic
term.

Stochastic lattice differential equations arise naturally in a wide variety of applications where the
spatial structure has a discrete character and uncertainties or random influences, called noises, are
taken into account. These systems are used to model such systems as cellular neural networks with
applications to image processing, pattern recognition, and brain science [15, 16, 17, 18]. They are
also used to model the propagation of pulses in myelinated axons where the membrane is excitable
only at spatially discrete sites. In this case, ui represents the potential at the i-th active site; see
for example, [7], [8], [39], [36], [30, 31]. Lattice differential equations can also be found in chemical
reaction theory [24, 28, 33]. Equation (1.1) is a one-dimensional lattice system with diffusive nearest
neighbor interaction, a dissipative nonlinear reaction term and a multiplicative white noise at each
node. This may be the result of an environmental effect on the whole domain of the system. The
system with an additive noise was studied in Bates et al. [5].

Recently, there are many works on deterministic lattice dynamical systems. For traveling waves,
we refer the readers to [11, 34, 12, 42, 1, 4] and the references therein. The chaotic properties of
solutions for such systems have been investigated by [11] and [14, 40, 13, 22]. In the absence of the
white noise, the existence of a global attractor for lattice differential equation (1.1) was established
in [6].
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The study of global random attractors was initiated by Ruelle [37]. The fundamental theory
of global random attractors for stochastic partial differential equations was developed by Crauel,
Debussche, and Flandoli [20], Crauel and Flandoli [21], Flandoli and Schmalfuss [26], Imkeller
and Schmalfuss [27], and others. Due to the unbounded fluctuations in the systems caused by
the white noise, the concept of pull-back global random attractor was introduced to capture the
essential dynamics with possibly extremely wide fluctuations. This is significantly different from
the deterministic case.

In the present paper, we prove the existence of a global random attractor for the infinite dimen-
sional random dynamical system generated by the stochastic lattice differential equation (1.1). An
interesting feature of this is that, even though the spatial domain is unbounded and the solution
operator is not smoothing or compact, unlike parabolic type of partial differential equations on
bounded domains, bounded sets of initial data converge, in the pullback sense, under the forward
flow to a random compact invariant set. The noise involved here is multiplicative. The domain of
attraction is the set of all tempered sets as used in [26] instead of all bounded deterministic sets.

It is worth mentioning that, although it is known that finite dimensional stochastic differential
equations generate random dynamical systems (see Arnold [2] Chapter 1), this is not true in general
for infinite dimensional equations. However, for particular kinds of noise it is possible to transform
the stochastic differential equation into a random one so that it generates a random dynamical
system. For general types of noise it is unknown whether this is possible.

In Section 2, we introduce basic concepts concerning random dynamical systems and global
random attractors. In Section 3, we show that the stochastic lattice differential equation (1.1)
generates a infinite dimensional random dynamical system. The existence of the global random
attractor is given in Section 4.

2. Random Dynamical Systems

In this section, we introduce basic concepts related to random dynamical systems and the concept
of attractor, which are taken from [2] and [26].

Let (H, ‖ · ‖H) be a Hilbert space and (Ω,F ,P) be a probability space.

Definition 2.1.
(
Ω,F ,P, (θt)t∈R

)
is called a metric dynamical system, if θ : R × Ω → Ω is

(B(R) × F ,F)-measurable, θ0 is the identity on Ω, θs+t = θt ◦ θs for all s, t ∈ R and θtP = P for
all t ∈ R.

Definition 2.2. A stochastic process
(
ϕ(t)

)
t≥0

is a continuous random dynamical system

over
(
Ω,F ,P, (θt)t∈R

)
if ϕ is (B[0,∞)×F × B(H),B(H))-measurable, and for all ω ∈ Ω

(D1) the mapping ϕ(·, ω, ·) : [0,∞)×H → H is continuous,
(D2) ϕ(0, ω, ·) is the identity on H,
(D3) ϕ(s + t, ω, ·) = ϕ(t, θsω, ·) ◦ ϕ(s, ω, ·) for all s, t ≥ 0 (cocycle property).

As we mentioned in the introduction, it is known that finite dimensional stochastic differential
equations generate random dynamical systems (see Arnold [2] Chapter 1). This is not true in
general for infinite dimensional equations. However, for particular kinds of noise, as will be our
case, we can apply the following simple lemma to obtain a random dynamical system (see Caraballo
et al. [9]).
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Lemma 2.3. Let ψ be a random dynamical system. Suppose that the mapping T : Ω × H → H
possesses the following properties: For fixed ω ∈ Ω, the mapping T (ω, ·) is a homeomorphism on
H, and for fixed x ∈ H, the mappings T (·, x), T−1(·, x) are measurable. Then the mapping

(2.1) (t, ω, x) → ϕ(t, ω, x) := T−1(θtω, ψ(t, ω, T (ω, x)))

is a (conjugated) random dynamical system.

The measurability of ϕ follows because of the properties of T . Later on we will transform our
stochastic evolution equation containing a noisy term into an evolution equation without noise but
with random coefficients.

Definition 2.4. A set A ⊂ Ω is called invariant with respect to (θt)t∈R if for all t ∈ R it holds

(2.2) θ−1
t A = A.

Definition 2.5. A random set A(ω) is a multi-valued map A : Ω → 2H \ ∅ such that, for every
x ∈ H, the map ω 7→ d(x,A(ω)) is measurable. It is said that the random set is bounded (resp.
closed or compact) if A(ω) is bounded (resp. closed or compact) for almost all ω ∈ Ω.

Definition 2.6. A random bounded set B(ω) ⊂ H is called tempered with respect to (θt)t∈R if for
a.e. ω ∈ Ω

(2.3) lim
t→∞ e−βtd(B(θ−tω)) = 0 for all β > 0,

where d(B) = sup
x∈B

‖x‖H .

We consider a continuous random dynamical system (ϕ(t))t≥0 over (Ω,F ,P, (θt)t∈R) and D a col-
lection of random subsets of H.

Definition 2.7. A random set K is called an absorbing set in D if for all B ∈ D and a.e. ω ∈ Ω
there exists tB(ω) > 0 such that

(2.4) ϕ(t, θ−tω, B(θ−tω)) ⊂ K(ω) for all t ≥ tB(ω).

Definition 2.8. A random set A is called a global random D attractor (pullback D attractor)
for ϕ if the following hold:

(A1) A is a random compact set;
(A2) A is strictly invariant, i.e. for a.e. ω ∈ Ω and all t ≥ 0 one has ϕ(t, ω,A(ω)) = A(θtω);
(A3) A attracts all sets in D, i.e., for all B ∈ D and a.e. ω ∈ Ω we have

(2.5) lim
t→∞ d(ϕ(t, θ−tω, B(θ−tω)),A(ω)) = 0,

where d(X,Y ) = sup
x∈X

inf
y∈Y

‖x− y‖H is the Hausdorff semi-metric (here X ⊆ H, Y ⊆ H).

The collection D is called domain of attraction of A.

Some possibilities for domains D of attraction used very often in the investigation of random
attractors are the following:

1) the collection of all finite deterministic subsets of H (in this case the random D attractor
is called a point attractor);

2) the collection of all compact deterministic subsets of H (in this case the random D attractor
is called a set attractor);
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3) the collection of all tempered random subsets of H.
Examples of point attractors and set attractors can be found in [38], [19] and also in [2] (Theorem

9.3.3 pp. 484, Lemma 9.3.5 pp. 485). The results on random D attractors, where D is the collection
of tempered random sets, can be found in [25], [26], [27].

The next proposition is an abstract result on the existence of global random attractor, which is
a slight generalization of Theorem 3.5 on pg. 27 in [26] (see [5] for the proof). Although it may
be possible to apply a more general result from Caraballo et al. [10], the following one will fit our
purposes.

Proposition 2.9. Let K ∈ D be an absorbing set for the continuous random dynamical system
(ϕ(t))t≥0 which is closed, and which satisfies for a.e. ω ∈ Ω the following asymptotic compactness
condition: each sequence xn ∈ ϕ(tn, θ−tn ,K(θ−tnω)) with tn →∞ has a convergent subsequence in
H. Then the cocycle ϕ has a unique global random attractor

A(ω) =
⋂

τ≥tK(ω)

⋃

t≥τ

ϕ(t, θ−tω,K(θ−tω)).

3. Stochastic Lattice Differential Equations

We consider a stochastic lattice differential equation

(3.1)
dui(t)

dt
= ν(ui−1 − 2ui + ui+1)− λui − fi(ui) + gi +

N∑

j=1

cjui ◦ dwj(t)
dt

, i ∈ Z,

where u = (ui)i∈Z ∈ `2, Z denotes the integer set, ν and λ are positive constants, fi is a smooth
function satisfying a dissipative condition, g = (gi)i∈Z ∈ `2, cj ∈ R, for j = 1, ..., N, and wj are
mutually independent two-sided Brownian motions on the same probability space (Ω,F ,P).

We note that equation (3.1) is interpreted as a system of integral equations

ui(t) = ui(0) +
∫ t

0
(ν(ui−1(s)− 2ui(s) + ui+1(s))− λui(s)− fi(ui(s)) + gi)ds(3.2)

+
∫ t

0

N∑

j=1

cjui(s) ◦ dwj(t), i ∈ Z,

where the stochastic integral is understood in the sense of Stratonovich.

Assumptions on the nonlinearity fi: Let fi ∈ C1(R) satisfy that supi∈Z |fi
′(u)| is bounded

for u in bounded sets and

(3.3) fi(x)x ≥ 0 for all x ∈ R.

We note that condition (3.3) implies fi(0) = 0. If fi(s) =
p∑

j=0

ajs
2j+1 with aj ≥ 0 for each

j = 0, . . . , p, then conditions (3.3) is satisfied. This kind of nonlinearity was considered in [11] and
[22].
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For convenience, we now formulate system (3.1) as a stochastic differential equation in `2. Denote
by || · || the norm in the space `2, and by B,B∗, Cj , j = 1, ..., N, and A the linear operators from `2

to `2 defined as follows. For u = (ui)i∈Z ∈ `2,

(Bu)i = ui+1 − ui, (B∗u)i = ui−1 − ui, (Cju)i = cjui

and
(Au)i = −ui−1 + 2ui − ui+1 for each i ∈ Z.

Then we find that
A = BB∗ = B∗B,

and
(B∗u, v) = (u,Bv) for all u, v ∈ `2.

Therefore (Au, u) ≥ 0 for all u ∈ `2.
Let f̃ be the Nemytski operator associated with fi, that is, for u = (ui)i∈Z ∈ `2, let f̃(u) =

(fi(ui))i∈Z. Then we have

(3.4) ‖f̃(u)‖2 =
∑

i∈Z
|fi(ui)|2 =

∑

i∈Z
|fi(ui)− fi(0)|2 =

∑

i∈Z
|f ′i(ξi)|2|ui|2,

with ξi = τiui for some τi ∈ (0, 1). Since

|ξi| ≤ |ui| ≤ ‖u‖
and supi∈Z |f ′i | is bounded on a bounded set, it follows that there exists a constant µ (depending
on ‖u‖) such that

‖f̃(u)‖2 ≤ µ
∑

i∈Z
|ui|2 = µ‖u‖2,

which means f̃(u) ∈ `2.
Similar to (3.4), one can see that f̃ is locally Lipschitz from `2 to `2, more precisely, for every

bounded set Y in `2, there exists a constant CY (depending only on Y ) such that

‖f̃(x)− f̃(y)‖ ≤ CY ‖x− y‖ for all x, y ∈ Y.

In the sequel, when no confusion arises we identify f̃ with f .
The system (3.1) with initial values u0 ≡ (u0,i)i∈Z ∈ `2 may be rewritten as an equation in `2

for t ≥ 0 and ω ∈ Ω,

(3.5) u(t) = u0 +
∫ t

0
(−νAu(s)− λu(s)− f̃(u(s)) + g)ds +

N∑

j=1

∫ t

0
Cju(s) ◦ dwj(t).

To prove that this stochastic equation (3.5) generates a random dynamical system, we will transform
it into a random differential equation in `2. This can be done thanks to the special form of the
stochastic term.

Before performing this transformation, we need to recall some properties of the Ornstein-Uhlenbeck
processes. Let us start by describing a probability space (Ω,F ,P) which will be useful for our anal-
ysis. Consider

Ω = {ω ∈ C(R,R) : ω(0) = 0} = C0(R,R)
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endowed with the compact open topology (see [2], Appendix A.2 and A.3), P is the corresponding
Wiener measure and F0 is the Borel σ-algebra on Ω. Let

(3.6) θtω(·) = ω (·+ t)− ω (t) , t ∈ R,

then (Ω,F0,P, (θt)t∈R) is a metric dynamical system. Let F be the P-completion of F0 and let

Ft :=
∨

s≤t

F t
s, t ∈ R

with
F t

s = σ{w(τ2)− w(τ1) : s ≤ τ1 ≤ τ2 ≤ t}
∨
N ,

where σ{w(τ2) − w(τ1) : s ≤ τ1 ≤ τ2 ≤ t} is the smallest σ-algebra generated by the random
variable w(τ2)− w(τ1) for all τ1, τ2 such that s ≤ τ1 ≤ τ2 ≤ t and N are the null sets of F .

Note that θ−1
τ F t

s = F t+τ
s+τ , so (Ω,F0,P, (θt)t∈R, (F t

s)s≤t) is a filtered dynamical system (see [2],
pp. 72, 91 and 546 for more details).

Let us consider the one-dimensional stochastic differential equation

(3.7) dz = −α z dt + dw(t),

for α > 0. This equation has a random fixed point in the sense of random dynamical systems
generating a stationary solution known as the stationary Ornstein-Uhlenbeck process (see Caraballo
et al. [9] for more details). In fact, we have

Lemma 3.1. (Caraballo et al. [9]) There exists a {θt}t∈R-invariant subset Ω̄ ∈ F of Ω = C0(R,R)
of full measure such that

lim
t→±∞

|ω(t)|
t

= 0 for ω ∈ Ω̄,

and, for such ω, the random variable given by

z∗(ω) := −α

∫ 0

−∞
eατω(τ)dτ

is well defined. Moreover, for ω ∈ Ω̄, the mapping

(t, ω) → z∗(θtω) = −α

∫ 0

−∞
eατθtω(τ)dτ

= −α

∫ 0

−∞
eατω(t + τ)dτ + ω(t)

is a stationary solution of (3.7) with continuous trajectories. In addition, for ω ∈ Ω̄

lim
t→±∞

|z∗(θtω)|
|t| = 0, lim

t→±∞
1
t

∫ t

0
z∗(θτω)dτ = 0,

lim
t→±∞

1
t

∫ t

0
|z∗(θτω)|dτ = E|z∗| < ∞.

(3.8)

Remark 3.2. We now consider θ defined in (3.6) on Ω̄ instead of Ω. This mapping possesses the
same properties as the original one if we choose for F the trace σ-algebra with respect to Ω̄ denoted
also by F .
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Let us consider α = 1 and denote by z∗j its associated Ornstein-Uhlenbeck process corresponding
to (3.7) with wj instead of w.

Then for any j = 1, ..., N we have a stationary Ornstein-Uhlenbeck process generated by a
random variable z∗j (ω) on Ω̄j with properties formulated in Lemma 3.1 defined on the metric
dynamical system (Ω̄j ,Fj ,Pj , θ). We set

(3.9) (Ω,F ,P, θ),

where

Ω = Ω̄1 × · · · × Ω̄N , F =
N⊗

i=1

Fi, P = P1 × P2 × · · · × PN ,

and θ is the flow of Wiener shifts.
Now, let us note that operator Cj generates a strongly continuous semigroup (in fact, a uniformly

continuous group) of operators SCj(t). More precisely, SCj(t) is given by

SCj (t)u = ecjtu, for u ∈ `2.

Then we denote

T (ω) := SC1(z
∗
1(ω)) ◦ ... ◦ SCN

(z∗N (ω)) = e

NP
j=1

cjz∗j (ω)

Id`2

which is clearly a homeomorphism in H = `2. The inverse operator is well defined by

T−1(ω) := SCN
(−z∗N (ω)) ◦ ... ◦ SC1(−z∗1(ω)) = e

−
NP

j=1
cjz∗j (ω)

Id`2 .

From simplicity, let us denote δ(ω) =
N∑

j=1
cjz

∗
j (ω). It easily follows that ‖T−1(θtω)‖ has sub-

exponential growth as t → ±∞ for any ω ∈ Ω. Hence ‖T−1‖ is tempered. According to Remark 3.2
we can change our metric dynamical system with respect to Ω̄. However the new metric dynamical
system will be denoted by the same symbols (Ω,F ,P, θ).

We now argue in a heuristic informal way. Let us consider the change of variable

v(t) = T−1(θtω)u(t) = e−δ(θtω)u(t),

where u is a solution to (3.5). Then,

dv(t) = e−δ(θtω)du(t)−
N∑

j=1

cje
−δ(θtω)u(t) ◦ dz∗j (θtω)

= e−δ(θtω)(−νAu(t)− λu(t)− f̃(u(t)) + g + δ(θtω)u(t))dt

=
(
−νAv(t)− λv(t)− e−δ(θtω)f̃(eδ(θtω)v(t)) + e−δ(θtω)g + δ(θtω)v(t)

)
dt.

So we can consider the following evolution equation with random coefficients but without white
noise

dv

dt
= −νAv − (λ− δ(θtω)) v − e−δ(θtω)f̃

(
eδ(θtω)v

)
+ e−δ(θtω)g(3.10)

and initial condition v(0) = v0 ∈ H.
Now we establish the following result.
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Theorem 3.3. Let T > 0 and v0 ∈ H be fixed. Then the following properties hold:
(1) For every ω ∈ Ω, equation (3.10) admits a unique solution v(·, ω, v0) ∈ C([0, T ], `2),
(2) The solution v of (3.10) depends continuously on the initial data v0, i.e., for each ω ∈ Ω

the mapping v0 ∈ `2 7→ v(·, ω, v0) ∈ C([0, T ], `2) is continuous.

Proof. (1) For any fixed T > 0 and ω ∈ Ω, and thanks to standard arguments (notice that the
mapping F (t, v) = e−δ(θtω)f

(
eδ(θtω)v

)
is locally Lipschitz with respect to its second variable and

the Lipschitz constant is uniformly bounded in [0, T ]) (3.10) possesses a local solution v(·;ω, v0) ∈
C([0, Tmax), `2), where [0, Tmax) is the maximal interval of existence of the solution of (3.10). We
prove now that this local solution is a global one. From (3.10) it follows that

d

dt
||v(t)||2 = 2

(
−ν (Av, v)− λ||v||2 −

(
e−δ(θtω)f̃

(
eδ(θtω)v

)
, v

)
+ δ(θtω)||v||2

)
(3.11)

+ 2
(
e−δ(θtω)g, v

)

≤ −2λ||v||2 + 2δ(θtω)||v||2 + λ||v||2 +
1
λ

e−2δ(θtω)||g||2

≤ (−λ + 2δ(θtω)) ||v||2 +
1
λ

e−2δ(θtω)||g||2,
whence

||v(t)||2 ≤ e−λt+2
R t
0 δ(θsω)ds||v0||2

+
||g||2

λ
e−λt+2

R t
0 δ(θsω)ds

∫ t

0
e−2δ(θsω)+λs−2

R s
0 δ(θrω)drds.

If we denote β(ω) = maxt∈[0,T ]

( ||g||2
λ e−λt+2

R t
0 δ(θsω)ds

∫ t
0 e−2δ(θsω)+λs−2

R s
0 δ(θrω)drds

)
and α(ω) =

2
∫ T
0 |δ(θsω)|ds, then we have that

(3.12) ||v(t)||2 ≤ ||v0||2eα(ω) + β(ω)

which implies that the solution v is defined in any interval [0, T ].
(2) Let u0, v0 ∈ `2 and X(t) := v(t, ω, u0), Y (t) := v(t, ω, v0) the corresponding solutions of

(3.10). Then, if we denote Z(t) = X(t)− Y (t) we have

dZ(t)
dt

= −νAZ(t)− (λ− δ(θtω))Z(t)− e−δ(θtω)
(
f̃

(
eδ(θtω)X(t)

)
− f̃

(
eδ(θtω)Y (t)

))
,

and,
d

dt
||Z(t)||2 = 2

(
−ν (AZ,Z)− λ||Z||2 − e−δ(θtω)

(
f̃

(
eδ(θtω)X(t)

)
− f̃

(
eδ(θtω)Y (t)

)
, Z

))

+ 2δ(θtω)||Z||2

≤ 2
(
e−δ(θtω)

∥∥∥f̃
(
eδ(θtω)X(t)

)
− f̃

(
eδ(θtω)Y (t)

)∥∥∥ ||Z||+ δ(θtω)||Z||2
)

≤ 2
(
L||Z||2 + δ(θtω)||Z||2)

≤ γ||Z||2,
where γ = 2

(
L + maxt∈[0,T ] |δ(θtω)|) , and L denotes the Lipschitz constant of f corresponding to

a bounded set where X and Y belong to (see (3.12)).
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Now, by standard computations, we obtain that

||Z(t)||2 ≤ eγt||Z(0)||2,
and, consequently,

sup
t∈[0,T ]

||X(t)− Y (t)||2 ≤ eγT ||u0 − v0||2.

If u0 = v0, then the above inequality shows the uniqueness and continuous dependence on the
initial data of the solution of (3.10). So, the properties (1) and (2) of this theorem hold. ¤
Theorem 3.4. Equation (3.10) generates a continuous random dynamical system (ψ(t))t≥0 over
(Ω,F0, P, (θt)t∈R), where

ψ(t, ω, u0) = v(t, ω, u0) for u0 ∈ `2, t ≥ 0 and for all ω ∈ Ω.

Moreover, if we define ϕ by

(3.13) ϕ(t, ω, u0) = T (θtω)ψ(t, ω, T−1(ω)u0) for u0 ∈ `2, t ≥ 0 and for all ω ∈ Ω,

then ϕ is another random dynamical system for which the process

(ω, t) → ϕ(t, ω, u0)

solves (3.5) for any initial condition u0 ∈ `2.

Proof. The fact that ψ is a continuous random dynamical system follows from Theorem 3.3. The
measurability of ϕ follows by the properties of T. To prove that ϕ and ψ are conjugated random
dynamical systems, we will use the chain rule. Then, omitting the arguments for simplicity, we
have that

d (Tψ) = Tdψ +
N∑

j=1

cjTψ ◦ dz∗j

= T (−νAψ − (λ− δ)ψ − T−1f̃(Tψ) + T−1g)dt− δTψdt +
N∑

j=1

cjTψ ◦ dwj

= (−νA (Tψ)− λTψ − f̃(Tψ) + g)dt +
N∑

j=1

cjTψ ◦ dwj ,

and the proof is complete. ¤

4. Existence of Global Random Attractors

In this section, we prove the existence of a global random attractor for the random lattice
dynamical system generated by equation (3.1). Our main result is

Theorem 4.1. The random lattice dynamical system ϕ generated by Eq. (3.5) has a unique global
random attractor.

To prove this theorem we will use Proposition 2.9. In order to prove that our lattice random
dynamical system ϕ satisfies the assumptions in the proposition above, we will proceed in the
following way. We will prove first that there exists an absorbing set for ψ in D. Next we will
construct a corresponding closed absorbing one in D for its conjugated lattice random dynamical
system ϕ. Finally, we will prove the asymptotic compactness.
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4.1. Existence of the closed tempered random absorbing set.

We need to prove that there exists a closed random tempered set K ∈ D such that for all B ∈ D
and a.e. ω ∈ Ω, there exists TB,ω > 0 such that

ϕ(t, θ−tω, B(θ−tω)) ⊂ K(ω), for all t ≥ TB,ω.

Let us start with v(t) = ψ(t, ω, u0). Then, by arguing as in (3.11) we obtain

||v(t)||2 ≤ e−λt+2
R t
0 δ(θsω)ds||u0||2

+
||g||2

λ
e−λt+2

R t
0 δ(θsω)ds

∫ t

0
e−2δ(θsω)+λs−2

R s
0 δ(θrω)drds.

Let us now substitute ω by θ−tω and u0 by e−δ(θ−tω)u0 in the expression of ψ, we then have that

‖ψ(
t, θ−tω, e−δ(θ−tω)u0

)‖2 ≤ e−λt+2
R t
0 δ(θs−tω)ds‖e−δ(θ−tω)u0‖2

+
||g||2

λ
e−λt+

R t
0 δ(θs−tω)ds

∫ t

0
e−2δ(θs−tω)+λs−2

R s
0 δ(θr−tω)drds

≤ e−λt−δ(θ−tω)+2
R 0
−t δ(θsω)ds||u0||2

+
||g||2

λ

∫ t

0
e−2δ(θs−tω)−λ(t−s)+2

R t
s δ(θr−tω)drds

≤ e−λt−δ(θ−tω)+2
R 0
−t δ(θsω)ds||u0||2

+
||g||2

λ

∫ 0

−t
e−2δ(θsω)−λs+2

R 0
s δ(θrω)drds

≤ e−λt−δ(θ−tω)+2
R 0
−t δ(θsω)ds||u0||2

+
||g||2

λ

∫ 0

−∞
e−2δ(θsω)−λs+2

R 0
s δ(θrω)drds.

(4.1)

Notice that, thanks to the properties of the Ornstein-Uhlenbeck process z∗, it follows that
∫ 0

−∞
e−2δ(θsω)−λs+2

R 0
s δ(θrω)drds < +∞.

Taking into account that for any u0 ∈ B(θ−tω)

ϕ(t, θ−tω, u0) = eδ(ω)ψ(t, θ−tω, e−δ(θ−tω)u0)

then

||ϕ(t, θ−tω, u0)||2 ≤ eδ(ω)e−λt−δ(θ−tω)+2
R 0
−t δ(θsω)dsd(B(θ−tω))2

+ eδ(ω) ||g||2
λ

∫ 0

−∞
e−2δ(θsω)+λs+2

R 0
s δ(θrω)drds.

Denoting by

(4.2) R2(ω) = 2eδ(ω) ||g||2
λ

∫ 0

−∞
e−2δ(θsω)+λs+2

R 0
s δ(θrω)drds,
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and noticing that

lim
t→+∞ eδ(ω)e−λt−δ(θ−tω)+2

R 0
−t δ(θsω)dsd(B(θ−tω))2 = 0,

it follows that

(4.3) K(ω) = B`2(0, R(ω))

is an absorbing closed random set. We will now prove that K ∈ D. To this end, we only have to
check that

lim
t→+∞ e−βtR(θ−tω) = 0.

Indeed, observe that

e−βtR2(θ−tω) = 2e−βteδ(θ−tω) ||g||2
λ

∫ 0

−∞
e−2δ(θs−tω)+λs+2

R 0
s δ(θr−tω)drds

= 2 e−βteδ(θ−tω)︸ ︷︷ ︸
−→0 as t→+∞

||g||2
λ

∫ −t

−∞
e−2δ(θsω)+λ(s+t)+2

R−t
s δ(θrω)drds

︸ ︷︷ ︸
−→0 as t→+∞

.

4.2. Asymptotic compactness.

To prove the asymptotic compactness for the random dynamical system ϕ, we first prove the
following lemma.

Lemma 4.2. Let u0(ω) ∈ K(ω), the absorbing set given by (4.3). Then for every ε > 0, there exist
T (ε, ω) > 0 and N(ε, ω) > 0 such that the solution ϕ of equation (3.1) satisfies

∑

|i|≥N(ε,ω)

∣∣ϕi(t, θ−tω, u0(θ−tω))
∣∣2 ≤ ε, for all t ≥ T (ε, ω).

Proof. Choose a smooth function ρ such that 0 ≤ ρ(s) ≤ 1 for s ∈ R+, and

ρ(s) = 0 for 0 ≤ s ≤ 1; ρ(s) = 1 for s ≥ 2.

Then there exists a constant C such that |ρ′(s)| ≤ C for s ∈ R+.
We first consider the random equation (3.10). Let k be a fixed integer which will be specified

later, and set x = (xi)i∈Z with xi = θ
( |i|

k

)
ψi. Then taking the inner product of equation (3.10)

with x in l2, we get

d

dt

∑

i∈Z
ρ

( |i|
k

)
|ψi|2 = −2ν(Aψ, x)− 2(λ− δ(θtω))

∑

i∈Z
ρ

( |i|
k

)
|ψi|2

− 2e−δ(θtω)
∑

i∈Z
ρ

( |i|
k

)
fi(eδ(θtω)ψi)ψi + 2e−δ(θtω)

∑

i∈Z
ρ

( |i|
k

)
giψi.

(4.4)
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We now estimate the terms in (4.4) as follows. First we have

(Aψ, x) = (Bψ,Bx)

=
∑

i∈Z
(ψi+1 − ψi) (xi+1 − xi)

=
∑

i∈Z
(ψi+1 − ψi)

[(
ρ

( |i + 1|
k

)
− ρ

( |i|
k

))
ψi+1 + ρ

( |i|
k

)
(ψi+1 − ψi)

]

=
∑

i∈Z

(
ρ

( |i + 1|
k

)
− ρ

( |i|
k

))
(ψi+1 − ψi)ψi+1 +

∑

i∈Z
ρ

( |i|
k

)
(ψi+1 − ψi)

2

≥
∑

i

(
ρ

( |i + 1|
k

)
− ρ

( |i|
k

))
(ψi+1 − ψi)ψi+1.

By the property of the cut-off function ρ, we estimate∣∣∣∣∣
∑

i∈Z

(
ρ

( |i + 1|
k

)
− ρ

( |i|
k

))
(ψi+1 − ψi) ψi+1

∣∣∣∣∣

≤
∑

i∈Z

|ρ′(ξi)|
k

|ψi+1 − ψi| |ψi+1|

≤ C

k

∑

i

(
|ψi+1|2 + |ψi| |ψi+1|

)
≤ 2C

k
‖ψ‖2,

which yields that

(4.5) (Bψ, Bx) ≥ −2C||ψ||2
k

.

Using condition (3.3), we have

−2eδ(θtω)
∑

i∈Z
ρ

( |i|
k

)
fi(eδ(θtω)ψi)ψi ≤ 0.

For the last term in (4.4), we have
∑

i∈Z
ρ

( |i|
k

)
giψi =

∑

|i|≥k

ρ

( |i|
k

)
giψi

≤ 1
8
λ

∑

|i|≥k

ρ

( |i|
k

)
|ψi|2 +

2
λ

∑

|i|≥k

|gi|2.
(4.6)

Then, from (4.4) – (4.6) it follows that,

d

dt

∑

i∈Z
ρ

( |i|
k

)
|ψi|2 + (λ− 2δ(θtω))

∑

i∈Z
ρ

( |i|
k

)
|ψi|2

≤ 4νC

k
||ψ(t, ω, e−δ(ω)u0)||2 +

4
λ

e−δ(θtω)
∑

|i|≥k

|gi|2.
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By using Gronwall’s lemma, we have that for t ≥ TK = TK(ω),

∑

i∈Z
ρ

( |i|
k

) ∣∣ψi(t, ω, e−δ(ω)u0(ω))
∣∣2

≤ e
−λ(t−TK)+2

R t
Tk

δ(θsω)ds
∑

i∈Z
ρ

( |i|
k

) ∣∣ψi(TK , ω, e−δ(ω)u0(ω))
∣∣2

+
4νC

k

∫ t

TK

e−λ(t−τ)+2
R t

τ δ(θs)ds||ψ(τ, ω, e−δ(ω)u0)||2dτ

+
4
λ

( ∑

|i|≥k

|gi|2
)∫ t

TK

e−λ(t−τ)+2
R t

τ δ(θs)ds−δ(θτ ω)dτ.

(4.7)

Replace ω by θ−tω. We then estimate each terms on the right hand side of (4.7). From (4.1)
with t replaced by TK and ω by θ−tω, it follows that

e
−λ(t−TK)+2

R t
TK

δ(θs−tω)ds
∑

i∈Z
ρ

( |i|
k

) ∣∣ψi(TK , θ−tω, e−δ(θ−tω)u0(θ−tω))
∣∣2

≤ e−λt+2
R t
0 δ(θs−tω)ds−δ(θ−tω)||u0||2 +

||g||2
λ

∫ TK

0
e−2δ(θs−tω)−λ(t−s)+2

R t
s δ(θr−tω)drds.

(4.8)

Thus, using (3.8), there is a T1(ε, ω) > TK(ω) such that if t > T1(ε, ω), then

(4.9) e
−λ(t−TK)+2

R t
TK

δ(θs−tω)ds
∑

i∈Z
ρ

( |i|
k

) ∣∣ψi(TK , θ−tω, e−δ(θ−tω)u0(θ−tω))
∣∣2 ≤ 1

3
εe−δ(ω).

Next, we estimate

4νC

k

∫ t

TK

e−λ(t−τ)+2
R t

τ δ(θs−tω)ds||ψ(τ, θ−tω, e−δ(θ−tω)u0)||2dτ

≤ 4νC

k
‖u0‖(t− TK)e−λt+2

R t
0 δ(θs−tω)ds−δ(θ−tω)

+
‖g‖
λ

∫ t

TK

∫ τ

0
e−2δ(θs−tω)−λ(t−s)+2

R t
s δ(θr−tω)drds dτ.

(4.10)

Then, using (3.8), there exist T2(ε, ω) > TK(ω), and N1(ε, ω) > 0 such that if t > T2(ε, ω) and
k > N1(ε, ω), then

(4.11)
4νC

k

∫ t

TK

e−λ(t−τ)+2
R t

τ δ(θs−tω)ds||ψ(τ, θ−tω, e−δ(θ−tω)u0)||2dτ ≤ 1
3
εe−δ(ω).

Since g ∈ `2, by using (3.8), there exists N2(ε, ω) > 0 such that for k > N2(ε, ω)

(4.12)
4
λ

( ∑

|i|≥k

|gi|2
)∫ t

TK

e−λ(t−τ)+2
R t

τ δ(θs−tω)ds−δ(θτ−tω)dτ ≤ 1
3
εe−δ(ω).
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Therefore, by letting

T (ε, ω) = max{T1(ε, ω), T2(ε, ω)},(4.13)

N(ε, ω) = max{N1(ε, ω), N2(ε, ω)},(4.14)

we have for t > T (ε, ω) and k > N(ε, ω)
∑

|i|≥2k

∣∣∣ψi(t, θ−tω, e−δ(θ−tω)u0(θ−tω))
∣∣∣
2
≤

∑

i∈Z
ρ

( |i|
k

) ∣∣∣ψi(t, θ−tω, e−δ(θ−tω)u0(θ−tω))
∣∣∣
2
≤ εe−δ(ω),

which, thanks to relation (3.13), implies that
∑

|i|≥N(ε,ω)

|ϕi(t, θ−tω, u0(θ−tω))|2 ≤ ε

provided N(ε, ω) is large enough. This completes the proof of the lemma.
¤

We are now ready to show the asymptotic compactness of K.

Theorem 4.3. For ω ∈ Ω the set K(ω) is asymptotically compact: each sequence

pn ∈ ϕ(tn, θ−tnω, K(θ−tnω))

with tn →∞ has a convergent subsequence in `2.

Proof. Consider (tn)n∈N with lim
n→∞ tn = ∞ and pn ∈ ϕ(tn, θ−tnω, K(θ−tnω)). We consider pn =

ϕ(tn, θ−tnω, xn), where xn ∈ K(θ−tnω). We show that (ϕ(tn, θ−tnω, xn))n∈N has a convergent
subsequence. Since K(ω) is a bounded absorbing set, for large n, ϕ(tn, θ−tnω, xn) ∈ K(ω). Thus,
there exists v ∈ `2 and a subsequence of {ϕ(tn, θ−tnω, xn)} (still denoted by {ϕ(tn, θ−tnω, xn)})
such that

(4.15) {ϕ(tn, θ−tnω, xn)} ⇀ v weakly in `2.

Next, we show that the above weak convergence is actually strong convergence, i.e., for each ε > 0
there is N∗(ε, ω) > 0 such that for n ≥ N∗(ε, ω)

||ϕ(tn, θ−tnω, xn)− v|| ≤ ε.

By Lemma 4.2, there exist N∗
1 (ε, ω) > 0 and K1(ε, ω) > 0 such that for n > N∗

1

(4.16)
∑

|i|≥K1(ε,ω)

|ϕi(tn, θ−tnω, xn)|2 ≤ 1
8
ε2.

On the other hand, since v ∈ `2, there exists K2(ε) such that

(4.17)
∑

|i|≥K2(ε)

|vi|2 ≤ 1
8
ε2.

Letting K(ε, ω) = max{K1(ε, ω),K2(ε)}, by the weak convergence (4.15), we have for each |i| ≤
K(ε, ω) as n →∞

ϕi(tn, θ−tnω, xn) → vi,
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which implies that there exists N∗
2 (ε, ω) > 0 such that when n ≥ N∗

2 (ε, ω)

(4.18)
∑

|i|≤K(ε)

|ϕi(tn, θ−tnω, xn)− vi|2 ≤ 1
2
ε2.

Let N∗(ε, ω) = max{N∗
1 (ε, ω), N∗

2 (ε, ω)}. Then, from (4.16), (4.17), and (4.18) we obtain for
n ≥ N∗(ε, ω)

||ϕ(tn, θ−tnω, xn)− v||2 =
∑

|i|≤K(ε)

|ϕi(tn, θ−tnω, xn)− vi|2 +
∑

|i|>K(ε)

|ϕi(tn, θ−tnω, xn)− vi|2

≤ 1
2
ε2 + 2

∑

|i|>K(ε)

(|ϕi(tn, θ−tnω, xn)|2 + |vi|2
) ≤ ε2.

Hence, ϕi(tn, θ−tnω, xn) strongly converges to v. The proof is complete.
¤

Thus, we have proved Theorem 4.1.

In summary, we studied a stochastic lattice differential equation with diffusive nearest neighbor
interaction, a dissipative nonlinear reaction term, and a multiplicative white noise at each node.
We proved the existence of a compact global random attractor which pulled back attracts tempered
random bounded sets. A challenge problem is to study the long term behavior of the lattice systems
with inhomogeneous white noises at each node:

dui(t)
dt

= ν(ui−1 − 2ui + ui+1)− λui − fi(ui) + gi + ciui ◦ dwi(t)
dt

, i ∈ Z.
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