González-Meneses López, Juan2016-07-052016-07-052003-11-01González-Meneses López, J. (2003). The nth root of a braid is unique up to conjugacy. Algebraic and Geometric Topology, 3, 1103-1118.1472-27471472-2739http://hdl.handle.net/11441/43115We prove a conjecture due to Makanin: if α and β are elements of the Artin braid group Bn such that α k = β k for some nonzero integer k, then α and β are conjugate. The proof involves the Nielsen-Thurston classification of braids.application/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/braidrootconjugacyNielsen-Thurston theoryThe nth root of a braid is unique up to conjugacyinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccesshttps://doi.org/10.2140/agt.2003.3.1103