2016-07-042016-07-042005Calderón Moreno, F.J. y Narváez Macarro, L. (2005). Dualité et comparaison sur les complexes de de Rham logarithmiques par rapport aux diviseurs libres. Annales de l'Institut Fourier, 55 (1), 47-75.0373-09561777-5310http://hdl.handle.net/11441/43078Let X be a complex analytic manifold and D \subset X a free divisor. Integrable logarithmic connections along D can be seen as locally free {\cal O}_X-modules endowed with a (left) module structure over the ring of logarithmic differential operators {\cal D}_X(\log D). In this paper we study two related results: the relationship between the duals of any integrable logarithmic connection over the base rings {\cal D}_X and {\cal D}_X(\log D), and a differential criterion for the logarithmic comparison theorem. We also generalize a formula of Esnault-Viehweg in the normal crossing case for the Verdier dual of a logarithmic de Rham complex.application/pdffraAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/D-modulesdualité de Verdiercomparaison méromorphe-logarithmiqueperversitéDualité et comparaison sur les complexes de de Rham logarithmiques par rapport aux diviseurs libresinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccess10.5802/aif.2089https://idus.us.es/xmlui/handle/11441/43078