2016-05-132016-05-132010Mebkhout, Z. y Narváez Macarro, L. (2010). Le théorème du symbole total d’un opérateur différentiel p-adique. Revista Matemática Iberoamericana, 26 (3), 825-859.0213-22302235-0616http://hdl.handle.net/11441/41168Let X † be a smooth †-scheme (in the sense of Meredith) over a complete discrete valuation ring (V,m) of unequal characteristics (0, p) and let D†X†/V be the sheaf of V -linear endomorphisms of OX† whose reduction modulo ms is a linear differential operator of order bounded by an affine function in s. In this paper we prove that locally there is an OX† -isomorphism between the sections of D†X†/V and the overconvergent total symbols, and we deduce a cohomological triviality property.application/pdffraAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/affinoid algebraDwork-Monsky-Washnitzer algebrap-schemep-adic differential operatorLe théorème du symbole total d’un opérateur différentiel p-adiqueinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccess10.4171/RMI/618https://idus.us.es/xmlui/handle/11441/41168