2016-11-212016-11-212001Domínguez Benavides, T., Khamsi, M.A. y Samadi, S. (2001). Asymptotically regular mappings in modular function spaces. Scientiae Mathematicae Japonicae, 4 (3), 239-248.1346-08621346-0447http://hdl.handle.net/11441/48921Let ρ be a modular function satisfying a ∆2-type condition and Lρ the corresponding modular space. The main result in this paper states that if C is a ρ-bounded and ρ-a.e sequentially compact subset of Lρ and T : C → C is an asymptotically regular mapping such that lim inf n→∞ [Tn] < 2, where |S| denotes the Lipschitz constant of S, then T has a fixed point. We show that the estimate lim inf n→∞ [Tn] < 2 cannot be, in general, improved.application/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Asymptotically regular mappingsFixed pointModular functionsOpial propertyAsymptotically regular mappings in modular function spacesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccesshttps://idus.us.es/xmlui/handle/11441/48921