2025-01-232025-01-232022-02-11Digar, A., Espínola García, R. y Kosuru, G.S.R. (2022). A characterization of weak proximal normal structure and best proximity pairs. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 116, 80. https://doi.org/10.1007/s13398-022-01217-5.1578-7303https://hdl.handle.net/11441/167337The aim of this paper is to address an open problem given in [Kirk et al. in J Math Anal Appl 463:461–476, (2018)]. We give a characterization of weak proximal normal structure using best proximity pair property. We also introduce a notion of pointwise cyclic contraction wrt orbits and therein prove the existence of a best proximity pair in the setting of reflexive Banach spaces.application/pdf8 p.engAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Best proximity pairsProximal normal structureRelatively nonexpansive mappingRelatively orbital nonexpansive mappingA characterization of weak proximal normal structure and best proximity pairsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccess10.1007/s13398-022-01217-5