Aries, FranckBriand, EmmanuelBruchou, ClaudeJüttler, BertPiene, Ragni2021-05-252021-05-252008Aries, F., Briand, E., y Bruchou, C. (2008). Some Covariants Related to Steiner Surfaces. En B. Jüttler, R. Piene (Ed.), Geometric Modeling and Algebraic Geometry (pp. 31-46). Berlin: Springer.978-3-540-72184-0https://hdl.handle.net/11441/109374A Steiner surface is the generic case of a quadratically parameterizable quartic surface used in geometric modeling. This paper studies quadratic parameterizations of surfaces under the angle of Classical Invariant Theory. Precisely, it exhibits a collection of covariants associated to projective quadratic parameterizations of surfaces, under the actions of linear reparameterization and linear transformations of the target space. Each of these covariants comes with a simple geometric interpretation. As an application, some of these covariants are used to produce explicit equations and inequalities defining the orbits of projective quadratic parameterizations of quartic surfaces.application/pdf13engAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Some Covariants Related to Steiner Surfacesinfo:eu-repo/semantics/bookPartinfo:eu-repo/semantics/openAccesshttps://doi.org/10.1007/978-3-540-72185-7_2