2016-10-042016-10-042002-11Rosas Celis, M.H., Rota, G. y Stein, J. (2002). A combinatorial overview of the Hopf algebra of MacMahon symmetric functions. Annals of Combinatorics, 6 (2), 195-207.0218-00060219-3094http://hdl.handle.net/11441/46818A MacMahon symmetric function is a formal power series in a finite number of alphabets that is invariant under the diagonal action of the symmetric group. In this article, we give a combinatorial overview of the Hopf algebra structure of the MacMahon symmetric functions relying on the construction of a Hopf algebra from any alphabet of neutral letters obtained in [18 G.-C. Rota and J. Stein, Plethystic Hopf algebras, Proc. Natl. Acad. Sci. USA 91 (1994) 13057–13061. 19. G.-C. Rota and J. Stein, Plethystic algebras and vector symmetric functions, Proc. Natl. Acad. Sci. USA 91 (1994) 13062–13066].application/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/MacMahon symmetric functionVector symmetric functionMulti symmetric functionGessel mapA combinatorial overview of the Hopf algebra of MacMahon symmetric functionsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccess10.1007/PL00012586https://idus.us.es/xmlui/handle/11441/46818