2017-03-202017-03-202016Briand, E., Orellana, R.C. y Rosas Celis, M.H. (2016). Invariance properties for coefficients of symmetric functions. En 27th International Conference on Formal Power Series and Algebraic Combinatorics, Daejeon (South Korea).http://hdl.handle.net/11441/56032We show that several of the main structural constants for symmetric functions (Littlewood-Richardson coefficients, Kronecker coefficients, plethysm coefficients, and the Kostka-Foulkes polynomials) share invariance properties related to the operations of taking complements with respect to rectangles and adding rectangles.Nous montrons que plusieurs des principales constantes de structure de la theorie des fonctions symétriques (les coefficients de Littlewood-Richardson, les coefficients de Kronecker, les coefficients du plethysme, et les polynômes de Kostka-Foulkes) ont en commun des symetries décrites par des opérations de complémentation dans des rectangles et d’ajout de rectangles pour les partitions qui les etiquettent.application/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Littlewood-Richardson coefficientsKronecker coefficientsPlethysm coefficientsKostka coefficientsInvariance properties for coefficients of symmetric functionsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/openAccess