2016-05-312016-05-312008-08Briand, E., Rosas Celis, M.H. y Zabrocki, M. (2008). On the Sn-module structure of the noncommutative harmonics. Journal of Combinatorial Theory, Series A, 115 (6), 1077-1085.0097-31651096-0899http://hdl.handle.net/11441/41690Using the a noncommutative version of Chevalley’s theorem due to Bergeron, Reutenauer, Rosas, and Zabrocki we compute the graded Frobenius series for their two sets of noncommutative harmonics with respect to the left action of the symmetric group (acting on variables). We use these results to derive the Frobenius series for the enveloping algebra of the derived free Lie algebra in n variables.application/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/proper multilinear polynomialsfree Lie algebraharmonicscoinvariantssymmetric functionsnoncommutative polynomialstensor algebraOn the Sn-module structure of the noncommutative harmonicsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccess10.1016/j.jcta.2007.10.005https://idus.us.es/xmlui/handle/11441/41690