2016-06-082016-06-082012-12Fernández Fernández, M.C. y Castro Jiménez, F.J. (2012). On irregular binomial D-modules. Mathematische Zeitschrift, 272 (3), 1321-1337.0025-58741432-1823http://hdl.handle.net/11441/42042We prove that a holonomic binomial D–module MA(I, β) is regular if and only if certain associated primes of I determined by the parameter vector β ∈ Cd are homogeneous. We further describe the slopes of MA(I, β) along a coordinate subspace in terms of the known slopes of some related hypergeometric D–modules that also depend on β. When the parameter β is generic, we also compute the dimension of the generic stalk of the irregularity of MA(I, β) along a coordinate hyperplane and provide some remarks about the construction of its Gevrey solutions.application/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Binomial D-module Slope Gevrey solutionOn irregular binomial D-modulesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccesshttp://dx.doi.org/10.1007/s00209-012-0988-xhttps://idus.us.es/xmlui/handle/11441/42042