Ortega Sáenz, PatriciaPardal Redondo, RicardoCastellano Orozco, Antonio GonzaloLópez Barneo, José2015-01-152015-01-1520001540-77480022-1295http://hdl.handle.net/11441/17783Voltage-dependent K 1 channel gating is influenced by the permeating ions. Extracellular K 1 determines the occupation of sites in the channels where the cation interferes with the motion of the gates. When external [K 1] decreases, some K 1 channels open too briefly to allow the conduction of measurable current. Given that extracellular K 1 is normally low, we have studied if negatively charged amino acids in the extracellular loops of Shaker K 1 channels contribute to increase the local [K 1]. Surprisingly, neutralization of the charge of most acidic residues has minor effects on gating. However, a glutamate residue (E418) located at the external end of the membrane spanning segment S5 is absolutely required for keeping channels active at the normal external [K 1]. E418 is conserved in all families of voltage-dependent K 1 channels. Although the channel mutant E418Q has kinetic properties resembling those produced by removal of K 1 from the pore, it seems that E418 is not simply concentrating cations near the channel mouth, but has a direct and critical role in gating. Our data suggest that E418 contributes to stabilize the S4 voltage sensor in the depolarized position, thus permitting maintenance of the channel open conformation.engAtribución-NoComercial-SinDerivadas 4.0 Españahttp://creativecommons.org/licenses/by-nc-nd/4.0/K+-channel gatingextracellular K1acidic residuesopen state stabilizationglutamate mutationCollapse of conductance Is prevented by a Glutamate residue conserved in voltage-dependent K+ channelsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccess