Camacho Santana, Luisa MaríaCañete, E. M.Gómez, J. R.Omirov, B. A.2025-03-272025-03-272011-09Camacho Santana, L.M., Cañete, E.M., Gómez, J.R. y Omirov, B.A. (2011). 3-Filiform Leibniz algebras of maximum length, whose naturally graded algebras are Lie algebras. Linear & Multilinear Algebra, 59 (9), 1039-1058. https://doi.org/10.1080/03081087.2011.554416.0308-10871563-5139https://hdl.handle.net/11441/170936In this article we present the classification of the 3-filiform Leibniz algebras of maximum length, whose associated naturally graded algebras are Lie algebras. Our main tools are a previous existence result by Cabezas and Pastor [J.M. Cabezas and E. Pastor, Naturally graded p-filiform Lie algebras in arbitrary finite dimension, J. Lie Theory 15 (2005), pp. 379–391] and the construction of appropriate homogeneous bases in the connected gradation considered. This is a continuation of the work done in Ref. [J.M. Cabezas, L.M. Camacho, and I.M. Rodrı´guez, On filiform and 2-filiform Leibniz algebras of maximum length, J. Lie Theory 18 (2008), pp. 335–350].application/pdf20 p.engAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Lie algebrLeibniz algebraNilpotenceNatural gradationCharacteristic sequencep-filiformMaximum length3-Filiform Leibniz algebras of maximum length, whose naturally graded algebras are Lie algebrasinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccesshttps://doi.org/10.1080/03081087.2011.554416