Doblas, DavidMoreno Ramírez, Luis MiguelFranco García, VictorinoConde Amiano, AlejandroSvalov, A.V.Kurlyandskaya, G.V.Franco García, Victorino2020-07-152020-07-152017-01Doblas, D., Moreno Ramírez, L.M., Franco García, V., Conde Amiano, A., Svalov, A.V. y Kurlyandskaya, G.V. (2017). Nanostructuring as a procedure to control the field dependence of the magnetocaloric effect. Materials and Design, 114, 214-219.0264-12750261-3069https://hdl.handle.net/11441/99453In this work, the field dependence of the magnetocaloric effect of Gd bulk samples has been enhanced through nanostructuring of the material. Nanostructuring consists in multilayers preparation by alternative rf-sputtering deposition of Gd layers and Ti spacers onto glass substrates. The results obtained for the multilayers were compared to those obtained for the Gd bulk. Assuming a power law for the field dependence of the magnetic entropy change (ΔSM ∝ Hn ), higher field dependences close to the transition in a wider temperature range are obtained for the multilayer material (n = 1.0) with respect to the bulk counterpart (n = 0.78). The effect of a Curie temperature distribution in the multilayer material (due to variations of the layer thickness) has been studied through numerical simulations to explain the observed field dependence of the magnetocaloric effect, obtaining a remarkable agreement between experiments and results.application/pdf6 p.engAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Magnetocaloric effectMagnetic multilayersMagnetic entropy changeCurie temperature distributionFinite size scalingNanostructuring as a procedure to control the field dependence of the magnetocaloric effectinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccesshttps://doi.org/10.1016/j.matdes.2016.11.085