Universidad de Sevilla. Departamento de Análisis MatemáticoVillegas Vallecillos, MoisésLacruz Martín, Miguel BenitoJiménez Vargas, Antonio2014-11-272014-11-272011Villegas Vallecillos, M., Lacruz Martín, M.B. y Jiménez Vargas, A. (2011). Essential norm of composition operators on Banach spaces of Hölder functions. Abstract and Applied Analysis, 2011, 590853-1-590853-13.1085-3375http://hdl.handle.net/11441/16101El contenido de este artículo se utilizó para presentar un póster al V Curso Internacional de Análisis Matemático en Andalucía: Almería, del 12 al 16 de septiembre de 2011. https://w3.ual.es/congresos/cidama/enlaces.htmLet (X, d) be a pointed compact metric space, let 0 < α < 1, and let ϕ : X → X be a base point-preserving Lipschitz map. We show that the essential norm of the composition operator Cϕ induced by the symbol ϕ on the Lipschitz spaces lip0 (X, dα) and Lip0(X, dα) is given by the formula kCϕke = lim t→0 sup 0<d(x,y)<t d(ϕ(x), ϕ(y))α d(x, y) α whenever the dual space lip0 (X, dα)∗ has the approximation property. This happens in particular when X is an infinite compact subset of a finite-dimensional normed linear space.enghttp://creativecommons.org/licenses/by-nc-nd/4.0/Essential norm of composition operators on Banach spaces of Hölder functionsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccesshttps://doi.org/10.1155/2011/590853