Bernal González, LuisJiménez Rodríguez, PabloMuñoz Fernández, Gustavo AdolfoSeoane Sepúlveda, Juan Benigno2019-06-192019-06-192017-05Bernal González, L., Jiménez Rodríguez, P., Muñoz Fernández, G.A. y Seoane Sepúlveda, J.B. (2017). Non-Lipschitz differentiable functions on slit domains. Revista Matemática Complutense, 30 (2), 269-279.1139-11381988-2807https://hdl.handle.net/11441/87515It is proved the existence of large algebraic structures –including large vector subspaces or infinitely generated free algebras– inside the family of non-Lipschitz differentiable real functions with bounded gradient defined on special non-convex plane domains. In particular, this yields that there are many differentiable functions on plane domains that do not satisfy the Mean Value Theorem.application/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Non-Lipschitz functionDifferentiable functionDomain in the planeFree algebraNon-Lipschitz differentiable functions on slit domainsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccesshttps://doi.org/10.1007/s13163-016-0218-x