2025-01-282025-01-282019-07-29Fernández Ternero, D., Macías Virgós, E., Scoville, N.A. y Vilches Alarcón, J.A. (2019). Strong Discrete Morse Theory and Simplicial L–S Category: A Discrete Version of the Lusternik–Schnirelmann Theorem. Discrete & Computational Geometry, 63, 607-623. https://doi.org/10.1007/s00454-019-00116-8.0179-53761432-0444https://hdl.handle.net/11441/167704We prove a discrete version of the Lusternik–Schnirelmann theorem for discrete Morse functions and the recently introduced simplicial Lusternik–Schnirelmann category of a simplicial complex. To accomplish this, a new notion of critical object of a discrete Morse function is presented, which generalizes the usual concept of critical simplex (in the sense of R. Forman). We show that the non-existence of such critical objects guarantees the strong homotopy equivalence (in the Barmak and Minian’s sense) between the corresponding sublevel complexes. Finally, we establish that the number of critical objects of a discrete Morse function defined on K is an upper bound for the non-normalized simplicial Lusternik–Schnirelmann category of K.application/pdf13 p.engAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Simplicial Lusternik–Schnirelmann categoryStrong collapsibilityDiscrete Morse theoryStrong homotopy typeStrong Discrete Morse Theory and Simplicial L–S Category: A Discrete Version of the Lusternik–Schnirelmann Theoreminfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccess10.1007/s00454-019-00116-8