2018-05-162018-05-162018-01-15Duc, L.H., Garrido Atienza, M.J., Neuenkirch, A. y Schmalfuss, B. (2018). Exponential stability of stochastic evolution equations driven by small fractional Brownian motion with Hurst parameter in (1/2,1). Journal of Differential Equations, 264 (2), 1119-1145.0022-0396https://hdl.handle.net/11441/74640This paper addresses the exponential stability of the trivial solution of some types of evolution equations driven by Hölder continuous functions with H¨older index greater than 1/2. The results can be applied to the case of equations whose noisy inputs are given by a fractional Brownian motion BH with covariance operator Q, provided that H ∈ (1/2, 1) and tr(Q) is sufficiently small.application/pdfengAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de Américahttp://creativecommons.org/licenses/by-nc-nd/4.0/StabilityStochastic evolution equationsExponential stability of stochastic evolution equations driven by small fractional Brownian motion with Hurst parameter in (1/2,1)info:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccess10.1016/j.jde.2017.09.033