2016-09-292016-09-292014-12-15Li, D., Queffélec, H. y Rodríguez Piazza, L. (2014). A spectral radius type formula for approximation numbers of composition operators. Journal of Functional Analysis, 267 (12), 4753-4774.0022-1236http://hdl.handle.net/11441/46342For approximation numbers an(Cφ) of composition operators Cφ on weighted analytic Hilbert spaces, including the Hardy, Bergman and Dirichlet cases, with symbol φ of uniform norm <1, we prove that limn→∞[an(Cφ)]1/n=e−1/Cap[φ(D)], where Cap[φ(D)] is the Green capacity of φ(D) in D. This formula holds also for Hp with 1≤p<∞.application/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Approximation numbersBergman spaceComposition operatorDirichlet spaceGreen capacityHardy spaceWeighted analytic Hilbert spaceA spectral radius type formula for approximation numbers of composition operatorsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccess10.1016/j.jfa.2014.09.008