Abajo Casado, María EncarnaciónDiánez Martínez, Ana Rosa2024-10-102024-10-102015Abajo Casado, M.E. y Diánez Martínez, A.R. (2015). Exact value of ex(n; {C-3, . . . , C-s}) for n <= [25(s-1)/8]. Discrete Applied Mathematics, 185, 1-7. https://doi.org/10.1016/j.dam.2014.11.021.0166-218X1872-6771https://hdl.handle.net/11441/163395For integers s ≥ 8 and s+1 ≤ n ≤ ⌊ 25(s−1) 8 ⌋, we determine the exact value of the function ex(n; {C3, . . . , Cs}), that represents the maximum number of edges in a {C3, . . . , Cs}-free graph of order n. This result was already known when 3 ≤ s ≤ 7. To do that, for 1 ≤ k ≤ 5, we provide a family of graphs Hk s such that e(Hk s ) − n(Hk s ) = k and with the property that Hk s reaches girth s+1 with the minimum number of vertices. Also, we determine an infinity family of solutions of the problem ex(n; {C3, . . . , Cs}) = n + 6.application/pdf7 p.engAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Extremal functionExtremal graphsForbidden cyclesGirthExact value of ex(n; {C-3, . . . , C-s}) for n <= [25(s-1)/8]info:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccesshttps://doi.org/10.1016/j.dam.2014.11.021