2024-06-212024-06-212024-06Iranzo, J.A., González Morán, L., Cabello González, G.M., Toharias, B., Boillat, P. y Rosa, M.F. (2024). Dataset of the liquid water distribution in a biomimetic PEM fuel cell. Data in Brief, 54, 110484. https://doi.org/10.1016/j.dib.2024.110484.2352-3409https://hdl.handle.net/11441/160754© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC licenseThis dataset gathers the initial formation and the evolution of water content and distribution, as well as water evacuation, within a lung-inspired PEM (proton exchange membrane) fuel cell with a 50 cm2 active area for various operating con- ditions such as cell pressure, relative humidity of the reactant (anode and cathode), temperature, and cell current density. Neutron imaging was used since it has been shown to be an effective technique for quantitative analysis of water distribu- tion, obtaining the thickness of the water with the Lambert- Beer law, thus obtaining the numerical data that composes the tables and graphs in this dataset. A series of videos com- piling the individual images obtained through neutron imag- ing, showing the water distribution evolution are presented. Numerical and graphical compilation of the amount of water in a cell through time in different regions of the cell and for a total of 10 experiments are provided. This dataset provides a deeper knowledge on the complex phenomena that liquid water is subjected to in fuel cells along time, as well as a basis for an experimental validation for Computational Fluid Dynamics (CFD) simulations.application/pdf7 p.engAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Water transportNeutron imagingPurgingStationaryWater accumulationDataset of the liquid water distribution in a biomimetic PEM fuel cellinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccess10.1016/j.dib.2024.110484