Hytönen, TuomasPérez Moreno, Carlos2016-07-012016-07-012015-08-01Hytönen, T. y Pérez Moreno, C. (2015). The L(log L)e endpoint estimate for maximal singular integral operators. Journal of Mathematical Analysis and Applications, 428 (1), 605-626.0022-247Xhttp://hdl.handle.net/11441/42999We prove in this paper the following estimate for the maximal operator T ∗ associated to the singular integral operator T: kT ∗ fkL 1,∞ (w) . 1 ǫ Z Rn | f(x)| ML(log L) ǫ (w)(x) dx, w ≥ 0, 0 < ǫ ≤ 1. This follows from the sharp L p estimate kT ∗ fkLp (w) . p ′ ( 1 δ ) 1/p ′ kfk L p (ML(log L) p−1+δ (w)), 1 < p < ∞, w ≥ 0, 0 < δ ≤ 1. As as a consequence we deduce that kT ∗ fkL 1,∞ (w) . [w]A1 log(e + [w]A∞ ) Z Rn | f | w dx, extending the endpoint results obtained in [LOP] A. Lerner, S. Ombrosi and C. Pérez, A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden, Mathematical Research Letters (2009), 16, 149–156 and [HP] T. Hytönen and C. Pérez, Sharp weighted bounds involving A∞, Analysis and P.D.E. 6 (2013), 777–818. DOI 10.2140/apde.2013.6.777 to maximal singular integrals. Another consequence is a quantitative two weight bump estimate.application/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/maximal operatorsCalderón–Zygmund operatorsweighted estimatesThe L(log L)e endpoint estimate for maximal singular integral operatorsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccesshttps://doi.org/10.1016/j.jmaa.2015.03.017