Cruz Uribe, DavidMartell Berrocal, José MaríaPérez Moreno, CarlosNavarro Pascual, Juan CarlosKaidi Lhachmi, El Amin2017-09-212017-09-212016Cruz Uribe, D., Martell Berrocal, J.M., y Pérez Moreno, C. (2016). A note on the off-diagonal Muckenhoupt-Wheeden conjecture. En E.A. Kaidi Lhachmi, J.C. Navarro Pascual (Ed.), Advanced Courses of Mathematical Analysis V: Proceedings of the Fifth International School (Universidad de Almería, Almería, Spain, 12-16 September 2011) (pp. 244-252). World Scientific97898146996869789814699709http://hdl.handle.net/11441/64538We obtain the off-diagonal Muckenhoupt-Wheeden conjec-ture for Calder´on-Zygmund operators. Namely, given 1 < p < q < ∞ and a pair of weights (u, v), if the Hardy-Littlewood maximal functionsatisfies the following two weight inequalities: M : Lp(v) → Lq(u) and M : Lq´(u1−q´) → Lp´(v1−p´), then any Calderón-Zygmund operator Tand its associated truncatedmaximal operator T⋆ are bounded from Lp(v) to Lq(u). Additionally, as-suming only the second estimate for Mthen Tand T* map continuouslyLp(v) into Lq,∞(u). We also consider the case of generalized Haar shiftoperators and show that their off-diagonal two weight estimates are gov-erned by the corresponding estimates for the dyadic Hardy-Littlewoodmaximal function.application/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Haar shift operatorsCalderón-Zygmund operatorsTwo-weight inequalitiesTesting conditionsA note on the off-diagonal Muckenhoupt-Wheeden conjectureinfo:eu-repo/semantics/bookPartinfo:eu-repo/semantics/openAccesshttps://doi.org/10.1142/9789814699693_0006