2015-03-272015-03-272003-12Gago Vargas, M.J. (2003). Bases for Projective modules in An(k). Journal of Symbolic Computation, 36 (6), 845-853.0747-7171http://hdl.handle.net/11441/23599Let $A_n(k)$ be the Weyl algebra, with $k$ a field of characteristic zero. It is known that every projective finitely generated left module is free or isomorphic to a left ideal. Let $M$ be a left submodule of a free module. In this paper we give an algorithm to compute the projective dimension of $M$. If $M$ is projective and $\rk(M) \ge 2$ we give a procedure to find a basis.application/pdfengAtribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Projective modulesnon commutative ringsGröbner basesBases for Projective modules in An(k)info:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccesshttps://idus.us.es/xmlui/handle/11441/23599